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ABSTRACT 

This technical report describes the technical and scientific work carried out in Annex 25, and 
the applications developed during the annex. Annex 25, Real T i  Simulation for Building 
Optimisation, Fault Detection and Diagnosis, was a part of the work of the IEA Energy 
Conservation in Buildings and Community Systems Programme. 

This report includes papers on Building Optimisation and Fault Diagnosis (BOFD) system 
applications, BOFD-method applications and some papers on BOFD-tools. Method 
applications deal with fault detection and diagnosis of a single component or of a subprocess 
whereas system applications include fault analysis of HVAC-system in consideration and the 
steps leading to development of BOFD-methods for the components and processes of that 
system 

Annex 25 reports consist of two volumes: 
Volume I: Building opirrdzation and fault diagnosis source book 
Volume 11: Technical papers of IEA Annex 25 

This report, volume 11, consists of three parts: system applications, method applications, and 
tools. Each part gives examples of applications of the concepts that are presented in volume I. 
The parts and sections in this volume are written as separate technical papers, reviewed and 
only published together without any further edition. Some of the papers are reprints of 
conferences and other publications, and the purpose of reprinting them also here is that the 
major part of the research reported in them was carried out as contribution to Annex 25. 



PREFACE 

International Energy Agency 

The International Energy Agency @A) was established in 1974 within the framewok of the 
Organisation for Economic Co-operation and Development (OECD) to implement an International 
Energy Programme. A basic aim of the IEA is to faster co-operalion among twenty-one IEA 
Participating Countries to increase energy security through energy collservation, development of 
alternative energy sou~ces and energy research development and danommdon (RD&D) This is 
achieved in part through a programme of collaborative RD&D consisting of forty-two Implementing 
Agreements, containing a total of over eighry separate energy RD&D proJects. 

Energy Conservation in Buildings and Community System 

The IEA sponsors research and development in a number of areas related to energy. In one of these 
areas, energy conservation in building, the IEA is qmmoring various exercises to predict more 
accurately the m r g y  use of buildings, including comparison of existing computer programs, building 
monitoring, comparison of calculation methods, as well as air quality and studies of occupancy. 
Seventeen countries have elected to participate in this area and have desimed contracting parties to the 
Implanenting Agreement covering collaborative research in this area The chignation by govements of 
a number of private organisations, as well as universities & g o v e r n  laboratories, as conrracting 
parties, has provided a broader range of expertise to tackle the projects in the different technology areas 
than would have been the case if participation was mhicted to govments .  The importance of 
associating i r u h ~ ~ ~  with government sponsored energy research and development is mgnised in the 
IE~andeveryeffortismadctoencouragethistrend 

The Executive Conmdttee 

Overall control of the programme is maintained by an Executive Committee, which not only monitors 
existing projects but identifies new areas where collaborative effon may be beneficial. The Executive 
Committee ensures that all p r o m  fit into a predexermined shategy, without unnecessary overlap or 
duplication but with e M v e  liaison and u3mmunication the Executive Committee has initiated the 
following projects to date (completed p r o m  are identified by *): 

I Load Energy Determination of Building * 11 Ekistics and Advanced Community Energy Systems * I11 
Energy Conservation in Residential Buildings * N Glasgow Commercial Building Monitoring * 
V Air hii lmion and Ventilation Centre VI E w g y  Systems & Designs of Communities * 
W Local Government h r g y  Planning * VIII Inhabitant Behaviour with Regard to Ventilation * 
M Minimum Ventilation Rates * X Building HVAC Systems * XI Energy Auditing * 
XI1 W i w s  and Fenesbation * XIII Energy Managanent in Hospitals * XIV Condensation * 
XV Energy Efficimy in Schools * XVI BEMS - 1: Energy Management Prwdum * XW BEMS - 
2: Evaluation and Emulation Techniques * XVIII Dwand Cbn@olled Ventilating Systems * 
XIX Low Slope Roof Systans XX Air Flow Pattern within Buildings * XXIEnvironmental 
Performance )(XII Energy Efficient Communities XXIII Mullizone Air Flow Modelling * 
MW Heat Air and Moisture Transport XXV Real T i e  Simularion of HVAC Systems for Building 
Optimisation Fault Detection and Diagnosis XXVI W g y  Efficient Ventilation of Large Enclosurer 
XXW Evaluation and Demonstration of Domesic ventilation Systems XXVm Low Energy Cooling 
Systans XXZX Daylight in Building XXX Bringing Simulation to Application 
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FOREWORD 
This report is a collection of technical papers describing the technical work carried out by 
participants in Annex 25. The papers are written as separate papers, reviewed internally in 
the annex and only published together without any further edition. Some of the papers are 
reprints of conferences and other publications. The purpose of reprinting them also here is 
that the major part of the research reported in them was carried out as contribution to 
Annex 25. 

The background information and the main results of the Annex 25 collaboration is 
published as a separate volume and it is called the Building Optimisation and Fault 
Diagnosis Source book. This technical report is organised following the outline of the 
Source Book. The work carried out and the results achieved in the annex can roughly be 
divided in three parts: BOFD systems applications for HVAC systems, BOFD method 
applications, and tools for developing BOFD methods and systems. This same division can 
be found in the outline of the Source Book chapters 3 - 5 and the same is followed here in 
order to assist the reader to associate the technical papers of this report to sections in the 
Source Book. Some of the technical papers could be associated to more than one section 
of the Source Book . In those cases the place of a paper is chosen by the operating agent 
of the annex according to the advice from the authors of that paper. 
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A Neural Network Prototype for Fault Detection 
and Diagnosis of Heating Systems 
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ABSTRACT 

An Artificial Neural Network (ANN) prototype for Fault Detection and Diagnosis 
(FDD) in complex heating systems is presented in this paper. The six operating 
modes with faults used to develop this prototype stemmed from a detailed 
investigation in co-operation with heating systems maintenance experts, and are 
among the most important operating faults for this type of system. The prototype 
has been developed by using the daily values obtained by a pre-processing 
procedure of the simulation data of one reference heating system, and then 
generalized to four heating systems not used during the training phase. 

This paper demonstrates the feasibility of using ANN for detecting and diagnosing 
faults in heating systems provided that training data representative of the 
behaviour of the systems with and without faults are available. 

boiler, control, energy conservation, gas fired, maintenance, office building, space 
heating , valve. 

* X. Li, J.C. Visier and H. Vaezi-Nejad are PhD and Research Engineers in 
the 

HVAC Department (ENEA), CSTB (French Scientific and Technical Building 
Center), Marne-la-Vallee, France. 



ABSTRACT 

An Artificial Neural Network (ANN) prototype for Fault Detection and Diagnosis 
(FDD) in complex heating systems is presented in this .paper. The six operating 
modes with faults used to develop this prototype stemmed from a detailed 
investigation in co-operation with heating systems maintenance experts, and are 
among the most important operating faults for this type of system. The prototype 
has been developed by using the daily values obtained by a pre-processing 
procedure of the simulation data of one reference heating system, and then 
generalized to four heating systems not used during the training phase. 

This paper demonstrates the feasibility of using ANN for detecting and diagnosing 
faults in heating systems provided that training data representative of the 
behaviour of the systems with and without faults are available. 

INTRODUCTION 

As technical systems of buildings develop, their operations get more difficult for an 
average operator to understand. Buildings get more intelligent but the users do 
not. Understanding the relationship between cause and effect is more difficult than 
in the past because of complex relationships in the building's processes. So it is 
necessaty to develop the tools which support the operator in decision-making for 
building optimisation as well as recovety from a faulty state. The tools should 
focus on the underlying defects and give instructions on corrective action to be 
taken in a simple and understandable way. 

Various methods can be used to resolve a failure in a process. The development 
of defects can be monitored with special condition monitoring instrumentation to 
obtain information on the need for maintenance. These monitoring systems are 
usually separated from building automation systems and need specific 
instrumentation of their own. For instance, vibration analysis systems which are 
used in industrial processes can be used for condition monitoring. Also various 
maintenance programs can be used to prevent serious defects and to schedule 
maintenance for maximum convenience. In maintenance programs the process is 
inspected and maintained at constant time intervals independent of the true 
condition of the process. The main disadvantages of all these fault detection 
methods are: that they are expensive because of special instrumentation; or that 
they cannot be operated in real-time application. 

The development of Energy Management and Control Systems (EMCS) makes 
possible to measure a great number of variables on Heating, Ventilating, and Air- 
Conditioning (HVAC)-systems of middle or large size. Today, it is known that 
these systems are widely used for automating HVAC-system operation, for its 
remote control, and for detecting operating faults with great magnitudes. But The 
makers of EMCS do not propose the tools to aid the operator in diagnosing the 
defects that cause the faulty process operation. A.small number of users of EMCS 
have developed this type of tool; however, because of the lack of time and means, 
they can only develop some very limited tools of this type, and this prevents them 
from diffusing easily these tools. 



The International Energy Agency (IEA) established, in the framework of Annex 25, 
a research program whith the main goal to develop methodological procedures, 
within a defined concept, for the real-time and automatic performance 
optimisation, diagnosisand fault detection of HVAC processes. The ultimate goal 
of the project will be Building Optimisation and Fault Detection (BOFD) prototypes 
that are implementable in EMCS (Hyvarinen, 1993). 

The work reported in this paper is a part of the work undertaken by French 
partners which concerns the application of Artificial Neural Networks (ANNs) to 
develop FDD methodologies in HVAC-systems. 

The paper is composed of: data base generation; neural network structures 
development; retained network generalization; discussion and conclusion about 
this work. 

DATA BASE GENERATION 

A data base representing the different operating modes of a system with and 
without fault is necessary for developing FDD knowledge-based methods. This 
data base can be obtained either by measurement on a real system or a testing 
bench or by computer simulation. For this project, taking advantage of 
mathematical models already established to simulate the running modes of a 
heating system without faults , computer simulation was used to obtain the data 
base. 

The work achieved consists of: determining a reference heating system as a 
support for typical fault assessment and fault simulation, modelling the 
components with the most important faults and simulating the behaviour of the 
whole system with these faults, selecting simulation data to develop FDD 
methodologies, and choosing the pertinent parameters which can most easily 
discriminate the different chosen faults. 

Reference System 

The system used for computer simulations is a simplified version of the reference 
heating system (see Figure 1) described by Visier and Li (Hyvarinen, 1993) in the 
framework of IEA-Annex 25. Note that this type of system is very common in 
Europe. 
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Fiaure 1 - Reference heatina svstem 

The main characteristics of the system are as follows: 

-The building is representative of a middle sized office building or of a school 
(2000m2-21500 ft2, 5 floors). 

-The heat generation plant includes two classical gas fired boilers. The secondary 
loop (distribution loop) has two circuits : north and south circuits. 

-The modelling of the office building and of the radiators in this building was 
simplified to two zones (north and south zones). 

- Each heating circuit (northemlsouthem) has its own control system and can be 
controlled independently. One supposes a typical weekly occupation, meaning 
days of occupancy from 8 a.m. to 6 p.m. and two days of unoccupancy during all 
the heating season (a typical office building or school occupancy). The 
Operational Mode Controller (OMC) of each circuit determines in which mode the 
circuit is controlled. The OMC distinguishes four operation modes: 

1" Stop heatinq. During an unoccupied period the heating of the building is 
stopped partially or totally. The beginning of stop heating and the beginning of the 
unoccupied period are coincident. 

2" Reduce heatinq. During an unoccupied period, when the indoor temperature of 
building goes down to its low limit (antifreeze for example), the OMC generates a 
signal which effects the starting of the reduced heating and the maintenance of 
the indoor temperature at this low limit. 



3" Boost heatinq. After a period of stop or reduce heating, the boost heating 
beginning time is calculated mainly according to the outdoor temperature, the low 
limit of indoor temperature and the building inertia in order to optimize the energy 
consumption and to ensure the user's comfort at the beginning of occupancy 
period. During a boost heating period, the two boilers are working with full power 
in order to minimize the boost heating duration. During this period the two three- 
way-valves (north and south) are open totally. At the beginning of the boost period 
the opening of these valves can be slowed down to prevent the primary return 
water temperature from being too low. The OMC transfers control to the regulator 
(normal heating) at the beginning of the occupancy period or as soon as the 
measured indoor temperature passes beyond its set point before the occupancy 
period. 

4" Normal heating. During an occupancy period, the OMC keeps the indoor 
temperature at its set point by means of the heating curve (supply water 
temperature control) and the thermostatic valve in each room. 

Modelling-Simulation of the Operating Faults 

The simulation of the building and its heating system was performed using a 
commercial simulation software and a library (models) of HVAC components. This 
library includes a dynamic representation of the different components (building, 
boilers, pipes, valves, radiators, controllers...). The building model has been 
simplified to a two zones'model. It is derived from the second order model initially 
developed by Laret (Laret, 1980). A description of the component models and their 
validation is given by Caccavelli (Caccavelli et al. 1991). 

