
User’s Guide
Reliability Calculation Tool and Excel User Interface

Big Ladder Software

October 8, 2020

Contents

1 Introduction 2

2 Simulation Overview 2

3 Concept Overview 4
3.1 Flows . 4
3.2 Components and Ports . 4
3.3 Component Types . 5

3.3.1 Component Type: Load . 5
3.3.2 Component Type: Source . 5
3.3.3 Component Type: Uncontrolled Source 5
3.3.4 Component Type: Converter . 5
3.3.5 Component Type: Storage . 6
3.3.6 Component Type: Pass-Through . 6
3.3.7 Component Type: Muxer . 6
3.3.8 Component Type: Mover . 6

3.4 Networks and Connections . 7
3.5 Scenarios . 7
3.6 Reliability: Failure Modes and Statistical Distributions 7
3.7 Resilience: Intensities (Damage Metrics) and Fragility Curves 8

4 Input File Format 8

5 Output Metrics 15

6 Command-Line Tool 16
6.1 erin . 16
6.2 erin_multi . 17
6.3 erin_graph . 18

7 Microsoft Excel User Interface 19
7.1 Software Dependency: Modelkit/Params Framework 19
7.2 Additional Concept: Location . 19
7.3 Additional Concept: Network Link . 20
7.4 Interface Overview . 20

1

8 Example Problem 22
8.1 Text Input File . 22
8.2 Excel User Interface . 25

9 When Things Don’t Work: Checklist for MS Excel UI 27

1 Introduction

The purpose of this User’s Guide is to give a working introduction to the command-line version
of the resilience calculation tool (ERIN1) and a user interface for the tool written in Microsoft
Excel.

The purpose of the tool itself is to simulate the energy flows through a district energy system
composed of an interacting network of components. The main contributions of this tool that
we maintain are unique in aggregate are as follows:

• the tool accounts for both reliability (failure and repair) as well as resilience to various
scenarios (design basis threats)

• while also accounting for topology and interaction between an open-ended number of
energy networks

• while providing key energy usage, resilience, and reliability metrics for the modeler /
planner

The resilience calculation tool is available as open-source software written in C++.

Several command-line programs are included with the ERIN distribution including 3 key exe-
cutables along with a library written in the C++ programming language. Documentation of
the library itself is beyond the scope of this document. However, the 3 executables will be given
attention in this User’s Guide as they are of particular interest to modelers.

The minimal user interface written in Microsoft Excel uses the command-line simulation tool
behind the scenes as well as a Modelkit/Params2 template to make it easier to use. We will
cover usage of the Microsoft Excel interface in addition to the command-line programs.

2 Simulation Overview

In this section, we describe the simulation process to assess the resilience of a district system
network to various scenarios including Design Basis Threats.

District Energy Systems play a major role in enabling resilient communities. However, resilience
is contextual. That is, one must specify what one is resilient to. This is specified in the tool using
various “scenarios” which represent normal operation and various Design Basis Threats. Design
Basis Threats are low-probability, high-impact events such as hurricanes, flooding, earthquakes,
terrorist attacks, tornadoes, ice storms, viral pandemics, etc. Taking into account relevant
Design Basis Threats is necessary for enabling resilient public communities.

The tool operates over networks that supply energy to both individual buildings and districts.
These networks are comprised of components (loads, generation, distribution/routing, storage,
and transmission assets) and connections. These connections form the topology of the network

1ERIN stands for Energy Resilience of Interacting Networks
2Modelkit/Params is a separate open-source project available from Big Ladder Software.

2

https://bigladdersoftware.com/projects/modelkit/

– what is connected to what. Multiple flows of energy can be modeled: notably, both thermal
(heating/cooling) and electrical flows and their interactions.

This network of components is subject to various scenarios which represent one or more ideal
cases (i.e., “blue-sky”) as well as Design Basis Threats (also known as “black-sky” events). Each
scenario has a probability of occurrence and zero or more “damage intensities” associated with
it such as wind speed, vibration, water inundation level, etc. Fragility curves are used to relate
the scenario’s damage intensities with the percentage chance that a given component will fail
to work under the duress of the scenario.

Additionally, reliability statistics can be associated with components to model their routine
failure and repair times and to take reliability into account in conjunction with various threats.
Note, however, that routine reliability statistics are most likely not applicable to an extreme
event such as those represented from a design basis threat. Fragility curves are more appropriate
for that kind of assessment.

By looking at the performance of the network while taking into account the possibility of failure
due to both typical reliability and failure due to threats, resilience metrics such as maximum
downtime, energy availability, and load-not-served can be calculated. This can, in turn, help
planners to see whether a proposed system or change to an existing system will meet their
threat-based resilience goals.

The workflow for using the tool is as follows:

• using a piece of paper, sketch out the network of locations and components and how they
are connected

• using either the Excel user interface or a text editor, build an input file that describes:

– the network of components
∗ component physical characteristics
∗ component failure modes
∗ component fragility
∗ how components are connected to each other

– the scenarios to evaluate
∗ the duration of the scenario
∗ the occurrence distribution
∗ damage intensities involved

– load profiles associated with each load for each scenario

• simulate the given network over the given scenarios and examine the results

The simulation is specified using a discrete event simulator. Events include:

• changes in a load
• changes in an uncontrollable source such as PV power generation
• routine failure of a working component under reliability
• routine repair of a failed component
• events due to physical limitations of devices (e.g., depleting the energy in a battery or

diesel fuel tank)
• the initiation or ending of a scenario
• application of fragility curves at a scenario start

3

For every event that occurs, the simulation resolves and negotiates the conservation of energy
throughout the network. This results in resolving the flows through all connections in the
network after each event. Loads in particular are tracked to identify energy not served, time
that a load’s request is not fully supplied, and also to calculate the energy availability (energy
served x 100% / energy requested). These statistics are calculated by load and by scenario.

3 Concept Overview

This section gives a quick overview of the key concepts used in the tool. Understanding the
concepts will help when authoring an input file as well as in interpreting the output results.