The simulation of the plant includes a detailed modelling of the control system: 
OMC, heating curve and thermostatic valve. The models of the control systems 
were developed in order to represent standard and actually existing components 
instead of optimal components. The control of the temperatures of the supply water 
to the heated zones includes an outside temperature reset (heating curve) which is 
mandatory in French regulations. It does not include a sun radiation reset which is 
not often implemented on such plants. The modelled optimum start controller which 
is integrated in the modelled OMC has the same limits as existing optimum start 
controllers (Visier et al., 1994) and does not evaluate perfectly the duration of the 
boost heating. 

Simulation of the most important operating faults was necessary for the 
construction of the data set. These operating faults came from the results of the 
questionnaires answered by 46 maintenance experts of heating systems in France 
(Li and Visier, 1995). Design faults were not simulated at the present time. However 
it will be necessary to verify the robustness of the developed FD method in the 
presence of design faults. 

The seven operating modes (six categories of fault mode and one reference normal 
mode), that is seven classes in terms of pattem recognition (Dubuisson, 1990), 
under consideration in our simulation are modelled as follows: 



Class noO (referred as "normal class"): a reference fault free mode. This normal 
mode is not optimal but is representative of what can be considered as a normal 
mode in a real building. In particular the sub optimal behaviour of existing 
controllers which are described above are not considered as faults. 

Class nO l  (referred as "combustion class" ): bad combustion of the burner of the 
boiler. There are many types of bad combustion : air excess rate too high, air 
excess rate insufficient, large variation of calorific value. The fault of air excess rate 
too high was chosen to simulate this type of fault. 

Class n02 (referred as "heat exchanger class"): dirtiness (flue gas side) and scale 
formation (water circulating side) of the heat exchanger of boiler. This fault is 
simulated by changing the heat transfer coefficient between water side and flue gas 
side. 

Class n03 consisting of two sub classes: the first is related to the faults of heating 
curve too high (class n031), the second to the faults of heating curve too low lclass 
n032 referred as "heating curve class"). The latter means the supply hot water - 
temperature of the distribution circuit is too low to satisfy the need of heat power to 
maintain an indoor air temperature at its set point. At the first stage only the class 
n032 was simulated for all the two zones (north and south) of the building. This fault 
was simulated by giving the supply water temperature a value which is 10°C lower 
than its design value. 

Class n04 is seperated into two classes: the class n041 i.e. the boost heating starts 
too early (referred as "early boost class"); and the class n042 i.e. the boost heating 
starts too late (referred as "late boost class"). To simulate these classes, the 
maximum boost heating duration in the OMC model was increased (simulation of 
early boost) or decreased (simulation of late boost). The maximum boost heating 
duration is defined according to a basic outdoor temperature (-7°C for example) 
and a low limit indoor temperature (14°C for example). Either for a real heating 
system or with the help of a numerical simulator, this value is obtained by 
proceeding by trial and error and is generally different according to different 
buildings. 

Class n05 (referred as "leaky valve class"): three-way-valve (for the control of the 
secondary circuits) non-watertight in closed position (leakage from the direct way to 
bypass) or limiter stroke badly positioned. This fault was simulated by an opening of 
10% of the north circuit three-way-valve which should be closed in a normal 
operating mode. 

All these classes have been simulated in five different heating systems for 
purposes of constructing a data base. This data base will be used not only to 
develop the neural network structures but also to test the generalization capacity of 
the developed network structures. 

The five heating systems are briefly described here in below: 



- System 0: a reference heating system with the following characteristics: 

- normal room temperature set point :lg°C 

- radiators size adapted to a supply temperature of 73°C for an 
outdoor temperature of -5°C 

- low inertia building 

- reduced room temperature set point :14"C 

-System 1: with the same characteristics of the reference one but with normal 
room temperature set point of 21 "C 

-System 2: with the same characteristics of the reference one but with oversized 
radiators. The radiators size adapted to a supply temperature of 63°C for an 
outdoor temperature of -5°C 

-System 3: with the same characteristics of the reference one but with a high 
inertia building 

-System 4: with the same characteristics of the reference one but with reduced 
room temperature set point equal 16°C: 

Choice of the Simulation period for Training Network Structures 

Both the choice of the simulation duration and that of the parameters selection for 
the purpose of training are based only on the reference system (that is System 0). 

The simulation duration of each fault for each heating system, extends a whole 
heating season of one year (September-April), representing 196 days (28 weeks x 
7 dayslweek). 

We have used a data base comprising 70 days (24h per day) (14 weeks from 
Monday to Friday) for all the seven classes of the reference system in order to 
develop the neural network structures (Li, 1996). This data base is divided into two 
parts: first (35 days) for training the networks; second (35 days) for testing the 
networks. Both training and testing data sets include fall, winter and spring data. 

Data Pre-Processing and Parameters Selection 

Well-chosen pertinent parameters mean well-chosen network inputs. One facet of 
neural networks is that a statistical understanding of the relationships between the 
independent and the dependent parameters is not needed. However, as with any 
modelling method, improved performance for a network can be expected when 
well-chosen independent parameters are used. 



For this type of system, a daily diagnosis seems sufficient. This is why the useful 
information of the data base is filtered to daily values. The filtering procedure is 
defined below. It consists in averaging values of different variables on specific 
time periods. The time periods are selected to represent a specific operating 
mode of the system. Consequently, each simulated class comprises 70 patterns 
corresponding to 70 simulation days. The whole of the seven classes 
comprises 490 patterns (70 pattemslclass x 7 classes) which will be used for 
training and testing the neural networks. The following parameters have been 
chosen to construct the network inputs (Li, 1996): 

(1) Tfgb (mean flue gas Temperature of boiler during the boost heating period) 
which helps to discriminate the classes no l  and n02 from the other classes; 

(2) Trocc (mean room temperature from 10 a.m. to 6 p.m.) which helps to 
discriminate the class n032 from the other classes. This variable is 
representative of the room Temperature during occupied period; 

(3) Tr6( room Temperature at 6 a.m. i.e. 2 hours before beginning of occupation 
period) which helps to discriminate the class n041 from the other classes, 

(4) Tr8( room Temperature at 8 a.m. i.e. beginning of occupation period) which 
helps to discriminate the class n042 from the other classes; 

(5) Twunoc( water supply Temperature at the beginning of the unoccupied period 
i.e. from 6 p.m. to 11 p.m.) which helps to discriminate the class n05 from the 
other classes; 

(6) Tout (mean daily outdoor Temperature), note that this type of heating system 
is principally controlled according to the outdoor temperature, and it is of 
interest to determine how this parameter influences the neural networks to be 
trained; 

(7) LUP (Length of Unoccupied Period). The method developed is adapted to non 
permanently occupied buildings with intermittent heating such as office 
buildings and schools. In such buildings the room temperature obtained at the 
beginning of the occupation period or the decrease of room temperature 
during unoccupied periods is linked to its length. So LUP is used to take this 
effect into account. 

Note that the seven parameters mentionned above are normalized in order that 
these parameters are numerically comparable. The normalization strategy is as 
follows: 

The choice of Trefl and Tref2 was based on a physical analysis of the heating 
systems and took into account their genericity in relation to different heating 
systems and buildings (Systems 0, 1, 2, 3, 4, 5 for our study). 



DEVELOPING NEURAL NETWORK STRUCTURES 

Introduction 

The central idea is as follows: use only the reference heating system (System 0) 
to develop the best neural network structure, and then to test its generalization 
capacity by applying it to the other systems (Systems 1 -4) not used during the 
training stage. 

So, a data base of 490 patterns for the seven classes of the System 0, that is 70 
pattems for each class (see the section Data Pre-Processing and Parameters 
Selection), has been used to develop several structures of neural networks. We 
have finally retained two types of structure. 

The first is named the Multiple Artificial Neural Networks (MANN) structure 
which is composed of two or more neural networks to discriminate seven classes. 

The second is named the single Artificial Neural Networks (SANN) structure 
which has only one neural network for discriminating seven classes. 

These two structures are both multilayered feed-forward networks with a tan- 
sigmoid transfer function. They were trained using a commercial software 
(Demuth and Beale, 1992) with an improved back-propagation algorithm, i.e. 
Levenberg-Marquardt optimization. Both structures are two-layer networks, i.e. 
one hidden layer and one output layer. 

The number of input neurons (or input terminals) is equal to one bias neuron (for 
the threshold) plus the number of components which code the training pattems 
and the testing patterns in one specific representation space. For example, the 
patterns coded by two components correspond to three input neurons. 

The procedure to determine the number of neurons in a hidden layer consists 
first in training different networks with increasing number of neurons. The Sum- 
Squared Error (SSE) between the target outputs and the actual outputs of all the 
training patterns is then computed. This error decreases in principle when the 
number of neurons increases. A compromise between the number of neurons and 
the SSE should be found. The solution consists in adding a neuron only if it leads 
to a large variation of the SSE. Because false classification of 1 pattern leads to 
an increase of the SSE equal to about 4, we accept to add a new neuron only if it 
leads to a decrease of SSE equal to or larger than to 4 (Li, 1996). 

The number of neurons in the output layer must be large enough to code the 
different classes to be discriminated during the training phase. For our study, we 
have used as many neurons as the number of the classes to be discriminated 
during the training phase. 

We present first the Multiple Artificial Neural Networks Structure. 



Multiple Artificial Neural Networks Structure 

The Multiple Artificial Neural Networks (MANN) structure is composed of two 
neural networks to discriminate seven classes: 

- MANN1 (discriminating the heating curve from the other classes), 

- MANN2 (discriminating the classes other than the heating curve class - classes 
nOO, nO l ,  n02, n041, n042, n05). 

MANNl (Multiple Artificial Neural Network 1) 

MANN1 was trained to discriminate the heating curve class from the other 
classes. It is well known that the tuning of the heating curve and the detection of 
heating curve faults are generally difficult for maintenance teams since first, it is 
not easy to define a reference operating mode indicating a well tuned heating 
curve; second, the heating curve faults are frequently mixed either with another 
control system fault or with the normal operating mode. As to our study, the idea is 
that the heating curve too low - must be detected (if it exists), and then readjusted 
before diagnosing the six other classes (the class noO and the classes no l ,  n02, 
n041, n042, n05). 

Structure 

Three parameters - Trocc, Tout, and LUP - were used for coding the 70 training 
pattems and the 245 testing pattems, i.e. these training pattems and the testing 
patterns are represented in a three-dimensional representation space. So MANN1 
has four input neurons. 

Using only two classes (normal and heating curve class) to train MANN1, the 
output pattems of MANN1 are coded by two groups corresponding to the two 
training classes, i.e. two neurons in the output layer. The desired outputs of 
normal class are [+1 -11; the desired outputs of heating curve class are 1-1 +I]. 

After many tries, two neurons have been retained in the hidden layer. This 
architecture gives the "best" results for training and more importantly for testing. 
Note that if different neuron numbers give nearly the same testing result, the 
lowest was chosen as the final structure. 

The structure of MANN1 is schematically presented by Figure 2. The training and 
testing results are presented below. 
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Trainina and testinq 

Only two classes (normal and heating curve class ), i.e. 70 training patterns (35 
days x 2 classes/day), were used to train the network ANN1. But all the seven 
classes (nOO, nOl ,  n02, n041, n042, n05 and n032), i.e. 245 testing patterns (seven 
classes/day x 35 days), have been used for testing it. Three possibilities are 
posible for each pattern. It can be classified in class 32 (heating curve) in other 
classes(without further distinction) or not classified. The testing result is shown in 
the Table 1. 

To understand this table two points shall be considered: 

Because MANN1 has only two output classifications (i.e. normal and heating 
curve), the outputs of the other classes (i.e. normal class, combustion class, 
heat exchanger class, early boost class, late boost class, leaky valve class) are 
represented here only by the outputs of normal class. 

A not-classified class or pattern means that the network can not classify clearly 
the actual outputs of one pattern into one specific class and that the 
classification hesitates among at least two classes. For example, the outputs 
[+1 +1] can not be classified. 

Among the four (i.e. 11% = 4/35) incorrectly classified patterns of the heating 
curve class (n032), there are three corresponding to the days with high solar gains 
(Li, 1996). 

I heating curve (32) 1 89% I 11 % I 0 I 
I actual class classified in 

heating curve I other classes I not classified 

normal (0) 

I early boost (41) 1 0 1 100% I 0 I 

combustion (1) 

1 late boost (42) I 26% I 71 % 1 3 %  1 

11 % 

I leaky valve (5) I 0 1 100% 1 0 I 

9 %  

Table 1 - Classification rates durinu testinu - MANNl 

89 % 

heat exchanger (2) 1 9 %  

MANN2 (Artificial Neural Network 2) 

0 

91 % 

Because the MANNl is used to discriminate the heating curve class, the MANN2 
(Figure 3) will be constructed to discriminate the classes other than heating curve. 
Thus heating curve fault data were not used to train this structure. 

0 

91 % 0 



Structure 

In this case the room temperature during occupancy period (Trocc) and the length 
of unoccupied period (LUP), which help to discriminate heating curve class from 
the others, are not presented in the input layer of MANN2 structure. Thus only five 
parameters have been used for coding the training pattems and the testing 
patterns and all these pattems are represented in a five-dimensional 
representation space. As a result, MANN2 has six input neurons. 