3.1 Flows

A flow is any movement of a type of energy. Examples include “electricity”, “heated water
for district heating”, and “chilled water for cooling”. The flows specified are open-ended and
not prescribed by the tool. However, to aid new users, the Excel User Interface does limit the
available flows to those typically used in an assessment.

By being imaginative, flows that are traditionally not considered as “energy flows” can be
modeled as well. For example, a supply of potable water pumped to a building can be modeled
by phrasing it in terms of enthalpy times mass flow rate: ℎ × �̇� (making assumptions for line
pressures and temperatures). This allows the contribution of a pump (changing the pressure
and thus the flow work across the pump) to easily be taken into account.

A flow has a direction associated with it. A flow can be zero (i.e., nothing is flowing) but cannot
be negative. Negative flows would imply a change in direction which would greatly increase the
complexity of the simulation tool. As such, we do not allow negative flows. However, it is
possible to simulate bi-directional flow by connecting components from both directions (more
on this later).

3.2 Components and Ports

A component is meant to represent any of a myriad of equipment used in a district energy
system. A component has zero or more inflow ports and zero or more outflow ports. These
ports take in zero or more flows, route and/or transform them, and output zero or more flows.
A component must have at least one port: inflow or outflow.

The fidelity of modeling is that of a 1-line diagram and accounts for energy flows only. A
component need only be taken into account if:

• it’s function will significantly affect network flows
• and it’s failure is statistically significant in the face of either reliability or fragility to a

threat

For example, a relatively efficient stretch of pipe in a district heating system can be ignored
from an energy standpoint if it’s losses are insignificant compared to other equipment. However,
if that stretch of pipe is deemed to have a statistically significant possibility of failure during
a threat event such as an earthquake, it should be modeled. In this instance, a pass-through
component (see below) with a fragility curve (see below) may be a good choice.

4

3.3 Component Types

Because we model components at a high-level of abstraction, a few component types are all
that’s needed to model many real-world components. In this section, we discuss the available
component types and their characteristics.

3.3.1 Component Type: Load

A load is essentially an exit point out of the network for “useful work”. A load typically represents
an end use such as a building or cluster of building’s electricity consumption or heating load
consumption.

A load specifies its load versus time with a load profile which is specified per scenario.

3.3.2 Component Type: Source

A source is an entry point into the simulation for providing energy flow into the network. A
source typically represents useful energy into the system such as electrical energy from the
utility, natural gas into the district, or diesel fuel transported to a holding tank.

3.3.3 Component Type: Uncontrolled Source

Normally, a source responds to a request up to its available max output power (which defaults
to being unlimited). In contrast, an uncontrolled source cannot be commanded to a given
outflow because the source is uncontrollable. Typical examples of uncontrolled sources are
electricity generated from a photovoltaic array, heat generated from concentrating solar troughs,
or electricity from a wind farm. Another typical uncontrolled source is heat to be removed from
a building as a “cooling load”.

An uncontrolled source specifies its supply values versus time with a supply profile which is
specified per scenario. Note: functionally, a supply profile and load profile are the same thing.

3.3.4 Component Type: Converter

A converter represents any component that takes in one kind of flow and converts it to another
type of flow, usually with some loss. Converters have an efficiency associated with them. The
current version of the tool only supports a constant-efficiency. Typical examples of converter
components are boilers, electric generators (e.g., fired by diesel fuel or natural gas), transformers,
and line-losses.

The loss flow from one component can be chained into another converter component to simulate
various loss-heat recovery mechanisms and equipment such as combined heat and power (CHP)
equipment.

5

3.3.5 Component Type: Storage

A storage component represents the ability to store flow. The storage unit has both a charge
(inflow) port and a discharge (outflow) port. The storage component cannot accept more flow
than it has capacity to store. Similarly, a storage component cannot discharge more flow than it
has stored. Typical examples of a storage component include battery systems, pumped hydro,
diesel fuel storage tanks, coal piles, and thermal energy storage tanks.

The current version of the storage tank does not have an efficiency or leakage component
associated with it. However, charge/discharge efficiency can be approximated with converter
components and leakage via a small draw load.

3.3.6 Component Type: Pass-Through

A pass-through component is a component that physically exists on the system but that only
passes flow through itself without disruption. As such, it is does not change the energy flow of
the network. Therefore, the main use for a pass-through component is in providing equipment
to associate failure modes and fragility curves (discussed below) with. Since failure of the
component results in a loss of a flow, it may be important to take into account. Typical examples
of pass-through components are above-ground and below-ground power lines, natural-gas pipe
runs, district heating pipe runs, etc.

3.3.7 Component Type: Muxer

A “muxer” or multiplexer component represents various components for splitting and joining
flows. Typical examples include manifolds, routers, electrical bus bars, and the like.

Muxers can have multiple inflow ports and multiple outflow ports. Muxer’s contain dispatch
strategies to choose how requests are routed. There are two dispatch strategies available in the
current tool:

• in-order dispatch: all flow is requested to be satisfied from the first inflow port first. If that
flow is insufficient, the second inflow port is requested for the remainder until all inflow
ports are exhausted. For cases where outflow request is not met, the first outflow port is
satisfied first. If flow remains, that flow is routed to the next port until it is satisfied or
the flow is spent, and so on to the next port, etc.

• distribute dispatch: all flow is distributed between all ports. In this strategy, requests
are distributed evenly between inflow ports. When flow is insufficient to meet all outflow
request, available flow is distributed evenly to outflow ports.

These strategies are not sophisticated enough to cover advanced energy saving strategies. How-
ever, they should be sufficient to mimic basic dispatch strategies for assessing load supply.

3.3.8 Component Type: Mover

Note: the mover component is currently only available from the command-line interface. It has
not yet been made available for the Excel User Interface.

A mover component is a component that moves energy from its inflow port to its outflow port
with the assistance of a support flow. Movers can be used to represent chillers and heat pumps
(which move heat) as well as pumps and fans (which move fluids).

6

3.4 Networks and Connections

Component connections via ports form a network. Networks describe the interaction of various
flows.