The output patterns of the MANN2 are coded by six groups corresponding to six 
training classes, i.e. six neurons in the output layer. 

Trainina and testinq 

Different numbers of hidden neurons have been tried during the training phase 
and an architecture with 4 hidden neurons was finally retained as the best choice. 

Both the training set and the testing set are composed of 6 classes (noO, no l ,  n02, 
n041, n042, n05), i.e. 210 pattems (35 days x 6 classedday). The testing results 
are presented in Table 2. 

actual clas: 

normal 

( late boost I o I o I o 1 o 1100%1 o I o I 

combustion 

heat 
exchanger 

I leaky valve I 0 I 0 I 0 I 0 I 0 1 9 i%I  9% 1 

classified in 

- - -  - 

Table 2 - Classification rates durina testina - MANN2 

norma 

88% 

0 

0 

Comments on the Multiple-ANN Structure 

About MANNl 

combustior 

0 

97% 

6% 

The MANNl can not detect the heating curve too low (fault 32) for the days with a 
strong solar influence (see Table 1). During these days the effect of the fault is 
hidden by the solar gains. The fact that the fault 32 will not be detected on such 
days does not seem to be very important for following two reasons: 

- building occupants will not notice the fault due to the solar gains, because there 
will be no effect on occupant comfort; 

0 

94% 

- secondly, no false alarm will be sent to maintenance people. 

heat 
exchange 

0 

early 
boost 

3% 

late boc 

6% 

0 

0 

leaky 
valve 

0 

0 

0 

not 
classifiec 

3% 

0 

0 

3% 

0 



So we can say that the non detection of the fault 32 on very sunny days does not 
reflect negatively on MANNl. 

MANNl classifies boost heating too late (fault 42) as heating curve too low ( fault 
32) in 26% of the cases (Table 1). Why ? When the boost heating is late the room 
temperature at the beginning of occupation (T@) is too low. Consequently the 
room temperature during occupation (Trocc) is sometimes too low. As it is an input 
of MANNl, this variable leads in some cases to a wrong diagnosis by MANNl. So 
if the boost heating is late the whole detection and diagnosis system consisting of 
MANNl and MANN2 will in 26% of the cases detect a fault but make a wrong 
diagnosis. However, this situation can be sensibly improved by using a Single- 
ANN structure (presented later). 

For the other classes the false detection rate of MANNl are not higher than 11% 
and the non detection rate is zero. However it is not obvious to determine if such a 
false detection rate is acceptable for a maintenance team. If MANNl is used in a 
real building a compromise will be defined by maintenance team between the time 
delay necessary to detect the fault and the false alarm rate. If a false alarm rate of 
11% is not acceptable, the solution to reduce it will be to trigger an alarm only if 
the fault is detected on two or three successive days. This will slow down the 
detection process but reduce drastically the false alarm rate. 

About MANN2 

The training results of MANN2 leads to incorrect or non-classification for less than 
3% (3% = 1/35 pattern) whatever the class to be detected. Only 3 training patterns 
in total are not correctly classified. Note in particular that 1 pattern of the early 
boost class has been classified as normal class; this point will be explained below 
with testing results analysis. The architecture selected does not enable to make a 
100% valid diagnosis on the training data, but the results are considered to be 
good. 

Testing MANN2 shows incorrect or non-classification rate comprises between 0 
and 12 % depending on the type of class. 

Table 2 shows that most of the bad or non classifications concern the confusion 
between early boost, normal and late boost. This is probably due to the sub- 
optimal behavior of the "Optimum Start Controllef (OMC) used in the numerical 
simulation software. Because of the sub-optimality of this OMC, it happens some 
days that even if the system is properly tuned the boost heating is too late or too 
early . In such cases a pattern corresponding to a well tuned system will be 
classified by MANN2 as a late or early boost. If the system is tuned in such a way 
that most of the days the boost heating will be too early, it will happen some days 
that the duration of the boost will be correct. The corresponding patterns will be 
classified by MANN2 in the normal class. 

We will find that the confusion between normal class, early boost class and late 
boost class can be reduced with the Single-ANN structure. 



Single Artificial Neural Network Structure 

The idea is that only one neural network should be used for discriminating all the 
seven classes. So, the Single Artificial Neural Network (SANN) structure has to be 
trained with all the classes (seven in total) to be discriminated. 

Structure 

To discriminate seven classes, six parameters (Tfgb, Trocc, Tr6, Tr8, Twunoc, 
Tout) have been used for coding all the training and testing patterns. So the 
networks SANN has seven input neurons. LUP is not included in the parameters 
because tests have proven that with this network structure it is not usefull to 
include it. 

With seven training classes, the output patterns of SANN are coded by seven 
neurons in the output layer. 

The structure of SANN networks is schematically presented by Figure 4. 

Fi~ure 4: Structure of SANN 

Training and testing 

The data base of the reference system described-above (490 pattems) has been 
separated into two parts: 

- the first 245 patterns (35 patternslclass x seven classes) are used for training, 

- the second 245 pattems are used for testing. 

This structure has been trained and tested with different numbers of hidden 
neurons. Finally one SANN with only 5 hidden neurons has been retained. 



The testing result is presented in Table 3. 

Normal 91% 0 0 0 6% 0 

Combustior 3% 91% 0 0 0 3% 0 

Tested 
class 

curve 0 0 0 100% 0 0 0 0 

Early 
boost 3% 0 0 0 91% 0 0 6% 

Late 
boost 0 0 0 0 0 1000, 0 0 ------ 
Leaky 
valve 6% 0 0 0 0 0 

Table 3: Classification rates 135 oatterns per class) - SANN 

Classified in 

Comments on the Single-ANN'S Structure 

The correct classification rates varies from 91% to loo%, so is very satisfactory. 

Normal 

The detection of the heating curve class and of the late boost class is much easier 
with one SANN (100% for the 2 classes, see Table 3) than with one MANN 
(respectively 11% and 26% of bad-classification, see Table 1). And the detection 
of the normal class is also easier with one SANN. 

Early 
boost 

Combustio Heating 
CuNe 

Why does a SANN perform better than a MANN ? Is it always true ? 
Mathematically it is difficult to answer these questions. However, we can probably 
say that a net-structure composed of one single network learns more easily a 
global knowledge than that composed of two multiple networks. 

For all these reasons, the SANN structure has been retained for further study. 
This study will consist, at the first stage, testing the generalisation capacity of the 
developed SANN; it will be applied to heating systems not used during the training 
phase. This approach was chosen because it is most desirable to train a network 
structure using only one heating system and then to test the capability of the 
network to generalize on a series of heating systems. 

Late 
boost 

GENERALIZING THE DEVELOPED NETWORK STRUCTURE 

We have, up to now, developed one network structure (SANN) by using only 70 
simulation days of the reference heating system. The testing result using the 
reference heating system (used also for training) is very satisfactory (see Table 3). 

Leaky 
valve 

Non- 
classification 



However we wonder whether this SANN structure can always generate good 
classification in the case if it is applied to other heating systems not used for 
training and when the diagnosis period is longer (one whole heating season for 
example). 

To confirm this, the trained SANN structure has been tested by applying it to 
detect the faults of the 5 simulated heating systems mentioned-above (that is the 
System 0 and the Systems 1 - 4). 

For each system the data corresponding to the faulty and non-faulty states were 
used to test the SANN structure. 840 patterns (120 patterns /class x 7 classes) of 
each system have been used for this generalization. One shall note that among 
these 840 patterns 245 issued form system 0 in total were already used for 
training the SANN structure. 120 patterns correspond to 120 days from Monday to 
Friday, which mean 24 weeks as well. This period covers almost the whole 
heating season of one year. Consequently, there are in the testing data base 
certainly the days during which the heating systems (especially the boilers) stay in 
no- or partial running state, so that the SANN structure has more difficulties to 
detect faults during these days. 

The generalisation result are analyzed in two different approaches: 

- daily diagnosis which means one diagnosis per day; 

- weekly diagnosis which means one diagnosis per week. 

Daily Diagnosis Approach 

The classification results obtained according to the daily diagnosis approach are 
presented below. These results are represented by the classification rates which 
show how different patterns are classified by the SANN structure. Three tables 
(Tables 4, 5, 6) are presented here-in-below among five: the first is the reference 
system, the second (system 1) gives the worst classification results and the third 
(system 4) generates the best classification results for systems which were not 
used during the training phase. 

-- -- - - -- - 

Table 4: Classification Probabilities (120 patterns per class) - System 0 



Table 5: Classification Probabilities (120 oatterns oer class) - Svstem 1 

Table 6: Classification Probabilities (120 oatterns per class) - Svstem 4 

In order to facilitate the comparison of the SANN's generalization capacity to 
different heating systems, the results will be compressed into two global 
probabilities as defined below: 

- RP (Recognition Probability) : probability of good classification for all the seven 
tested classes. The RP of each system is calculated from the good classification 
probabilities of 120 patterns of each system. For example, the RP of System 0 
presented in Table 7 was calculated from Table 4, that is: 



- FAP (False Alarm Probability) : probability of detecting a non-existing fault. 
The FAP of each system is calculated from the bad classification probabilities 
of 120 patterns of each system. For example, the FAP of System 0 presented 
in Table 7 was calculated from Table 4, that is: 

(3+2+6)+(1+6)+(1+1)+(1+4)+(1+10)+(2+1)+(0) 
FAP = = 6 

7 

Table 7 presents the global probabilities calculated from the classification rates of 
5 heating systems (systems 0, 1, 2, 3, 4). 

Table 7: Classification Probabilities Based on Dailv Diagnosis 

Weekly Diagnosis Approach 

If we want to do a weekly diagnosis, i.e. one diagnosis per week, the classification 
probabilities (RP and FAP) are probably different. For this approach we have 
studied three different diagnoses, that is: 

1. One class will be identified if two  att terns of this class appeared in one week 
(one week means 5 days from Monday to Friday). If three patterns or days out 
of the week have a diagnosis of class X and two patterns have a diagnosis of 
class Y, This week is considered to be class X. 

2. One class will be identified if three patterns of this class appeared in one week 
(one week means 5 days from Monday to Friday). 

3. One class will be identified if four patterns of this class appeared in one week 
(one week means 5 days from Monday to Friday). 

The performances of 4 different diagnosis, i.e. 1 daily diagnosis and 3 weekly 
diagnoses, are shown (Table 8) by means of two probabilities (RP and FAP), each 
comprising 5 systems (System 0, System 1, System 2, System 3, System 4). 

Table 8: Classification Probabilities Based on Dailv and Weeklv Diagnosis 

Diagnosis Approach 

Recognition Probabilit) 

Daily 

82% 

Weekly 

2 days 

87% 

3 days 

86% 

4 days 

77% 



This comparison shows that: 

- based on the principle that one class will be detected if two patterns of this class 
appeared in one week, the weekly diagnosis produces very satisfactory result 
(RP=87% & FAP=3%, see Table 8) for all the five heating systems in which four 
were not used during training phase. 

- and one can further reduce the false alarm probability to 1% if it is acceptable to 
decrease the recognition probability to 77%. 

DISCUSSION 

Neural Network Structures 

The choice of the pertinent parameters to do fault diagnosis (i.e. the choice of 
representation space for class discrimination) is particularly important, because 
the choice of a representation space has a great influence on the quality of the 
discrimination result. In one representation space, the classes can be very badly 
separated, thus increasing the difficulty of discrimination. A better choice of the 
representation space gives very distinct classes, so there is not any problem for 
discrimination. Unfortunately, there isn't any general rule for choosing the 
representation space; this choice is only based on the knowledge of the problem 
to be solved, and there isn't any algorithmic method that can be applied to 
formalize it. 

The architecture of a back propagation network is not completely constrained by 
the problem to be solved. The number of inputs to the network is constrained by 
the problem and must be well chosen, and the number of neurons in the output 
layer is constrained by the number of outputs required by the problem. However, 
the number of layers between network inputs and the output layer and the size of 
the layers are up to the designer. This workmight be very tedious but is crucial. It 
demands a powerful calculation tool. In our study only the networks with one 
hidden layer were trained and tested. A criteria was defined to optimize the 
number of neurons in the hidden layer for each network structure. 

Representative Data Base Generation 

Another difficulty is linked to the training procedure. To train the neural networks, 
data representative of the behavior of the system without fault and with each of 
the faults are needed. The goal of the research is to get a FDD tool which can be 
implemented in different building-heating systems. It seems impossible to have a 
training phase for each building-heating system. So we have t o  find a generic 
neural network structure which can be used for a series of building-heating 
systems without re-training. The hypothesis was the possibility to adapt the neural 
network structure to one particular building-heating system simply by modifying 
the parameters used to normalize the inputs of the network structure. This is why 
we used at first one system to develop one network structure (SANN) and 
secondly four other systems to test its genericity. 