A connection describes:

• a source component and its outflow port
• a sink (i.e., receiving) component and its inflow port
• and the type of flow being delivered

3.5 Scenarios

Scenarios represent both typical usage (i.e., blue sky events) and design basis threat events
(class 4 hurricanes, earthquakes, land-slides, etc.).

A scenario has:

• a duration (how long the scenario will last)
• an occurrence distribution which is a cumulative distribution function that expresses the

likelihood of occurrence
• a maximum number of times the scenario can occur during the entire simulation (either

unlimited or some finite number)
• and various damage intensities associated with the scenario

The damage intensities associated with a scenario are open-ended but are meant to represent
numerical quantities that correspond with a fragility curve. Some examples of damage intensities
that could be associated with a scenario are “wind speed”, “inundation depth”, “vibration”, etc.
Scenarios with no damage intensities are completely fine – these would represent “blue-sky”
scenarios (typical operation).

3.6 Reliability: Failure Modes and Statistical Distributions

Reliability is handled strictly as a statistical matter using failure modes. A failure mode is
an associate between a failure cumulative distribution function and the corresponding repair
cumulative distribution function. Multiple failure modes can be specified for a single component.
For example, a diesel back-up generator may have one failure mode associated with its starter
battery and another to represent more serious issues with the generator itself.

Every failure mode in the simulation is turned into an “availability schedule”. That is, for
each failure mode, the dual cumulative distribution functions are alternatively sampled from
time 0 to the end of the overall simulation time to derive a schedule of “available” and “failed”.
When a scenario where reliability is calculated is scheduled to occur, the relevant portion of the
availability schedules for components with failure modes are used to “schedule” the component
as available and failed to simulate routine reliability events during that scenario’s simulation.

7

3.7 Resilience: Intensities (Damage Metrics) and Fragility Curves

Resilience reflects how components react to the intense stresses of a design basis threat event.
Each scenario can specify an intensity or damage metric. Any component having a fragility
curve that responds to one or more of the scenario intensities is evaluated for failure due to the
scenario’s intensity.

For example, above-ground power lines may have a fragility to wind speed. If a scenario specifies
a wind speed of 150 mph, the above-ground power line component will use its fragility curve to
look up its chance of failure. For fragility, a component is evaluated for failure at scenario start
and either passes (staying up during the scenario) or fails (going down for the entire scenario).

4 Input File Format

The simulation engine is a command-line program. Even when it is accessed via the Excel User
Interface, a text-based input file is written to describe the network of components and scenarios
to simulate.

The input file format is written using the TOML3 input file language. TOML is a plain-text
input file format.

The file consists of the following sections that describe the various concepts described above:

• simulation_info: general simulation information
• loads: load profiles (includes supply profiles for uncontrolled sources)
• components: all components in the network are described here
• fragility: all fragility curves are described here
• cdf: cumulative distribution functions
• failure_mode: failure modes are described here
• networks: networks are described here
• scenarios: scenarios are described here

Valid entries for each of the sections are described in Table 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14,
15, 16.

The types given are one of:

• str: a string of characters in “quotes”
• bool: true or false
• real: a real number (0.0, 1.5, 2e7, etc.)
• real>0: a real number greater than 0.0. 0.0 < real>0
• int: an integer
• int>0: an integer > 0
• [𝑋]: an array of the given type, 𝑋
• [[𝑋]]: an array of arrays of 𝑋
• time: time unit. One of {“years”, “days”, “hours”, “minutes”, “seconds”}
• cap: capacity unit. One of {“kJ”, “kWh”}
• disp: dispatch strategy. One of {“distribute”, “in_order”}.
• frac: real fraction. 0.0 ≤ frac ≤ 1.0
• frac>0: real fraction greater than 0.0. 0.0 < frac ≤ 1.0
• rate: the rate unit. Currently, only “kW” is accepted.

3TOML is described in detail here: https://toml.io/en/

8

• 𝑋 → 𝑌 : designates a map data structure (a.k.a., dictionary, hash table, table, etc.).
Associates 𝑌 with 𝑋.

In the TOML input file, all constructs except simulation_info have an id. The id is used
when one construct references another.

This looks as follows:

[loads.load_id_1]
...
[loads.load_id_2]
...
[components.comp_id_1]
...
[components.comp_id_2]
...
[fragility.fragility_id_1]
...
[cdf.cdf_id_1]
...
[failure_mode.fm_id_1]
...
[networks.nw_id_1]
...
[scenarios.scen_id_1]
...

An id must follow the rules of TOML “bare keys”4 with the exception that dashes (-) are not
allowed and the key must start with an ASCII letter:

Bare keys may only contain ASCII letters, ASCII digits, underscores, … .

Table 1: simulation_info specification
key type required? notes
time_unit time no The time unit. Default “years”
fixed_random frac no Sets the random roll to a fixed value
fixed_random_series [real] no Sets random numbers to the given series
random_seed real no Sets the random number generator’s seed
max_time int no Maximum simulation time. Default: 1000

Note: Table 1 specifies various random values. At most, one of these values can be specified.

Table 2: loads specification
key type required? notes
csv_file str no path to CSV file with profile
time_rate_pairs [[real]] no array of (time, rate) pairs
time_unit time no time unit for time_rate_pairs
rate_unit rate no rate unit for time_rate_pairs

4see https://toml.io/en/v1.0.0-rc.1#keys

9

For Table 2, one must specify either a csv_file or time_rate_pairs, time_unit, and
rate_unit. Unfortunately, only “kW” is available for rate_unit at the moment although
time_unit accepts “years”, “seconds”, or “hours”. Practically speaking, you will almost always
use a csv_file unless you just want to test a simple load.

For the csv_file, the header must be “hours,kW” with data filled into the rows below. The
“hours” column is the elapsed time in hours. The “kW” column is the flow in kW. The first
column header can be set to values beside “hours”; any time unit is valid. However, the rate
unit is currently locked in as “kW”.