We must know that using only the simulation data is not sufficient to have one 
reliable FDD tool implementable in a real EMCS system. An effort must be done 
for obtaining a data base from real heating systems-buildings in order to test the 
performance of the developed network structure (SANN). 

If satisfactory results can be obtained by applying the FDD prototype to real 
heating systems data, it will be possible to prepare a test in a real building and by 
implementing the FDD prototype in a real EMC-System. 

Retained Network Structure (SANN) and Its Generalization 

Two types of neural network structures have been presented in this paper: 
Multiple-ANN and Single-ANN. The testing of these structures have shown that 
the Single-ANN demonstrates a better perfonance, in particular to detect the 
normal class, the heating curve class and the late boost class. The fact that a 
Single-ANN generates a better result than a Multiple-ANN is probably because the 
former leams more easily the global knowledge than the latter. So the SANN 
structure as a FDD prototype has been retained for further study. 

The generalization of the SANN structure has been performed with five simulation 
heating systems. The results were analyzed in two different approaches. The first 
is based on a daily diagnosis; the second on a weekly diagnosis. 

The daily diagnosess approach generates acceptable generalization result. The 
mean Recognition Probability (RP) of all the 5 systems with seven classes is 82%, 
with a False Alarm Probability (FAP) of 6% (7 (see Table 7), although a whole 
heating season simulation data have been used. FAP of 6% means approximately 
seven false alarms (here is 7 days) for a duration of six heating months. Note that 
it is more difficult to generalize the SANN structure to a heating system for which 
the indoor temperature setpoint during occupancy period has increased, 
especially for detecting the early boost fault and the heating curve fault of this 
system. 

The weekly diagnoses give a satisfactory generalization result, provided that we 
identify one class when it is detected twolthree times per week. In this case the 
RP is 87% and the FAP is 3%. And the FAP can be reduced to 1% if one accepts 
reducing the RP to 77% (see Table 8). Note that the false alarms concentrate in 
particular on the days with very high outdoor temperature (effect of solar gains). 

CONCLUSION 

The work presented in this paper concerns the development of a Fault Detection 
and Diagnosis prototype for heating systems by using artificial neural networks. 
This prototype is expected to diagnose faults in a series of heating systems 
located in non-permanently occupied buildings such as schools, offices buildings, 
etc. 



Six different types of fault were selected for this work: two related to the gas fired 
boilers, one to the control valve and three to the control system. The ultimate goal 
of this work is the development of a FDD tool which can be implemented in real 
EMC-Systems and enable the automatic detection and diagnosis of these types of 
faults. 

At the first stage of our study, a data base representing the behavior of five 
buildings and of their heating systems with and without faults was generated by 
numerical simulation. Then, by using neural networks, a FDD prototype has been 
proposed and generalized. 

This prototype presents a good generalization capacity, although it was trained 
only by one simulated heating system and a data base of five simulated heating 
systems during one year heating season (more than six months) was applied for 
testing this genericity. 

The study demonstrates the feasibility of using neural networks for fault detection 
and diagnosis in such heating systems. Nevertheless the application of this 
methodology implies training the neural networks with a reliable data base 
representative of the behavior of heating systems in faulty and non faulty cases. 
Such a data base is often difficult to obtain. 

Also this study shows the possibility that one FDD prototype can be applied to 
different heating systems without re-training it. The only adaptation is the 
modification of certain normalisation parameters. 

However, the FDD prototype has been up to now studied only on simulation data. 
Further work will be its validation, which can be performed in two different ways: 

- off-line validation by data bases obtained from the measurements of real heating 
systems-building; 

- on-line testing by implementing the FDD prototype in a real EMC-System. 

ACKNOWLEDGEMENTS 

This research is partially supported by the French Agency De I'Environnement et 
de la Maitrise de I'Energie. 

REFERENCES 

D. Caccavelli, E. Hutter, S. Nibel, and P. Picard 1991, Gas Fired heating plant 
management, Conference proceedings of Building Simulation '91, IBPSA, pp. 
169-1 74. 

H. Demuth, M. Beale, 1992, MATLAB Neural Network Toolbox: U s e h  guide. 
Natick Massachussetts: The Math Work Inc. 

B. Dubuisson, 1990. Diagnostic et reconnaissance des formes. Paris, Editions 
Hermes. 



J. Hyvarinen and al.. 1993. Building Optimization and Fault Diagnosis (BOFD) 
system concept (collective document - IEA Annex 25). VTT, Finland. 

L. Laret 1980 Contribution au developpement de modeles mathematiques du 
comportement thermique transitoire de structures d'habitation, These de doctorat 
en sciences appliquees, Universite de Liege. 

X. Li, and J.C. Visier. 1995. Methode automatique de detection des defauts et 
derives des installations de chauffage - Les defauts de fonctionnement des 
installations de chauffage collectif. Cachier de CSTB, Livraison 365 - Decembre 
1995, France. 

X. Li, H. Vaezi-Nejad and J.C. Visier. Development of a Fault Diagnosis Method 
for Heating Systems Using Neural Networks. ASHRAE Trans. Winter meeting 
February 1996, Atlanta, USA. 

J.C Visier, H. Vaezi-Nejad and M. Jandon 1994. Results of the application of a 
quality assessment procedure to different building energy management systems. 
3rd IEEE conference on control applications, Vol 3, pp. 1867-1872. 



Reprinted, with permission, from Proceedings of Pan Pacific P ~ V  PACIFIC SYMPOSIUM 

Symposium on Building and Urban Environmental Conditioning onBuildi"~'"dUrbm"E""m"mcnbl 

in Asia. March 16-18 1995, Nagoya, Japan. Condilioning in hi. s .go)r.  1.p.n 
March. IW5 

FAULT DETECTION AND DIAGNOSIS IN DISTRICT 
HEATmG SYSTEM 

Yi Jiang, D. Eng. 

ABSTRACT 

The imporrance qlfaulr derecrion in disrricr henring (IjH) .s~v.srem hns been inrroduced 
first. Commonfau1l.s in DH .sy.stemr ore rhen lisred according ro n .survey. Fardrr in DH are 
/hen divided inlo rhrec groups nccordinfi to irr ,fiarher. h'cw1.v dcvcloped  procedure^, S 
region conrracrion method nnd Faulr Uirection Space meiirid are rhen introduced for 
rrearmenr qfdifirenr ryps o/:farrlr. Thc key ro rise rhe renririvir.v and reliabi1rr.y ofrhese rwo 
methods are di~c~~.s.sed in d~'rai1. Real  procedure.^ used in engineerln~ practicer is brirfly 
summarised finallav. 

INTRODUCTION 

During the last tcn ?cars. district hcating systems (DH) h ~ v c  been widcl? dcvclopcd in 
China. Large and middle size of DH systems are built almost in cvcry big and middle cities in 
the Nonh and Nonheasr of China \r.ith the capacities of 50 M\V to 800 MW for cach and 
heated building area of I to 10 million squarc nlcters. Figures I is onc of DH nctworks in 
Shenyiang, as an exampie. \r.ith tlic capacity of 400 MW and about 10 n~illion square rnctcrs 
building heated. Figure 2 is the schcmc of a substation in this network. There are more than 
100 substations like this connected with the water nctn.ork. As the system is gctting larger. rhc 
monitor and control of the nctxork and substations is getting importmt. Distributed computer 
system is used to look after the net\vork as n;ell as subsrations Figure 2 also shows the control 
and measuring points of the computer controller in 3 substation. A czntre computer in the 
control centre links with all thc controllers through a computcr network. This kind of computer 
system can be found in most of DH systems in North Europe. Ir stans to be popular in China. 
There are around 20 DH svstems installed with this kind of computer system. Therefore what 
are the tasks of the computer system in DH? It is learnt from a survey as the follo\\;s: 

collect real time operation data, sl~cli as tenlperaturc, pressure and flo\rrrate, from each 
substation; 
count the heat, electric and water consumption of cach substatron as well as each pan of the 
network: 

Yi JlANG is Profcssor, Dcpanrnent of Thernlal Energy Engineering, Tsinghua University. 
Beijing 100084, P R China. 
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regulate the water flow rate distribution by controlling of the speed of circulation pumps or 
the open ratio of motor-drive valves to match the variation in the requirements of 
substations. 
alarm, if some unusual measured data have been found such as a pressure exceeds the 
uppcr limit value or the flow rate in a branch is gening smaller than the low limitation. 

One of the most iniponant tasks of the computcr system for DH is to tell operators what is 
happened in the DH network. So that operators can m&e some relative regulation if some 
opcration state changes: or treat faults on time to avoid accident when a fault is found; or plan 
the maintenance schedules according to thc quipment real situation learnt from the measured 
data. However, as a large DH system, the number of nieasuring points can be as many as few 
thousands, i t  is a hard work to study these huge data from more than thousands measuring 
points and to discover fault as well as abnormal state. Furthermore, most of fault and abnormal 
state cannot be found out directly from measured data in the way of simlpe limit checking. 
What appars  in measured data when something fail is the change in relationship among 
nicasurenients. For instance. if there is a leak between the primary side and the secondary side 
of a plate t,ge heat eschmgcr. the temperature and pressure at the both sides may change 
niore or less but none of the mcasuremcnt could be come to the up or low limit. It can hardly be 
discovered without detailed analysis at the begiming when the leak is not so serious. 
Thercfrom. on-line fault detection facilities is highly recommcnded so that: 

operators can be liberated from lookins around the thousands mrasurenients. Data can be 
checked autoniatiull!. and fault and abnormal state can then be discovred as the result: 

= the indirect fault can also be discovered using the powerful computing and logic analysing 
abilities of computers. 
reports u n  be made by computers to give guidances to the repairman for treaunent of the 
fault discovered. Maintenance schedule can also be made according to the equipment 
situation the computer detected. High level maintenance can be achieved by aiding of the 
computer systcm. 

This is one of thegoals for distributed computer monitor and control systems of DH. It is 
far inore than the up and doun limits checking of the measured data. The centre point is: 

Can and How we gcr mow in/brmarion/rom /he measured darn and make ciearpdgement on 
the sysrem? 

As pan of the IEA Xnncs 25 -'Fault Detection and Diagnosis in HVAC" (FDD) project. 
tlieoretiul research and engineering practices has been carried out in Tsinghua University. This 
paper is the summary of this research. Faults need to be detected in DH system have been listed 
first. The problems and difficulties in real FDD procedure for DH system has discussed then. 
The basic philosophy of the DH FDD in our research is introduced. The S region contraction 
approach and the Fault Direction Space (FDS) method is presented in detail. Engineering 
applications in sonie Chinese DH systcnis have been brief introduced finally. 

FAULTS IN DISTRICT HEATING NETWORKS 

According LO a survey from some DH systems. faults in DH can be classified as follows: 

Sensors fault: as there are few thousands sensors of temperature, pressure and flow-meter in a 
DH network, any procedure and analysis cannot relied on the hope that all the data from 



sensors are correct. T o  produce a correct result from the measurement, the first thing is to pick 
out the wrong measurements from the data and find out fault sensors. There are three types of 
fault sensors in gcncrally: 

dead sensor, that gives a zero or a constant output: 
high frcquency noise sensor of which the output changes in a greatcr range than permissible . . 
one and varys with a high frequency; 
slowly floating scnsor that keeps going up or do\m slowly as the time bcing or along with 
the environment temperature changes. 

Limits check combining with a filter such as Kaman's filter can lake the first two typcs of 
fault away. However the third one is not easy to be discovered by the measured history data 
itself. For instance ifthe output from a pressure sensor in the network increased 0.1% per day, 
no filter nor limit checking can gct it. This can only be dctected systeniatically by analysing 
the pressure distribution of the whole DH network. 

Fault Component in substation: circulating pump at a substation stops: motordrive valvc 
cannot opcdclosc: watcr filter blocked as well as some types of fault in hcat exchanger at a 
substation. which can be: 

leakage betwcen the primary side and the secondary side: 
block in the primary side or the secondary side: 
poor perfomance of heat transfer due to scaling: 
unbalanced watcr dispensing among heat eschangers in a substation, water flou ratc in onc 
heat exchanger is much more than in another: 

Among these types of fault. pump stopping can be d~scovered by checking of the pressure 
difference inlet and outlet of the pump or check the signal from thc electric pancl to know if the 
contact for pump is still closed. 

Fault in motor-drivc valve can be dctccted in two steps: cornparin!: rhc mcasurcd open-radio 
with the rcquircd one to know if thc clcctric and clcctronic pan of thc valve is correct: turn the 
valvc opcdclosc to a greater or lcss ertcnt thcn to sce if the pressure nicasurcd on the down 
stream of tlic valvc docs changc. 

Panly blockcd water filter can also be checked out by thc pressure different at the two 
sides of the tiltcr if there are pressure sensors. If sensors arc not available on these positions, it 
has to be judgcd from the temperature, prcssure and flow rate mcasured within the substation 
by some systematiully analysis method. 

The most difficult detected fault in a substation is the fault of heat exchangcr As there is 
not a direct signal to indicate its working state. a systematically anal!.sis proccdure is needed to 
estimate the heat eucl~anger perfonancc and dctecr if there is a fault. 

Fault in the primary network: The primary network is defined as the network from the 
thcrn~al plait to the substation. Four t l ~ c s  of fault may be happened in a prinlap network of a 
DH system: 

high heat loss causing by poor insulated pipe: 
0 high pressure drop causing by a partly blocked branch; 

leakage in the network: 



short circuit between a supply branch and nearby return branch due to a mis+pened or 
damaged short circuit valve. 

The poor insulation of pipe can be discovered directly by checking of the supply water 
temperature difference between two nearby substations. Thermal resistance from the trunk to 
outside, R, can be calculated as 

where the G is the flow rate through the trunk which can be obtained by summing up the 
measured flow rate of each substation in the doum stream. Tw,m is the average supply water 
temperature. As the temperature may change with time, integration is needed to avoid the 
dynamic effect so to obtain the steady state thermal resistance from the water to outside, R. 
This value should be higher than a given limit value, limit checking on the R value can then 
find the part of poor insulated trunk. 

However other faults listed above cannot be discovered as simple as the "poor insulation" 
one. Leak at a pipe of the trunk cause some of pressures go down. while "short circle" is very 
possible get the similar effect. To discover these fault, the pressure and flow rate distribution 
over the network has to be studied in detail and systemic analysis has to be carried out to find 
the type of fault and its location. 

Fault in secondary networks: The secondary network means the network distributing hot 
water from the substation to every buildings it serviced. There is normally a water distributor 
in the substation. Few of branches from the distributor to buildings and back from buildings to 
a uater collector in the substation as shown in Figure 2. Thereby water temperature of every 
branch returning from buildings can be measured at the substation. Faults at the branch level 
in secondary networks normally are: 

leak in one of branch of the secondar). network; 
unbalanced water distribution due to niis-opened one of the branches or bloclciclose another; 
short circuit in one branch between the supply pipe and the return pipe due to mis-open a 
short circuit valve. 

These types of fault cannot be detected directly from the measured pressure and temperature 
unless the extent of fault is very serious. Systematically analysis is needed for these types of 
fault. 

THE LIMITATION IN ENGINEERIG PRACTICS 

From the listed possible fault above, it is understood that some types of fault cannot be 
detected simply by limit checking or some kinds of rule basis analysis locally. It has to be 
analysed systematically. To carry on this analysis, the network structure and the flow 
resistance of each branch of the network should be know so to predicate the system 
performance and comparing with the measured data. As a network of DH system, the topologic 
structure is determined according to the design. However the flow resistance performance 
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Figure 3 Part of the primary network in DH system 

of each branch of the network cannot be provided from the design. Defining the flow resistance 
coefficient of a branch. S, is 

AP = SG' (1) 

where the AP is the pressure drop from one end of the branch to another. The S value can be 
assumed as flow rate independent. However as there are many pipe bends, three-way tubes and 
manual valves of which the flow resistance performance depends on the installation and local 
initial regulation, the S value for each branch cannot be pre-determinate, it has to be on-line 
estimated from the measured data. 

Figure 3 is a part of the primary network of a DH system. If install pressure sensors at 
each junctions of the nehvork as the points A, B, C, ... in that drawing, and install flow meters 
on each branch, the S value of every branch is very easy to be estimated from equation (1). 
However, in most of DH systems, pipes are lied underground directly. Sensors can only be 
installed insidc of substations. Then we cannot put any pressure sensor on the junctions as the 
points A, B, C, .., nor put flow meters on the twnk outside of the substation as indicated in 
Figure 3. The measuring points can only be located within substations. In some real system, the 
distance from the junction to the substation where the pressure sensor is allowed to be located 
can be as long as few hundrcd meters. and the pressure drop from the junction to the pressure 
measuring point can be dozens k P .  Due to this practical limitation. most of S values of thc 
net\\.ork cannot be measured directly. 

Beside of the location problem, the number of sensors is also limited. As the cost of sensors 
especially the one for pressure and the one for flow rate is quit high, to keep the total 
investment at an accepted level, the number of installed sensors should be as less as possible. 
The question is rising then in order to know the system performance and detect the faults 
above, what is the minimum number of sensors needed? 

BASIC PRINCIPLE AND PROCEDURE OF FAULT DETECTION 

Now, from the discussion above, there is not an universal method to detect all kinds of 
fault. More than one approaches are needed for detecting faults with different features. Three 
groups can then be divided according to the performance of faults: the fault that can be 
detected according to the measured data from one or two sensors individually; the fault that 
has to be detected using the measured data within the substation where the fault is; and the 
fault that has to take the operation data over the whole network to analysis systematically. 



Dead or high frequency noise sensors belong to the first group. They can be picked up by 
limit checking and a data filter on the measured data. Damaged valve, blocked water filter, 
pump stopping as well as poor insulation of pipe can also belong ro this group. They can be 
detected according to an "if-then" rule base knowledge. The only thing needs to be designed 
carefully is the threshold of each rule. This is individual level offault detection. 

Fault in a group of heat exchangers, such as leak between its two sides or the poor heat 
transfer performance due to scaling, and fault in the secondary network under a substation are 
in the second group, substation level.'ulr detection, which takes the measured data within a 
substation as the stan point. While the fault in the primary nehvork, such as a leak or block of 
a branch in the primary nenvork, has to be analysed according to the pressure and flow rate 
distribution over the lvhole network. This belongs to the third group, the cenrre leve/.faulr 
detection. 

Centre level Fault detection 

Let us go back to Figure 3 to study the primary network. The part through a substation is 
d r a w  as a branch in thc network. Two pressure sensors are located at the inlet and outlet 
pipes of the primary loop in the substation for measuring the inlet and outlet pressures. Flow 
meter is also located in the substation for measuring of the flo\v rate in the primary loop of this 
substation. The squat in the drawing represents a heat exchanger or a secondary local nenvork. 
An electric motor drive valve is located before the heat exchanger which can regulate the flow 
rate according to the heat load of the substation. The question is how we can detect if one of 
the pressure sensor or flow meter gives a wrong report or if there is a block or leak in one of 
the branches of the primary network? If we know the values of resistance coefficient of each 
branch, S, the pressure and flow rate can be calculated according to the S values of each 
branches and the pressures at inlet and outlet points of main circulation pumps, Comparing the 
calculated pressure and flowrate with the measured one, faults can be detected and classified 
from the differences: 

If only one or two values are different between measured and calculated data, it is very 
possible to be the sensor failure. If there is a part of the nctwork that most of the data in this 
pan are different between measuring and calculation, there must be a block or a leak in one of 
the branches idnearby this part. [I]  explains how to detect the blocMeak pipe from these 
differences. However in most cases, the reliable values of the resistance coefficients, S, of each 
branch of the network are not available as discussed above. The S value is also hardly 
determined directly from equation (1) as the limitation of the location for pressure sensor. What 
we know is the relationship bctween the measured data. If the trunk does not change, this 
relationship should be fixed regardless what the operation state is. From this idea, a new 
procedure has been developed which just based on this relationship. Study the history data to 
know the relationship then discover the range of S value for each branch and detect fault in the 
prirnaly network in the same time. 

According to equation ( I )  and figure 3,  relationship between two pressure measurement 
points can be described as 

where the P and G are measured pressure and flow rate. The flow rate at the trunk pipe, GO, 
can be determined by adding all the measured flow rate at each down stream substation 
branches as 



If the permitted errors of sensor are AP and AG, the relationship between the S's should be 

(G+ + AG)2 S,+ - (Go+ - AG)'S, - (G - AG)'S, > P, - P,+ - 2AP 
(G, - AG)'S,, -(Go, + AG)2S07 - (G + AG)'S, < P, - <+ + 2AP (3) 

This gives the up and down limitation of the S's values of the branches in this piece of 
network. Similar equations can also be made for the returning pan of the nehvork. In some 
pan of the network where the trunk splirs into two branches, four different branches may be 
involved in one equation as the relationship of S values. In this way, every S of supply pipe 
and return pipe for each substation will appear in two groups of limitation equations and 
every S for trunk pipe will appear in a group of limitation equations. These limitation 
equations defines a possible region of S values, R .  As time being, the flow state will change 
as the motor drive valves are regulated orland operation state of circulation puinps change, 
the measured flow rate and pressure changes 
correspondingly. A new g o u p  of limitation 
equations can be obtained and a new region of S 

S2. 

values can also be detemiinated as Rnew 
However as the network is not changed, the S 
values of each branch should keep as the same as 
previous. The real resion for S values, Rr, should 
then be 

sz, = sz.sz", (4) 

The R r  defines a narrower region of S values than 
R and h e w .  Repeat the procedure of equation (4) I \ .S1 

I Figure 4 The region of 
for each time, the S region, R . can be contracted 
step by step and a narrower but more accuracy 
region of S values can be obtained finally. 
Figure 4 is a simplified two dimensional csample of this procedure. In a real process, the S 
region will become a polyhedron in a rnultidin~ensional space. Once a sensor fault or a branch 
block/leak. there will be no conunon region between the Rnew. the S region determinated from 
the newly measured data. and the R. the previous S region obtained from tl~c history measured 
dam. The Rr from equation (4) \\.ill be a zero set. This indicates that there is a fault 
somewhere in the network. Funher analysis can then find out the type and the location of the 
fault. This is the basic idea of the S region contraction method. Detailed procedurc is 
described as follow: 

Set-up three or four dimensional squares for each relationship equations as the initial region 
of  R .  The length of the square should be designed according to the undeterminated level of 
the S value. For instance if the estimated S value is SO with the undeterminated level of AS, 
the bound of the square in this S direction should be from SO-AS to SO+AS. There should be 
two squafes for each substation, or says two R's, one for the supply pan and ocher for 
return part. 
Produce a planes according to equation (2) basing on the measured data for every region. 
Check if the plane cross over the S region, R ;  
If so, produce another S region Rnew according to Equation (3) then obtain the modified 
R r  according to the Equation (4). The S region has been contracted in this way. 
If NOT in step 2, produce another S region h e w  according to Equation (3) and check if 
the h e w  and the previous R have a conunon region; 



5 .  I f  so, it means the reason that the plane is outside o f  the previous R is because the errors in 
measurement are  in the permissible range. In this situation the R is not going t o b e  changed. 

6. I f  N O T  in step 4, it means there must be something wrong. Calculate the distance between 
the centre point of the R and the measured plane, Afs and Afr of each substation can bc 
obtained as 

The type o f  fault can then be classified from the Af 's o f  the substation and nearby. 
According to simulations and analysis, Table I lists how the Af 's change corresponding to 
each type o f  fault. From this result it is understood that most t b ~ c s  of fault can be classified 
from the changes o f  Af in the substation and nearby substations. There is a few o f  situations 
when the sqmptoms a re  the s m i e  for different t?pes o f  fault: 

T a b l e  1 H o w  A r s  change corresponding with t h e  types of fault  

where Afs,dowdAfr, down: AfdAfr of tlle down stream substation 
Afs, every up/Afr, every up: AfsIAfr of the  substations in ever) up stream 
sup. bnncli: from the junction bewecn supply trunk and substation brancli lo the location 

\vhcre the pressure sensor for supply brancli is located. 
ret, brancli: from tlic junction bet\vcen return trunk and substation branch to the location 

where tlic pressurc sensor for relurn brancli is located. 
uscr's bra~icli: fro111 tlic point ofthe supply pressurc nic~sr~rcnie~it to tlic point of return 

prcssure nieasurc~ncnr 
PT. p.1. GT. GJ: the ~iicasured data is roo IiigNlow due to sensor fault 



Block in supply branch and supply pressure sensor producing too high output appear in the 
same symptom: (Af s) goes d o m  and the (Af s ,dom) goes up. In this case, computer can 
close the motor-drive valve of this branch and let the flow rate at this branch be zero. Check 
the Af again. If the supply branch is blocked, the Af 's should go to normal. While if it is 
the sensor fault, Af 's should still be the same trend. 

Block in return branch and return pressure sensor producing too low output appear in the 
same symptom: (Af r) goes d o m  and the (Af r,down) goes up. In this case, computer can 
close the motordrive valve of this branch and let the flow rate at this branch be zero. Check 
the Af again. If the return branch is blocked, the Af 's should go to normal. While if it is 
the sensor fault, Af 's should still be the same direction. 

Leak at return branch and leak at user's branch appear in same symptom. This cannot be 
judged unless install another pressure sensor at the point between the motordrive valve and 
the user's branch. Close the valve then measure the pressure different between this 
additional sensor and the return pJessure sensor, the location of the leak can then be 
detected. 