Table 3: components: common attributes
key type required? notes
failure_modes [str] no failure mode ids for component
fragilities [str] no fragility curve ids for component

Table 3 lists the attributes common to all components. These relate to reliability and resilience:
failure modes and fragility curves.

Table 4: components: Source Component
key type required? notes
type str yes must be “source”
outflow str yes type of outflow
max_outflow real no maximum allowable outflow

Table 5: components: Load Component
key type required? notes
type str yes must be “load”
inflow str yes type of outflow
loads_by_scenario str → str yes map of scenario id to load id

In Table 5, the loads_by_scenario structure is specified as follows:

loads_by_scenario.scenario_id_1 = "load_id_1"
loads_by_scenario.scenario_id_2 = "load_id_2"

Table 6: components: Converter Component
key type required? notes
type str yes must be “converter”
inflow str yes type of inflow
outflow str yes type of outflow
lossflow str no type of lossflow. Default: inflow
constant_efficiency frac>0 yes constant efficiency

10

Table 7: components: Storage Component
key type required? notes
type str yes must be “store”
flow str yes type of flow (inflow, outflow, stored)
capacity_unit cap no capacity unit. Default: “kJ”
capacity real yes capacity of the store
max_inflow real yes maximum inflow (charge rate)

During simulation, the max_inflow sets the requested charging rate for a storage unit (see
Table 7). By default, a storage unit will always request to charge itself to its maximum capacity.
However, it will always honor its discharge request above its charge request. That is, if discharge
is requested, it will discharge rather than charge. If charging and discharging at the same time,
charge flow will “short circuit” to meet the discharge request first. Any flow left over will charge
the store.

Table 8: components: Muxer Component
key type required? notes
type str yes must be “muxer”
flow str yes type of flow (inflow, outflow)
num_inflows int yes the number of inflow ports
num_outflows int yes the number of outflow ports
dispatch_strategy disp no dispatch strategy. Default: “in_order”

In Table 8, the dispatch_strategy refers to the strategy at the outflow of the muxer. The
inflow strategy is always “in_order”. That is, the first connected port gets the full request. If
that inflow port can’t meet the full flow, we request the remaining flow from the second inflow
port, etc. The outflow strategy is set in the model input file using the dispatch_strategy key
as shown in Table 8.

The dispatch_strategy for a muxer only manifests when there is a flow deficiency. That is,
normally, all requests at each outflow port are achieved. However, when there is not enough
flow, “in_order” dispatch feeds the first outflow port first and then turns its attention to the
second and so on until flow runs out. For a “distribute” dispatch_strategy, when flow is
lacking, the available flow is distributed evenly.

Let’s consider an example. A muxer with 4 outflow ports gets the following request: [50, 50,
50, 50] (= 200 kW). However, only 100 kW is available to supply these outflow requests. An
“in_order” dispatch will provide [50, 50, 0, 0] (= 100 kW) to its four outflow ports. In contrast,
a “distribute” dispatch_strategy will provide [25, 25, 25, 25] (= 100 kW) to each outflow
port. Consider a non-uniform request of say [50, 10, 90, 50] (= 200 kW) on the same mux;
again, however, only 100 kW is available. An “in_order” dispatch would provide [50, 10, 40,
0] (= 100 kW). In contrast, a “distribute” dispatch strategy would provide [30, 10, 30, 30] (=
100 kW) to each outflow port.

Table 9: components: Pass-Through Component
key type required? notes
type str yes must be “pass_through”

11

key type required? notes
flow str yes type of flow (inflow, outflow)
max_outflow real>0 no defaults to infinite flow

Table 10: components: Uncontrolled Source Component
key type required? notes
type str yes must be “uncontrolled_source”
outflow str yes type of outflow
supply_by_scenario str → str yes scenario id to load profile id

Similar to the load component, the uncontrolled source’s supply_by_scenario specifies supply
profiles by scenario. These look like the following:

supply_by_scenario.scenario_id_1 = "load_id_1"
supply_by_scenario.scenario_id_2 = "load_id_2"

Note that the uncontrolled source supply profiles are also drawn from the same section of the
input file specified as loads.

Table 11: components: Mover Component
key type required? notes
type str yes must be “mover”
inflow0 str yes the inflow being “moved”
inflow1 str yes the “support” inflow that enables “moving” to occur
outflow str yes the outflow
cop real>0 yes the coefficient of performance

In Table 11, the cop field ties together the three flows inflow0, inflow1, and outflow using
the following relations:

𝑐𝑜𝑝 = 𝑖𝑛𝑓𝑙𝑜𝑤0
𝑖𝑛𝑓𝑙𝑜𝑤1

𝑖𝑛𝑓𝑙𝑜𝑤0 = 𝑐𝑜𝑝 × 𝑖𝑛𝑓𝑙𝑜𝑤1

𝑖𝑛𝑓𝑙𝑜𝑤1 = 𝑖𝑛𝑓𝑙𝑜𝑤0 × 1
𝑐𝑜𝑝

𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = (1 + 𝑐𝑜𝑝) × 𝑖𝑛𝑓𝑙𝑜𝑤1 = (1 + 1
𝑐𝑜𝑝) × 𝑖𝑛𝑓𝑙𝑜𝑤0 = 𝑖𝑛𝑓𝑙𝑜𝑤0 + 𝑖𝑛𝑓𝑙𝑜𝑤1

12

Table 12: fragility specification
key type required? notes
vulnerable_to str yes the scenario intensity (i.e., damage

metric) vulnerable to
type str yes must be “linear”
lower_bound real yes the value below which we are impervious

to damage
upper_bound real yes the value above which we face certain

destruction

Fragility curves are specified using the attributes listed in Table 12. Figure 1 shows a graphical
representation of the data specification.

Figure 1: Fragility Curve

A fragility curve maps a scenario’s intensity (i.e., damage metric) to a probability of failure. We
must specify which damage metric is of interest and also the curve relationship. Currently, the
only available fragility curve type is linear. For the linear curve, we specify the lower_bound,
the bound below which we are impervious to destruction. We also specify the upper_bound,
the bound above which we face certain destruction.

Table 13: cdf specification
key type required? notes
type str yes must be “linear”
value real yes the value of the fixed CDF
time_unit time yes the time unit used to specify the fixed value

13

Table 13 specifies a cumulative distribution function. At this time, the only distribution type
available is “fixed”. A fixed distribution is a degenerate distribution that always samples a single
point – the value.

Table 14: failure_mode specification
key type required? notes
failure_cdf str yes the failure CDF id
repair_cdf str yes the repair CDF id

Table 15: networks specification
key type required? notes
connections [[str]] yes the connections

The networks data definition involves a “mini-language” to specify connections. The language
is as follows:

connections = [
["src_comp_id:OUT(outflow_port)", "sink_comp_id:IN(inflow_port)", "flow"],
...
]

The connections key is an array of 3-tuples. The first element of the 3-tuple is the source
component id separated by a “:” and then the word “OUT(.)”. You will type the outflow port
in place of the “.”. Note that numbering starts from 0.

The second element of the 3-tuple is the sink component id. That is, the component that
receives the flow. The sink component id is written, then a “:”, and finally the word “IN(.)”.
You will type the inflow port id in place of the “.”. Numbering of inflow ports starts from 0.

The final element of the 3-tuple is the flow id. You are requested to write the flow id as a check
that ports are not being wired incorrectly.

Table 16: scenarios specification
key type required? notes
time_unit time no time units for scenario. Default: “hours”
occurrence_
distribution

table yes see notes in text

duration int>0 yes the duration of the scenario
max_occurrences int yes the maximum number of occurrences. -1

means unlimited
calculate_
reliability

bool no whether to calculate reliability. Default:
false

network str yes the id of the network to use
intensity str → real no specify intensity (damage metric) values

In Table 16, the occurrence_distribution is currently implemented as a literal table:

14

occurrence_distribution = { type = "linear", value = 8, time_unit = "hours" }

The possible values for the occurrence_distribution table are given in Table 13.

5 Output Metrics

The metrics used to assess resilience are given an overview in this section. Figure 2 depicts
the metrics graphically. It is important to note that metrics are calculated by load and per
scenario.

Figure 2: Resilience and Energy Metrics

As seen in Figure 2, there are three basic calculations:

• energy availability
• load not served
• and max downtime

Figure 2 shows four areas of flow integration over time: 𝐴, 𝐵, 𝐶, and 𝐷. The sum of 𝐴, 𝐵, and
𝐷 is the energy delivered to this load for this scenario. 𝐶 represents the load not served. The
ratio of (𝐴+𝐵+𝐷)×100%

𝐴+𝐵+𝐶+𝐷 is the energy availability. The duration of load interruption (from 𝑡0 to
𝑡1) is the max downtime.

The energy availability is calculated as follows:

𝐸𝐴 = 𝐸𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 × 100%
𝐸𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑

In the above equation, the energy, 𝐸, is the integral of the flow, 𝑓 , over time:

𝐸 = ∫
𝑡𝑒𝑛𝑑

𝑡=0
𝑓 ⋅ 𝑑𝑡

Max downtime is the duration of load interruption:

15

𝑇down = ∫ 𝑑𝑡 where 𝑓achived < 𝑓requested

Load not served is then:

𝐸not served = ∫
𝑡𝑒𝑛𝑑

𝑡=0
(𝑓requested − 𝑓achieved) ⋅ 𝑑𝑡

6 Command-Line Tool

Three command-line programs are available for simulation and assistance. They will be given
an overview here.

6.1 erin

Simulates a single scenario and generates results.

USAGE:

erin <input_file_path> <output_file_path> <stats_file_path> <scenario_id>

• input_file_path: path to TOML input file
• output_file_path: path to CSV output file for time-series data
• stats_file_path: path to CSV output file for statistics
• scenario_id: the id of the scenario to run

The output from the call to erin will be written into two files: an output file and a statistics
file.

The output file has the column headers shown in Table 17.

Table 17: erin Output
Column Description
time (hours) the elapsed time since scenario start in hours
*:achieved (kW) the achieved flow at the event time for each component/port recorded
*:requested (kW) the requested flow at the event time for each component/port recorded

The statistics file has the column headers shown in Table 18.

Table 18: erin Statistics
Column Description
component id the id of the component
type the type of the component (e.g., load, source, etc.)
stream the stream flowing through the given component / port
energy
availability

the energy availability for the given component

max downtime
(hours)

the maximum number of contiguous hours when load not fully met

16

Column Description
load not served
(kJ)

the load not served in kJ

𝑋 energy used
(kJ)

for each flow, report out the energy used in kJ

TOTAL (𝑋) the total energy used by flow by component type
ENERGY
BALANCE

a sum of the energy balance. Should be 0

6.2 erin_multi

Simulates all scenarios in the input file over the simulation time and generates results.

USAGE:

erin_multi <input_file_path> <output_file_path> <stats_file_path>

• input_file_path: path to TOML input file
• output_file_path: path to CSV output file for time-series data
• stats_file_path: path to CSV output file for statistics

The output files from erin_multi are very similar to those shown in Table 17, 18. The main
difference is that erin_multi aggregates across multiple scenario instances and multiple scenario
types. The column headers used in the event output file for erin_multi are shown in Table 19.

Table 19: erin_multi Output
Column Description
scenario id the id of the scenario simulated
sceanrio start
time

start time of scenario in ISO 8601 duration format

elapsed (hours) the elapsed time since scenario start in hours
*:achieved (kW) the achieved flow at the event time for each component/port recorded
*:requested (kW) the requested flow at the event time for each component/port recorded

The statistics file for erin_multi has the column headers as shown in Table 20.