The key of the whole procedure is the establishment and modification of the S region, n. To 
record every region n for the relationship of each supply part and return pan of substation, the 
co-ardinate of every peak point of the 0 has to be recorded comparing with the knowledge of 
how the peak points make up a edge and what edges make up a plane. Geometry calculation is 
needed to cut off some old peak points and edges and produce some new ones so to contract the 
old n to a new one. A special geometry calculation procedure has 'been developed for this 
narrowing d o m  process. Further analysis by simulations shows that to make the process 
successful is relied on the correct estimation of the value for normal errors of each 
measurement. Improper values set to sensors as the normal errors may cause the 0 too large 
that cannot indicate a fault if the values of permissible errors are set too large or cause the 0 
deviate to the region of which the real S values are outside if the errors values are set too 
small. After a fault sensor has been discovered, its output should be replaced by an estimated 
value. The estimation ccu~ bc done by a calculation basing on the S coef ic ien~ of the network 
and other measured data. S values at the centre of t h e n  can be used for this calculation. 

Simulation and on-line t a t  shows that at beginning, the 0 reduced very fast providing the 
operation state changes in a large range. After a period, the n stops reducing as the h e w  is 
almost equal or larger than the old 0. The length of this period depends on how the system has 
been regulated. I11 the beginning of a heating season, valves have been regulated frequently in a 
large range as the heat load distribution hasbeen changed during the un-heating season. is 
the best chance to estimate the Q. Volume of each 0 can also be calculated to indicate how the 
estimation process getting on and how well of the 0 is. If the volume of 0 keeps to be at a 
certain high level and cannot go down any more, it may be the reason that the range which the 
state of the system changes within is too small. In this situation, some of valves can be closed a 
little while and then opened back again to make the system state change so to get better 
estimation of the region 0. 

Substation level Fault detection 

This is to detect fault inside of the substation and in the connected secondary network. From 
the previous discussion, tqpical faults involved are: 



fault sensor that produces too high or too low output due to slowly float. The flow meter and 
pressure sensors at primary side has been checked out at the centre level, so only the 
pressure sensor and temperature sensors at the secondan side and the return water 
temperature sensor at the primary side need to be checked. 
faults in heat exchanger. Such as leak between the two sides, block in one side or poor heat 
transfer performance due to scaling. If there are more than one set of heat exchanger, 
another possible fault is the unbalanced water distribution among the heat exchangers. 
fault in the secondary network as listed before. 

All the fault listed above cannot be easily detected bv a rule base reasoning procedure. It can 
be hardly judsed if the change from an output of sensor is because the &I state has been 
changed or is because a fault happens. One of the approach is to estimate a model for heat 
exchangedsecondary network basing on the previous measured data first. Using this model to 
predicate the performance of the heat exchangcr/secondary nctwork and comparing the result 
with measured data. Fault can then be indicated and classified from the differences. This 
approach works in some cases however it involves too many stagcs Computer has to switch 
from the "learning proccss" to thc "predicating and fault detecting process". The first phase 
basis on thc idea that the sensors and the system are all right. Computer just learns from this 
period of operation and take the performance in this period as the standard. In the second phase. 
the task is to find the difference from the first phase in the system performance. When we 
should switch from the first phase to thc second one? If where is a differencc, should we point 
out that there is a fault or modif?. the model to make it compatible with the newly measured 
data? The logic is not very clear in some sense. 

To make the process simple and to avoid this confuse, a ne\v procedure "Fault Direction 
Space" (FDS) has been developed and used in DH system since last two ycars. The basic idea 
of the FDS is to merge the three steps (model estimation, performance prediction and match 
difference to fault) into a global exercise to make it simple and uniform. Charactcr Parameters 
(CP) are estimated according to the structure of the object to be detected. The CP is a 
composition of measurements in one hand. It is also a composition of structure properties of 
the object on thc other hand. As it is the composition of measurcment, its value can be 
calculated from the mcasured d2t3 during operation. As it is the composition of thc structure 
properties. it should not chanse during a normal fault less operation. Observe the CP value 
during the operation. When great changes of the CP have been examined, a fault appears. Put 
the change. ACP. to a pre-designed FDS space, the location of ACP in the FDS space indicates 
the type of fault. Following is hon. thc FDS method used in fault detection at the substation 
level. 

FDS for heat exchanger. Figure 2 is a heat exchanger in substation and the measuring points 
around it. The heat and flow mechanical balance equations can then be written as 



where the F and U is the area and heat transfer coefficient respectively. From this balance 
equation, nvo CPs can be estimated as: 

Bccause thc resistance coefficient of 
the heat exchanger at two sides, Sr m s  Ss, 
and the heat transfer coefficient, U, as well 
as the heat transfer area, F, should not 
change within a normal working state, the 
two Character Parameters (CPs) should 
also keep in constant. In this way the CP 
becomes an indicator of fault of the heat 
exchanger. In a fault-free state, the CPs 
change only within a small range regardless 
how the opcration state changes. If a fault 
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Figure 5 FDS for heat exchanger 

happens, the CP will change greatly. Then the type of fault can bc judged from thc shape how 
the CP's changc. Using the change of thc two CP's, ACPI and ACP2 as the co-ordinator, 
Figure 5 shows how the CP change for different typcs of fault. It is clearly that the direction to 
which the ACP's deviate from the zero point can indicate the type of fault. The space consisting 
of ACP1 and ACP2 is called Fault Direction Space (FDS). 

As thc CP comes from the steady state balance equation, the dynaniic influence in the 
measured data should be filtered out before to composite it. As the thermal mass of the heat 
exchanger, outlet temperature cannot follow the change of the inlet temperature on time. Move 
average needs to snlooth the measured temperature data before it is used in CP. Figure 6 shows 
how the two CPs chmge during a fault less process. This is measured from a real DH system. 
It shows that the CP changes around a constimt valuc within a small range although the moving 
average treatment on the temperature has been done. This is because the moving average 
treatment cannot filter all the dynamic influence out. There is still something remainder. The no- 
linear properties of thc heat exchanger, such as the U value and S value change along with the 
change in flow rate, can also makc the CP change. In addition, the normal error in sensor's 
output is another reason for the change of the CP. Considering these reasons. a normal region 
should be defined in the FDS. When the ACP is inside of this region. it is considered as a fault 
less state. If the ACP is out of this region, warning can then be made to point out the type of 
fault according to the direction of the ACP. 
Further study shows that the normal region is ,6- 

operation s&e dependent. As the CPI and 
CP2 are the quotient by AT and AP, same 
measurement errors and non-linear effect can 
cause different level in CP if the AT and AP is 
different as at different operation state. 
Therefore, to obtain an uniforni normal region, 
normalised ACP, thc ACP* has to be used to 
replace ACP: 
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where DEV(ACP) is the deviation of ACP causing by the sensor's error at normal level. In this 
way the normal region in the FDS as well as the direction of each type of fault can be 
independent with operation state. 

Detailed study has been done to know the sensitivity, reliability and distinguishable ability of 
this procedure. The sensitivity study is to know how serious the fault is when it is able to be 
discovered. It is learnt that the sensitivity is strongly dependent on the normal errors of sensors. 
High precision sensor used will result in high sensitivity However after the precision of sensor 
comes to a certainly level, the non-linear properties becomes the wall against rising the 
sensitivity. Reliability study is to know how often a fault report is made when it is a fault less 
state? This is very dependent on the normalisation of ACP which then related on the estimation 
of the range of normal errors of sensors output. Distinguishable ability study is to know if this 
procedure u n  point out the t p e  of fault correctly Fuzzy match can then be used to find out the 
type of fault when the direction of ACP is behveen hvo types of fault directions. These results 
are present in (21. 

Fault in secondary network: From the similar analysis, another FDS can be constructed to 
detect faults in secondary networks. As drawing in Figure 2, temperature sensors are located at 
each branches of the collector ro measure the return water temperature from each user's branch. 
CP's for detection of fault in each user branch can be structured as 

ACPi 

cp, = T. + To  - 2 Ldmr 

i= l .  2, 3,  ... 

cr: = T, + T, - 2 T,",drn, 

( L  -~)m branch i 
blocked 
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Figure 7 is the FDS C O ~ S ~ N C ~ C ~  with ACPO and 
ACpi The largest mod of CPi can be 

substation. If the point of this ACPi combining 
with the ACPO is still inside of the Normal region 

determinared from all the branches within a Figure , FDS of secondary network 

, it can be thought as being a fault less state. Ifthis point is out of the Normal re~ion. the tqpe 
of fault can then be distinguished by the direction of the point deviated from the zero point. The 
possible faults it is able to detccted are: 

the branch i blocked: 
leak in the supply pipe of i'th branch: 
leak in the return pipe of the i'th branch; 
the water flow rate in i'th branch is too large. 

Fault sensors in substation: Slow floated pressure sensor and flow meter at the primary side of 
the heat exchanger has been detected at the centre detection level. However, the pressure sensor 
and temperature sensor at the secondary side and the temperature sensor for return water outlet 
from the heat exchanger at the primary side should also be checked so to make sure the change 
in CPs used above is not caused by fault sensors. Temperamre sensors can be checked by the 
relationships among them as 

Tps > Tss; supply temp. should be higher than the return temp. ofthe priman side 
Tss > Tsr; heated water should be warmer than the water inlet of the exch. at seconday side 



Tpr > Tsr; return water at primary side should be warmer than that at secondary side 
max(Tsr,i) > Tsr > min(Tsr, i); inlet water at secondary side should be the mixture of the water 

from each branch backing to the collector. 

If the relationship above cannot be satisfied with measured data, it means one of the 
temperature sensors is wrong. Further analysis can point out the fault sensor (31. 

Another CP can be added to indicate the fault pressure sensor at the secondary side of the 
heat exchaneer as 

Combining with CP1 and CP2 in the heat exchanger section, these three CP's can work for 
both the heat exchanger and the sensors around. If there is a leak between the two sides of the 
exchanger. in addition of the change in CPI and CP2 &o down), the CP3 will go up. In all the 
other situations the CP3 will be constant unless the pressure sensor fault. If it is pressure sensor 
fault causing the AP too small, CPI, CP2 and CP3 will go up. If the AP is too large due to 
pressure sensor fault, CP1, CP2 and CP3 will go down. 

ENGINEERING PRACTIC 

The fault detection procedures discussed above has been used in a few of DH systems in 
China as part of the distributed computer control and monitoring system. The computer system 
consists of a control centre installed with few computers and distributed controllers at every 
substation. Computer network links controllers to the control centre. The fault detection is 
carried out in the control centre. Each local controller send the measured data to the control 
centre every minute. A filter is used to remove the high frequency noise of sensor's output and 
discover some types of fault sensor if the range of the noise is too high. "if -- then" rules are 
then used to detect if there is a circulation pump in a substation being stop or is a damaged 
motor-drive valve or other individual fault. Fault detection for priman network is then carried 
on for every three or four minutes. Fault pressure sensor and flow meters, leakcd or blocked 
branches of primary network as well as poor insulated pipe are then detected by the procedure 
dcscribed in this paper. The possible regions of S value for each branch in the primary network 
are estimated step by step in the same time by this procedure. These estimated S values are also 
used for regulation of the network, in addition of detecting fault. to distribute flow rate 
according to the varied load distribution. Fault detection of substation is then taken at every 
three or four minutes. This is for checking the situation of heat exchangers and every secondary 
network under each substation. Problems in heat exchangers, in secondary networks and in 
sensors at the secondary side are discovered in this exercise. If something detected, warning is 
displayed on the screen of the conrrol centre. Fault report is also printed out responding to the 
operator's command. Detailed information about the fault is printed in the report such as thc 
type of fault, the location of the fault, the measured data befordafter the fault, the reason to 
consider there is the fault and the guidance for treatment. Fault informarion is also recorded into 
a special database so that it can be checked and analysed later. During the last two years 
operation, it seems work well. This system makes operators much easy to discover and repair 
fault on time and enable the DH system at high reliable working state. 



CONCLUSION 

As the computer industn has being developed very fast, computer control and monitoring 
system has been widely used in the HVAC field as well as urban distribution netn.orks. 
However the master computer rests at most of time in most of the applications because there is 
not enough work to do and the computer is getting more and more powerful. Therefore one task 
for researchers in this field is how can we let the computer system do more jobs for us and what 
more benefits we can get from the powerful computer system? One thing wodi to t n .  is the 
fault detection and diagnosis of the being controlled system. The experiment on DH system 
described in this paper is one of examples. 

What we have learnt from this eligineering practice? First, it makes a great difference by 
adopting this fault detection and diagnosis facility. The computer system is no longer a tool for 
data collection and system regulation. It feels much clever. It can analysis the system 
performance and find out faults much fast and correct than the operator. Records on the fault 
detection result is also the great help for maintaining and improving the DH system. Second. in 
order to put the FDD technology into practices, a standard uniform procedure is \ ,en important. 
We cannot keep to write software or different knowledge bases for even  DH systems. Common 
software and common knowledge base must be developed in general. The difference in system 
structure should only be described in a configuration file. This is part of the reacon for us to 
develop the S region contract procedure and the FDS method. The former one can used in an). 
networks providing the topologic structure of the network is written in a spccial fils. The later 
can be widely used in any component and sub-system in the W A C  field if the explanation of 
CP is estabilished and defined in a configuration file. As the start point of FDD. the measured 
data is the base for any FDD procedure. Therefore the way for treatment of the measurements is 
one of the keys for making the FDD be successful. Any sensor does has a error at a cenain 
level. For instant the error in  a temperature sensor can be 0.1 OC or 0.2 OC. This n~ust be taken 
into count. Ingenious treatment of the perniissible sensor error can achieve much reliable result. 
This is the third conclusion. 
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SENSOR FAULT DEFECTION OF HVAC SYSTEM 
-SYSTEM CONSTRAINTS AND VOTING- 

Cheng H. Yang, D. Eng Yi Jiang, D. Eng. 

ABSTRACT 
In an W A C  system mony sensors are used.for the purpose o f  control and measurement. 

Sensor,fault may cause wrong measuring and incorrect control operation. In order to increase 
rhe reliabiliy o f W A C  system, sensor.fault must he detected. In this paper we present a 
method-for defection o f  sensorfault in W A C  system. 

1. lNTRODUCTION 
In order to make HVAC system work effectively, sensor fault should be detected while the 

system is running. 
The process in an air processing equipment is a physical process, and physical laws should 

be obeyed. These physical laws play numerical constraints on the process. For example, the air 
temperature before a cooling coil should be lower than that after the it, and the heat lost by the 
water on one side of a heat exchanger should be equal to that obtained by the water on the other 
side of the heat exchanger. This idea w a s  first proposed in reference [I].  

An W A C  system consists of many air processing equipment. The processed air flows 
from one equipment to another. The air state at the outlet of one equipment is the same as that at 
the inlet of the riel? equipment. All the constraints both in an equipment and between two 
equipment should be satisfied in a real system. lfthe measurement data show any violation of the 
constraints, sensor fault must occurs. 

The constraints are divided into two ht\.peS: e q d i t y  constraints and inequality constraints. 
From equalic cofisuaints, whether any of the sensor outputs contained in the quatien is MTOng 
can be determined. Inequality constraints can determine fault occurred in tbe sensor output 
contained in the inequality, if it is violated. However, the inequal* constninfs are not violated, 
it is not necessarily no fault occurs. 

Usually, one sensor output is contained in several constraints, and different sensor outputs 
contained in differeat constraints. Different sensor fault causes ~ e r e n t  constraints violated, 
Therefore, the sensor &It may be determined through checlung the violated constraints. 

This paper presents a method to conseuct and infer the system constraints and determine 
sensor fault by voting. A simple example is given to illusbale the methcd, and the result is 
anaiysed at the end of the paper. 

Cheng Han Yang is postal doctoral research fellow. Depar!ment of Thermal Engineering, 
Tsinghua University, and Yi Jiang is professor, Tsinghua University. 



2. SYSTEM CONSTRAINTS 
In a system equipment are used for air processing, and each of these equipment performs 

special function. It influences the temperature, humidity or other parameters of the air flow 
through the equipment. In other wordsl the air flow through each equipment will be changed in 
temperature, humidity and so on. For each equipment, its function is determinate. So that thc 
change of air parameter through the equipment is also determined. For example, when air flows 
through a heater, its temperature mill be increased, while the air flo\\. through a cooling coil, its 
tempemre \\ill decreased and the humidity may also be decreased or maintained as before. 

Because the function of each equipment in the system is definite and when air flows 
through an equipment, the change of air parameter is also definite. So, there exist some 
constraints behveen the state of the air at different locations of the s-m. If there is any 
violation of the constmints in the data measured from sensors, there must be at least one sensor 
failed. L c h  constraint links hvo seasors, and if it is violared tbe two sensors are possibly failed. 
To determine which of the hvo sensors is failed, additional information is needed. Therefor it is 
necessa? to expand all equalit? and inequality constraints to get more information. 

3. MEASUREMENT DATA COMPARING 
We have mentioned that in the system physical constraints should be obeyed, but in real 

application the sensor output values are not accurate, and errors are contained in the 
measurement data. If an error of sensor output value is great enough that is beyond the allowed 
range of that sensor, the sensor is considered failed. If the error is nithin the allowed rangc, it is 
considered work properly, but the output d u e  is not equal to the real value the sensor measured. 
So thah the constraints should be obeyed under the meaning of threshold. That is to say, if a 
constraint shows that two sensor output d u e s  should be the save, and the measurement data of 
these two values are close enough, tbe cwstraint is considered satisfied. For an inequality 
constraint t,>tb, if the measurement data shows that t&> the thresh014 the kpahty is 
considered satisfied. 

The threshold is determined by the greatst allowed error of the sensors. If a constraint 
reflect the relationship of temperature sensor output value, the threshold is determined by thc 
measuring error of the temperature sensor, and if it reflect the relationship of two h u r n h y  
sensor output valuc, the threshold is determined by the measuring error of humidity sensor. 

4. VIOLATION NUMBER 
When a sensor fails, there may be more than one cOnstraiot.5 be vlolated. For each 

constraint. at least hvo sensors are related. From violation of a single constraint. it can not be 
determined which of the two sensors is fad& and borh of them are possibly failed. At this time, 
both of the two sensors are marked with one violation. For each sensor, the violation number is 
the sum of vlolated consvaints thar related to lhe sensor. The sensor with greatest nolation 
number is usually a really failed one. 

5. VIOLATION DIRECTION 
If an equality or lnequaljty constraint is violated the sensors relared to it are marked 

possibly failed with certain direction. For example, if an inequality to> tb is not satisfied that is 
the measuremeat data shows t,<tb, there are two possibilities: (1)  the meanuanent d u e  t, is 
smaller than its real d u e  and (2) the measurement value tb is greater than its real value. So 
both of the two senson are marked witb oae violatiq but with different direction, tb is possibly 
prater while t, is pcssibly smaller. The violation direction is the direction of the error of a 
sensor output. There are two possible directions one for positive error, while the other for 
negative error. Correspondmgly, the noktion number of a sensor is recorded by two variables 
each for a possible direzlion. 



6. CONFIRM NUMBER 
Contrar?. to the violate number, there is a confirm number for a sensor, if the sensor is 

related to a equality constraint. For example, if in the system there is a constraint of rb-t,. and 
thc measurement data tb and rc are close enough, it is considered that this equalit?. is satisfied 
and both of the two sensors work properly. So that both tb and tc are confirmed once If a sensor 
appears in more than one equalie and is confirmed more than once. its confirm number is s e a t  
than I .  The confirm number of a sensor is the number of satisfied equalities that related to the 
sensor. 

7. CONSTRAINT EXPANSION 
A sensor measurement appeared only in the wnstraints determined by the equipment 

before and after the sensor. so that it appears only in a few of constraints. Some tunes whcn a 
sensor fails, there is only one constraint be v i o l a 4  in this case, there is not enough information 
to determine which of the hvo sensors failed. In order to determine the failurc of a sensor. at 
least two violation with same direaion are needed. There for it is necessary to expand equalities 
and inequalities to list out all the implied constraints directly. From the above constraint lo > ra 
and ra>tb we can get another constraint that is 1, > (6 and expand all the equality and inequality 
conmints like this. In this way sensor fault can bk detected by voting. For instame, if the 
memmment l6>ra and 1b>fo, it can be determined that 16 is fail@ b s e  two wnstraints are 
violated by rb, while one violated by ro and one by 1,. The violation of rb is 2, while that of to is 
I _  and that of la is also 1. The sensor with greatest violation number is tb, and it must be a real 
failure and violation numbers of ro and 1, are cause by tb and so are to be excluded. 

Expandmg of ?stem constraints is one of the most importarrt steps, from this step, all 
implied wnstraints can be derived 6orn the constraints derived from the f ic t ion of each air 
processing equipment, and list out all the implied relationship directly. In an unexpanded 
con- s?.m a sensor output value usually appears in a few constraints and is usually 
restricted by only one value in each direction, and if the relation between the sensor output and 
the restricting value do not satisfv the constrainf it is impossible to determine which of the two 
values is wrong. In an expanded constraint systeq all implied constraints are listed out directly, 
the greatest value and the lowest values are restricted b?; equalities, and each of the sensor output 
value is restricted at least by two values in each direction. Therefor if any of the sensor output 
value is far away 6om its real value, there must be at lean hiio constraints be violaied by thar 
value and it is easy to be d e t d  by checking the violation number. It is a y  for computer to 
check if there is any of the wnsh;iints be violated and wunt the violdon of each sensor in each 
direction. 

8. FAULT DETECTION AND FALSE ALARM EXCLUSION 
In the step of fault detection, it is assumed the violalions, if there is any, are caused fewest 

wrung values, or in other words, to make tbe all constraints satisfied, as few as possible values 
should be corrected. Each equality and inequality constmint is related to two sensors, If it is 
violated, two sensors linked to it may be marked possibly fail, but adually the violation is 
usually caused by only one sensor fault and the other is a Mse alann. Once the real failed sensor 
be detected, dx EJse akrms should be to be excluded. 

To  detect a sensor fault, violation number of tbe sensor is checked. The violation number 
of a sensor is the sum of constraint which are violated by the sensor mammmm dam, so that it 
reflect the possibility of the sensor failure. The seosor wim greatest violation number of a certain 
direction is most possibly the failed one. It is determined fail and tbe violatioo of tbe constraints 
is caused by the fault of the failed senror and the violation number of other related sensor is 
caused by hiled -r and should be excluded. 

In our example tb is d& higher and two cwstraints violated by jt is to>tb and t d t b .  
these two constraints lead the two other sensors to and fa. Wben tb is detected faiL tbe alarm of 



r ,  and r, are considered false alarm. So that the violation number of both I ,  and I ,  are reduced 
by 1, to exclude the false alarm caused by rh. 

The violation number for each sensor is recorded by two m-iables, one for higher value the 
other for lowex value. In the above esample, higher violation number for rh is 2, while the lower 
number is 0, the lower number for ro and ra is 1, while tbe higher number is 0. When rh is 
detected higher, so that the lower number of I ,  and ra is to be reduced by 1. So that false alarms 
of r ,  and ta are excluded. Sometimes, sensor fault can not be derected just by inequalities, 
because of only one inequal~ty constraint is violated by a pair of sensor output. In this case, 
rqualin is needed to determine which sensor is failed or not. 

9. EXAMPLE 
In a system of one handle unit sho\m in Fig. 1, it consists of a cooling coil, a heater a id  a 

steam humidifier. The constraints can be listed out from each step of air processimg 

max(rolr)2 m;n(roIr) 
max(dodr)2 dm anin(dod,) 
rm 1 ( if the cooling coil work) 
I = 11 ( if the cooling coil not work) 
dm > dl ( if the cooling coil work) 
dm = dl ( if the cooling coil not work) 
I r ( if the cooling coil work ) 
rb r f l  ( if the cooling coil work ) 
r : r ( if heater works ) 
12 = 11 ( if heater not work) 
d2 - dl 
rc > 12 ( if heater works) 
I ,  ;> fd ( if heater works) 
d, d:, ( if humidifier works) 
d, - d; ( if it not m~ork) 
1, = '2 

If any of the constraint in the system is violafed, there must be a sensor failed. For 
example, if the measurement data shows that d,-d2. there must be one sensor failed in d, and d2. 
But from this violation, it cannot be determined which of the two sensors failed. 

E ~ ~ a n d  all constraints derived from each single equipment additional constraints can be 
derived. For example, from dl -d2 and d,2d2, a new constraint d;&il can be derived. if the 
above measurement data shows di<d2, dpd l  and dlcd2, it can be determined that d2 is failed, 
because there are two constraints about d2 g e  violated with same directioq while for each of d, 
and dl ,  there is only one constraint violated. When the failure of d2 is determined, the violafion 
of constraints about dl and d; are considered false alarm and should be excluded. 

10. ANALYSES 
A W A C  system is a dynamic syxeq and the state of the air processed is changed 

continuously. Sometimes a measurement value is restricted in uide range uhile in some other 
time, it is restricted in narrow range. When a sensor output is restricted in a narrow range, the 
error of the sensor output value can be easily detected. In the system of above example and in 
the season of summer, at noon the outside tempemhue lq is much higher than the temperature in 
the room t,. At this time, the range for tempenture of m e d  air is wide and a small error of the 
sensor output tm is difficult to detect. But at night the temperature ourside is close to that in the 
room, namely to is close enough to r ,  at this time the range for I, is restricted in a narrow range 



and a small error oft, is easy to be detected. But if the state of system does not change. some 
errors may not be detected. 

For a system of more than one subsystems the outside temperature r ,  should be the same, 
and t,,and t ,  for all subsystems should be close enouJl if they use same heat and cool sources. 
and the temperature in the room t ,  should be close to each other. These are w o n 3  constraints for 
a large system and rhat makes each sensor output value appears in at least two constraints. that 
is necessary for voting method. 

11. APPLICATION 
This method bas been used in a system for rubber plant ~ i t h  six subsystems. The result 

shows that is effective for detection of sensor faults. 

12. CONCLUSION 
Detection of faulted sensor of a HVAC system is an important work and detection of 

slo\vly floating error of a sensor output is one of the most difficult tasks. Because the slowly 
floating error does not iduencc the d>namic eharactenstic of the system. the fault cannot be 
detected from the dynamic characteristic of the sensor output itself. It can only be dztected by the 
relationships of the air state at Merent locations of the system. 