Table 20: erin_multi Statistics
Column Description
scenario id scenario id for the scenario reported out
number of
occurrences

number of times the scenario occurred during simulation

total time in
scenario (hours)

total time spent in the scenario during simulation

component id the id of the component
type the type of the component (e.g., load, source, etc.)
stream the stream flowing through the given component / port
energy
availability

the energy availability for the given component

17

Column Description
max downtime
(hours)

the maximum number of contiguous hours when load not fully met

load not served
(kJ)

the load not served in kJ

𝑋 energy used
(kJ)

for each flow, report out the energy used in kJ

TOTAL (𝑋) the total energy used by flow by component type
ENERGY
BALANCE

a sum of the energy balance. Should be 0

6.3 erin_graph

Generates an input file for use with Graphviz. Graphviz is an external dependency. You do not
need Graphviz to generate the Graphviz input file. However, you do need Graphviz to process
that input file into a .png or .pdf file.

USAGE:

erin_graph <input_file_path> <dot_file_path> <network_id>

• input_file_path: path to TOML input file
• dot_file_path: path to Graphviz DOT file to write
• network_id: id for the network to plot from input_file_path

Upon successful execution, you can render your Graphviz dot file into a PNG (image file) as
follows:

• dot -Tpng input.gv -o output.png The above generates a png (-Tpng) from the
input.gv and saves to output.png (-o)

Similarly, you can render your Graphviz dot file into a PDF as follows:

• dot -Tpdf input.gv -o output.pdf The above generates a png (-Tpdf) from the
input.gv and saves to output.pdf (-o)

erin_graph is capable of creating sophisticated topological graphs such as the one in Figure 3.

Figure 3: Topology Example of a Network Rendered with Graphviz and erin_graph

18

https://graphviz.gitlab.io/

7 Microsoft Excel User Interface

A simple interface using Microsoft Excel has been created to ease the creation of an input
data file for erin. This interface runs the simulation on behalf of the user and also pulls the
input Due to limitations in Excel’s Visual Basic, the current version of the Microsoft Excel user
interface is limited to the Windows Operating System.

7.1 Software Dependency: Modelkit/Params Framework

Modelkit/Params is required to allow the Microsoft Excel user interface to render an input file
template for erin_multi. Modelkit/Params is a third party dependency available as open-source
software from Big Ladder Software:

https://bigladdersoftware.com/projects/modelkit/

Please install Modelkit Catalyst. Version 0.5 or later is required.

Further detail about Modelkit can be found at the above link.

7.2 Additional Concept: Location

To make it easier for modelers to specify a network of components, the Excel user interface
introduces an additional concept called a “location”. A location is open-ended although the
names and ids must follow the same rules for ids as in the input file (see Section 4).

At a given location, any number of components can be specified. The Excel User Interface uses
Big Ladder’s Modelkit/Params to render an input file from a template. That template assumes
a given topology for each location as shown in Figure 4.

Figure 4: Topology at a Location

As depicted in Figure 4, for any given flow type, the following sets of components are in series:

19

https://bigladdersoftware.com/projects/modelkit/

• all loads: load components, internal loads, and outbound links
• all storage for the given flow type (multiples are in parallel)
• all mover components: multiples are in parallel
• all converters and sources: converters (including CHP which is modeled as chained convert-

ers), internal sources, uncontrolled sources, inbound links, and normal source components

7.3 Additional Concept: Network Link

The location topology template shown in Figure 4 alludes to inbound and outbound links. The
links themselves are called “network links”. They are similar to normal connections except that
they connect locations.

We believe the template in Figure 4 to be typical of how components at a location are typically
connected, topologically speaking. However, if further variation is needed, it can often be
achieved by creating multiple locations and linking them together. For example, if one wanted
to model two storage units in series (vs parallel), they need only create a storage in location 𝐴
and another in location 𝐵 and denote that location 𝐵 has a network link from 𝐵 to 𝐴.

7.4 Interface Overview

The Excel user interface to erin_multi is laid out logically to help new users specify a compo-
nent network to simulate.

The major screens are:

• Instructions (see Figure 5)
• Settings (see Figure 6)
• Components (see Figure 7)
• Network (see Figure 8)
• Scenarios (see Figure 9)

The “Instructions” sheet gives light instructions on how to use the workbook. The “Settings”
tab is where the path to erin_multi.exe is set. A modeler can also add additional statistical
distributions, failure modes, and fragility curves here. The “Components” tab is where a modeler
can add different types of components to a location. The “Network” tab is where network links
between locations can be specified. The “Scenarios” tab is where different Scenarios can be
added and configured.

Figure 5: Excel Interface: Instructions Sheet

20

Figure 6: Excel Interface: Settings Sheet

Figure 7: Excel Interface: Components Sheet

Figure 8: Excel Interface: Network Sheet

21

Figure 9: Excel Interface: Scenario Sheet

8 Example Problem

In this final section, we will specify a simple problem using both the input file and the Excel
User Interface. The problem will involve a single building with an electrical load, an electric
generator on-site, and a utility supply of natural gas. We will simulate two scenarios: a blue-sky
scenario and a class 4 hurricane scenario.

An iconic sketch of the network we will build appears in Figure 10.

Figure 10: Example Network

The steps to create this network and simulate it are as follows:

8.1 Text Input File

1. Open a new file input.toml for editing using your favorite text editor. Add the following
simulation information:

22

[simulation_info]
rate_unit = "kW"
quantity_unit = "kJ"
time_unit = "years"
max_time = 100

2. Create a simple load profile by hand. Open the file b1-load-profile.csv in your favorite
text editor. Type in the following and save:

hours,kW
0,100
8760,0

3. Back in input.toml, add the load profile information at the end of the file:

[loads.lp1]
csv_file = "b1-load-profile.csv"

4. Next, still within input.toml, let’s add the components:

[components.utility_ng_source]
type = "source"
outflow = "natural_gas"

[components.b1_electricity]
type = "load"
inflow = "electricity"
loads_by_scenario.blue_sky = "lp1"
loads_by_scenario.c4_hurricane = "lp1"

[components.b1_electric_generator]
type = "converter"
inflow = "natural_gas"
outflow = "electricity"
lossflow = "waste_heat"
constant_efficiency = 0.42
fragilities = ["flooding", "wind"]

In the table above, we have added a natural gas source (utility_ng_source), an elec-
trical load at building 1 (b1_electricity), and an electrical generator at building 1
(b1_electric_generator). The electric generator has an efficiency of 42% and has two
fragilities: “flooding” and “wind”. Neither of the fragilities have been specified yet, so we’ll
tackle them next.

5. Within input.toml, specify the fragility curves.

[fragility.flooding]
vulnerable_to = "inundation_depth_ft"
type = "linear"
lower_bound = 4.0
upper_bound = 8.0

[fragility.wind]

23

vulnerable_to = "wind_speed_mph"
type = "linear"
lower_bound = 150.0
upper_bound = 220.0

These fragility curves reflect the specific situation of the equipment versus the threat.

6. Specify the network connections.

[networks.nw]
connections = [

["utility_ng_source:OUT(0)", "b1_electric_generator:IN(0)", "natural_gas"],
["b1_electric_generator:OUT(0)", "b1_electricity:IN(0)", "electricity"],
]

7. Specify the scenarios.

[scenarios.blue_sky]
time_unit = "hours"
occurrence_distribution = {type = "linear", value = 0, time_unit="hours"}
duration = 8760
max_occurrences = 1
calculate_reliability = true
network = "nw"
[scenarios.c4_hurricane]
time_unit = "days"
occurrence_distribution = {type = "linear", value = 30, time_unit="years"}
duration = 14
max_occurrences = -1
calculate_reliability = true
network = "nw"
intensity.wind_speed_mph = 155.0
intensity.inundation_depth_ft = 6.0

The finished file should look like the following:

[simulation_info]
rate_unit = "kW"
quantity_unit = "kJ"
time_unit = "years"
max_time = 100

[loads.lp1]
csv_file = "b1-load-profile.csv"

[components.utility_ng_source]
type = "source"
outflow = "natural_gas"

[components.b1_electricity]
type = "load"
inflow = "electricity"
loads_by_scenario.blue_sky = "lp1"

24

loads_by_scenario.c4_hurricane = "lp1"

[components.b1_electric_generator]
type = "converter"
inflow = "natural_gas"
outflow = "electricity"
lossflow = "waste_heat"
constant_efficiency = 0.42
fragilities = ["flooding", "wind"]

[fragility.flooding]
vulnerable_to = "inundation_depth_ft"
type = "linear"
lower_bound = 4.0
upper_bound = 8.0

[fragility.wind]
vulnerable_to = "wind_speed_mph"
type = "linear"
lower_bound = 150.0
upper_bound = 220.0

[networks.nw]
connections = [

["utility_ng_source:OUT(0)", "b1_electric_generator:IN(0)", "natural_gas"],
["b1_electric_generator:OUT(0)", "b1_electricity:IN(0)", "electricity"],
]

[scenarios.blue_sky]
time_unit = "hours"
occurrence_distribution = {type = "fixed", value = 0, time_unit="hours"}
duration = 8760
max_occurrences = 1
network = "nw"

[scenarios.c4_hurricane]
time_unit = "days"
occurrence_distribution = {type = "fixed", value = 30, time_unit="years"}
duration = 14
max_occurrences = -1
network = "nw"
intensity.wind_speed_mph = 155.0
intensity.inundation_depth_ft = 6.0

The file can be called as erin_multi.exe input.toml out.csv stats.csv. This assumes that
erin_multi.exe is on your path.

8.2 Excel User Interface

Using the Excel Interface, we will create the same problem specified in Figure 10.

25

1. Open the workbook and ensure the path to erin_multi.exe is set. See Figure 6. Also,
ensure you have the following files in one directory as shown in Figure 11:

• erin_gui.xlsm
• erin_multi.exe
• support.rb
• template.toml
• example-load.csv: not required in general but we’ll use it for this example

Figure 11: Required files to run the Excel UI

An easy way to get the path to erin_multi.exe is to find it in the file system and, while holding
the SHIFT key, right click on the file and select “Copy as Path” as shown in Figure 12. The
value so copied can be pasted into the cell with the path in the Settings sheet. Be sure to save
the workbook once you’ve set the path.

Figure 12: Easy Way to Copy the Path to erin_multi.exe

2. We will start by adding two fragility curves. See Figure 13, 14.

26

We’ll call the first fragility curve “wind” and set the “Vulnerable To” field to “wind_speed_mph”
with a range from 150 to 220 mph. The second fragility curve we’ll call “flooding” and set the
“Vulnerable To” field to “inundation_depth_ft” with bounds of 4.0 to 8.0 feet.

Figure 13: Add Fragility Curve #1

Figure 14: Add Fragility Curve #2

3. Next we’ll begin filling in the Components as shown in Figure 15, 16, 17, 18, 19, 20, 21,
22, 23.

4. With all the components added, move on to the “Network” sheet. We must add a net-
work link between the “utility” location and the “b1” (building #1) location as shown in
Figure 24, 25.

5. Finally, add the scenarios and intensity values as shown in Figure 26, 27, 28, 29, 30, 31,
32, 33, 34.

6. Finally, hit the run button to simulate the network.

9 When Things Don’t Work: Checklist for MS Excel UI

The Microsoft Excel user interface to the ERIN engine is a convenient way to access the power
of the engine without having to manually write an input file. However, the decoupling between

27

Figure 15: Add Components

Figure 16: Add Source Components

Figure 17: Add Source Component Dialogue

28

Figure 18: Add Load Component

Figure 19: Add Load Component Dialogue

Figure 20: Add Converter Component

29

Figure 21: Add Converter Component Dialogue

Figure 22: Add Fragility Curves to Converter Components

Figure 23: All Components Added

30

Figure 24: The Network Tab

Figure 25: Adding a Network Link from utility to b1

Figure 26: The Scenario Sheet

31

Figure 27: Adding the Blue Sky Scenario

Figure 28: Adding the Load Profile for Blue Sky

Figure 29: Adding the Hurricane Scenario

32

Figure 30: Adding the Load Profile for Hurricane

Figure 31: The Damage Metric UI

Figure 32: Adding Inundation Depth in Feet

33

Figure 33: Adding Wind Speed in MPH

Figure 34: The Finished Scenarios

34

Excel and the ERIN engine adds just enough complexity to the picture that it can be difficult to
determine what’s wrong when things don’t work as they should. This section provides a series
of checks to help you methodically identify the source of any potential problems and either
correct it yourself or help us to quickly pinpoint the issue. These instructions were written
assuming you are using a recent version of Microsoft Windows as that is the only operating
system supported by the MS Excel User Interface.

• Are you using MS Windows? Unfortunately, the link between Microsoft Excel and
the ERIN engine is only supported on Microsoft Windows at this time. If you are not
using Microsoft Windows, you can still use the simulation engine directly or through the
Modelkit template generation capability.

• Do you have Microsoft Excel installed? This may be obvious, but ensure that you
actually have Microsoft Excel installed. We are currently using Microsoft Excel for Office
365. Any recent version of Microsoft Excel should work, but if you do have to submit a
bug report, please note the version of Microsoft Excel you are using. Unfortunately, other
spreadsheet programs that can open and edit Microsoft Excel files such as Open Office or
Libre Office do not work.

• Have you installed Modelkit Catalyst? Modelkit Catalyst, a free download available
from Big Ladder Software, is a required pre-requisite for using the MS Excel User Interface.
If you haven’t already installed it, please download it from https://bigladdersoftware.co
m/projects/modelkit/.

• Is Modelkit Catalyst working correctly? To determine if Modelkit is installed cor-
rectly, go to the Windows start menu and type cmd. This should bring up the option to
launch the “Command Prompt”. Launch the “Command Prompt” and type modelkit.
You should see a help text return to you giving an overview of the Modelkit commandline
interface options. If you do not see this, right-click on your start menu button and select
“settings” from the menu. Type “Add or remove programs” in the search dialogue. If you
do not see “Modelkit Catalyst” in the list of installed programs, you have not yet installed
Modelkit so stop here and download and install Modelkit Catalyst. If you do see “Modelkit
Catalyst”, try uninstalling and reinstalling the program and try using the instructions
again for the MS Excel UI example. If you are still having problems, please submit a bug
report for support.

• Is the ERIN simulation engine working correctly? Next, we need to confirm
that the ERIN simulation engine is working correctly. Unzipped a fresh folder from
the original file zip archive to ensure there are no changes you made that are creating
issues. You can do this by right clicking on the zip archive and selecting “Extract All…”.
Next, open “File Explorer”. If you are unfamiliar with how to do this, click on the Start
menu and type “File Explorer” and open the application called “File Explorer”. In File
Explorer, navigate to that extracted (i.e., unzipped) folder. This folder should contain the
iea-annex-73-tool.xlsm, erin_multi.exe, and several other files including this User’s
Guide. In the address bar of File Explorer, type CMD to start a new command shell in that
folder (or use any other method of opening a command shell at the folder of the unzipped
contents). In the “Command Prompt” that is opened, type erin_multi.exe. You should
see a usage message that also lists the version of the simulator. If you do not see this,
please submit a bug report for support.

• Did you enable macros when opening the Microsoft Excel workbook? Visual
Basic for Applications Macros are required when using the Microsoft Excel User Inter-
face. When you opened the xlsm file, you should have been prompted with “SECURITY
WARNING: Macros have been disabled.” You will need to hit the button to “Enable
Content” in order to use the interface.

• Is the Microsoft Excel User Interface workbook in the same folder as
erin_multi.exe, support.rb, and template.toml? If you are working from a freshly

35

https://bigladdersoftware.com/projects/modelkit/
https://bigladdersoftware.com/projects/modelkit/

extracted (i.e., unzipped) folder, all the required files should be in the same folder
together. If you are not, please do start again from a freshly extracted folder to help us
methodically debug the issue.

• Have you added the complete path to ERIN simulation engine in cell C2 of
the “Settings” sheet? Even if you have already done this, it can’t hurt to double
check and cut and paste the path again. Again, we recommend that you use the freshly
extracted Excel workbook at this point (versus one you’ve already been typing in). The
best way to get the path to the erin_multi.exe simulation engine is to go to the freshly
extracted folder using File Explorer, hold down the SHIFT key while right clicking on
“erin_multi.exe”, and select the option “Copy as path”. Then, open the Microsoft Excel
User Interface and paste (CTRL+V) the path into cell C2 of the “Settings” sheet. Note:
even if you have spaces in your path, do not add quotes around your path. The tool
automatically surrounds the path in “double quotes” and if you add your own double
quotes in cell C2, that will actually cause an error. The path you paste in must be
unquoted.

• Lastly, have you followed the details of the example tutorial exactly? There are
known issues where you can formulate an incorrect problem using the Excel User Interface.
Common issues include:

– not having a proper load header: did you use the example-load.csv file as a refer-
ence?

– specifying an immediately occurring scenario with no occurrence limit: an occurrence
distribution of “ALWAYS” must be accompanied by a Max Occurrence of 1 or more.

– is there a network link between sources and load locations?

If, after exhausting all of the above checks, you are still having issues, please do not hesitate to
contact us for support.

36

	Introduction
	Simulation Overview
	Concept Overview
	Flows
	Components and Ports
	Component Types
	Component Type: Load
	Component Type: Source
	Component Type: Uncontrolled Source
	Component Type: Converter
	Component Type: Storage
	Component Type: Pass-Through
	Component Type: Muxer
	Component Type: Mover

	Networks and Connections
	Scenarios
	Reliability: Failure Modes and Statistical Distributions
	Resilience: Intensities (Damage Metrics) and Fragility Curves

	Input File Format
	Output Metrics
	Command-Line Tool
	erin
	erin_multi
	erin_graph

	Microsoft Excel User Interface
	Software Dependency: Modelkit/Params Framework
	Additional Concept: Location
	Additional Concept: Network Link
	Interface Overview

	Example Problem
	Text Input File
	Excel User Interface

	When Things Don't Work: Checklist for MS Excel UI