This paper presents a new method for detecting of the slot\-I\ floating error of a sensor 
output by taking use of the relationships of air state at different location of the system and 
comparing the output values ofall sensors. 

Simulation and application shows that this method is effective especially \vhm used in a 
large system with many subsystem. 
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Fault Detection and Optimization for a heating system 

Knabe, G.; Kremonke, A,; Wagner, H.-J. 
Dresden University of Technology 
Thermodynamics and Technical Installation of Buildings 
Germany 

Abstract 

A sensitivity analysis on heating systems is carried out. It reveals the dominating impact of an 
inlet temperature fault. The heat consumption analysis proofs that there is a linear dependence 
between daily means of heat consumption and daily means of outdoor temperature. An operating 
failure can be detected by comparing the heat consumption with an outdoor dependent threshold. 
Room temperatures are mainly determined by occupants behaviour. Each room has a different 
temperature evolution. Furthermore the room temperature is dependent on the control system in 
use. Parameters to optimize are heating curve and night set back recovery. 

1. System description and Objective 

A single pipe and a two pipe system (fig. 1) have been investigated by employees of the TU 
Dresden for two years. Both systems are installed to run a 5-storey residential building in 
Dresden. The effectivness of refurbishing strategies and a comparison of heat allocators are of 
major interest. A direct link connects the remote power station with the substations of the 
residential buildings which deliver warm water to heat 20 flats. 
Central outdoor dependent inlet temperature of the substation is accomplished by entraining 
retum water. Heat demand of the radiators is controlled locally in 10 flats by thermostatic valves 
(TRV) and single room controllers (ERS) respectively. A on-off control is used to adjust 
heating-power as part of the single room controller. 
During the investigation measurements are taken for monitoring systems behaviour as well for 
fault detection [I], [2], [3]. 

2. Sensitivity analysis for faults in heating systems under stationary conditions 

'The following equation shows the simplified heat transfer scheme for the system heating-room- 
building: 

cooling of heat heat flow heat balance 
medium via radiators of building 



where 

where 
A - 
C - 
Q - 
Q, - 
k - 
mc - 
0 - 

indicees: 
N - 
R - 
v - 
a - 
1 - 

heating surface 
specific heat loss of the room (insulation and air exchange) 
heat output of the radiator 
gains (solar heat gains, inner heat gains) 
U-value 
heat capacity flow 
temperature 

nominal value 
outlet 
inlet 
outdoor 
room 

When doing fault detection the following influencing quantities are considered: 

- inlet temperature 0, 
- heating surface A 
- mass flow lir 
- insulation and coefficient for ventilation C. 

When performing the sensihty analysis these quantities are related to reference values, i.e. their 
values in "faultless" and undisturbed conditions. Reference values d b e  marked by '*'. 
The following characteristics describing the taults are introduced: I 

inlet temperature fault 0" - $ I C, = resp. C, = 0, - 0; 
0; - 0. 

heating surface fault 

mass flow fault 



specific heat loss C c = -  
4 

C* 

The influence of the disturbance variable is expressed by the ratio of free heat gains and heat 
losses 

To determine the outdoor temperature dependent reference value 8; the heating balance (1) is 
setup for the faultless and undisturbed (Qs = 0) case: 

For the heating systems considered here m' = mN. Their design is expected to supply 
m, A8 8., and for Ba = SLN, B;(BLN) = 8,, and 8;(04,) = OR,. Given these date it 
is possi8rto determine 8; fiom eqs. (7) f o r a y  outdoor temperature 8, < 8;. 
Equations (I), (2), (3), (4), (S), (6) and (7) lead to 

The deviation of room temperature in response to the fault extent is esteemed a value to 
determine fault-sensitivity. The room temperature is dependent on the fault and the outdoor 
temperature. The most essential deviation is caused by an inlet temperature fault (see figure 2). 

The example below illustrates this statement. 

Design: OV,, = 90 "C; OR, = 70 OC; 8,: = 20 OC; OqN = - IS OC; m = 0,33; n = 0 

Q With equation (7) and (8) the room temperature and the relation - can be determined by 
iteration (see figure 2) for any outdoor temperature. Q * 

For an outdoor temperature of 0 OC depending on the fault mentioned the room temperature 
becomes (C, = 1 exept for those in consideration and C, = 0): 

1. inlet temperature C: = 10 K : 8, = 23,s OC 

2. heating surface C, = 1,2 : 8, = 21,8 OC 

3. mass flow C, = 1,2 : 8, = 20,8 OC 

4. insulation, vent C4 = 0,8 : Bi = 22,8 O C  



With the occurence of the disturbance C, the temperature becomes 

3. Fault detection based on the buildings heat-consumption-plot 

In the heating system considered here errors may occur in the substations management and 
locally in the tenants control systems. In the substation the following errors are likely to appear: 

- pump breakdown 
- breakdown of BEMS-components - defective valve (leakages, contamination, blocking ....) 

Pump breakdown can be easily detected by temperature and pressure measurements. To 
determine other failures a model or a graphic scheme is needed. 
Figure 3 shows the hourly heat consumption in dependence of the outdoor temperature. 
The system is run by an outdoor dependent inlet temperature. While still following the outdoor 
temperature the inlet temperature is reduced by 20 K during night hours. 
Two regression curves can be perceived for daytime and night setback respectively. The 
deviation of single valties are considerable when hourly means are taken. At lower outdoor 
temperatures fewer measurements could be taken. When scanning daily mean values of heat 
consumption a deviation decisively smaller can be expected (refer to figure 4). Therefore the 
monitoring of daily heat consumption is useful for fault detection. A diagnostic routine is to be 
launched when measurements are recorded violating a given error threshold. 

4. Obstacles to fault analysis based on recordings of room temperatures 

The heating of rooms aims for wmfortable indoor air conditions during the occupancy time. The 
energy consumption has to be a minimum. 
A fault analysis drawn 60m measurements of the room temperature evolution is dScul t  as one 
has to pay attention to the occupants behaviour. Room temperature measurements were canied 
out in 100 rooms of a siingle pipe and a two pipe system respectively. Each room has its 
characteristic room temperature plot related to its occupants behaviour. It depends on the 
installed local controller too. Figure 5 shows the mean room temperature evolution of the single 
pipe system covering aII tenants. Furthermore the related daily mean value for living room, 
childrens room, bathroom, bedroom and kitchen regarding to ERS and TRV is exposed. There 
are only small variations between working days (Mo-Fr) and weekends (SqSu). While in the 
living rooms and bathrooms the highest room temperature were recorded the room temperatures 
of bedrooms are the lowest. 
The daily mean room temperatures related to the ERS - system are higher compared with those 
of the TRV system except of the bathroom. The biggest deviations concerning the local 
controllers influence on room temperatures can be detected when monitoring kitchen room 
temperatures. As programming functions are available with the ERS system kitchen room 
temperatures vary over a wider range. For the ERS system the maximum of the variation range 



over a day is 2 K when considering living rooms. This value is smalller for TRV controlled 
systems ( all examples are related to the single pipe system). In fact each tenant proofs a different 
occupants behaviour. Figure 6 shows the daily mean evolution over a year of the room 
temperature for a tenant with a high scale energy consumption (A) and a low scale energy 
consumption (l3) respectively. The curve related to tenant B indicates only one occupancy period 
- that is in the evening. Tenant A's plot reveals two peaks of room temperatures- that is in the 
morning and in the evening. In the bedroom temperatures for both tenants a noticable cooling 
down process can be percieved. 
Figure 7 shows the frequency distribution of room temperatures related to means. This figure 
indicates a normal distribution for the room temperature. Data of living room temperature for the 
tenants A and B in the time period of 7 a.m. to 9 a.m. were used. This plot is based on hourly 
means of room temperatures covering all days of the heating period. Means and daily evolutions 
of room temperatures are exposed in figure 8. Measurements taken during the occupancy time 
within the heating period were utilized. Furthermore the maximum and minimum of hourly means 
of the room temperatures having occured within the related time range are shown. The plot is 
completed by thresholds based on probalility ranges of 80 % and 90 %. 
A fault detection based on room temperatures can be performed in the following way: Over a 
certain time period room temperatures have to be compared with a plot given in figure 8. If 
occured values does not fit within the boundaries a local malhnction may be expected. 
With more rooms indicating a similiar trend a central error is taking place and an error diagnosis 
has to be launched. 
An optimization of the systems operation has to consider the occupants behaviour. 
The determination of categories of tenants is a necessity before forming optimization strategies 
and doing fault detection. 
A suggestion for such a category-related-investigation could be: 

Category I: Bi = 18 "C (Bi < 19,5 "C) 

Category 11: Bi = 21 OC (19,s 5 Bi 5 22,5 OC) 

Category 111: Bi = 24 OC (22,5 "C < Bi) 

Analysis to this continue 

5. O~timization of the heating curve 

In the substation the inlet temperature is controlled dependent on the outdoor temperature. The 
determination of the inlet temperature is based on a linear equation. 
When judging the current heating curve one has to pay attention to occupants behaviour and 
local control units. When discussing the ERS-system one has to monitor the proportion between 
heating-up and cool-down time. A proportion of 1 : l  is esteemed an appropriate value. 
Deviations from that relation may be caused by power to high or low respectively. 

Figure 9 exposes a heating curve too high powering the single pipe system. An occupants 
behaviour related to category I11 (refer to figure 10,11) instead of category I1 corresponds with 
the desired proportion. Instability may often be perceived at TRV-controlled radiators following 



a power too high (refer to figure 12). As catagory III is demanded for the Kitchen's room 
temperature, radiator surface matching fourfold air change per hour was installed. This high air 
change scarcely occurs. Due to low valve authority instability is more likeley to  be recorded at 
two-pipe-systems. At TRV controlled radiators the outlet temperature evoluation signdies 
whether a power supply too high or low is applied. Firmre 13 shows that because off high supply 
there is a eminent flow restriction bringing outlet temperature nearer to  the room temperature. 
The heating curve has to  match the room with highest demand on the inlet temperature. For a 
single pipe system with an upper distribution scheme it would be the uppermost radiator. 

6. Optimization of heating u p  time 

Figure 14 shows the inlet and outlet temperature evolution as well as the heat flow over a one 
week period in the single pipe system. 

The plot allows the conclusion that heating up time does not match with tenants needs. 
Apparently during heating up time occupants demand is less than heating supply. That inevitably 
leads to a fast rise of the outlet temperature. 

The provided outlet temperature limiter initiates a lowering of the inlet temperature. Therefore 
the transfered heat flow is reduced (close to  zero at 5.45 a.m.). An unnecessarily high heating up 
peak is recorded. The time for night set back recovery is chosen too early. 
In the mean time investigations to optimize the heating up time are launched. 

7. Summary 

This report introduces a useful error detection for buildings checking the experimentally 
determined heat consumption curve. 
An error analysis based on room temperatures has to regard the wide range of occupant 
behaviour. 
The statistic values of room temperature covering occupant behaviour depend on the local 
controller used. Following issues are of major interest: 

- adjusting the heating curve 
- optimized heating up time. 
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fig. 1 : scheme heating system 

a) two pipe system 

b) single pipe system 

fig. 2: sensitivity analysis for a. heating system 
(90170/20/-15; m = 0,33; n = 0; C, = 0) 

a) inlet temperature fault C', ( C, = C, = C, = 1 ) 
b) surface of radiator C, ( C', = O;C, =C4 = 1) 
c) mass flow C, ( C', = O;C2 =C4 = 1) 
d) heat loss of the building C4 ( C', = O;C2 =C, = 1 ) 
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fig. 7: frequency distribution of room temperatures ( 6, is related to the mean 
of the considered time range : 7 a.m. - 8 a.m. and 8 a.m. - 9 a.m. ) 

a) tenant characterized by laxge scale heat consumption 
b) tenant characterized by small scale heat consumption 



time 

time 

fig. 8: daily mean evaluation of the room temperature during occupancy period 
for living rooms 

a) tenant characterized by large scale heat consumption 
b) tenant characterized by small scale heat consumption 

1 - mean daily evolution 
2 - mean 
3 - maximum 
4 - minimum 
5 - probability range = 90% 
6 - probability range = 80% 



outside temp. 
childrens room temp. 
outlet temp. rad. 

inlet temp. rad. 
valve position 

time in h 

fig. 9: Temperature behaviour for the childrens room 4 
( low outside temperature; single pipe heating 
system; ERS ) 

60 

outside temp. 

c 40 .- - living room temp 
... . . . . .  k! a 30 - outlet temp. rad. 

m 0' 20 - inlet temp. rad. 

? l o  
w 

- valve position - 
0 

time in h 

fig. 10: Temperature behaviour for the living room 10 
( high outside temperature; single pipe heating 
system; ERS ) 

time in h 

outside temp. 
living room temp 
outlet temp. rad. 

inlet temp. rad. 
valve position 

fig.11: Temperature behaviour for the living room 20 
( low outside temperature; two pipe heating 
system; ERS ) 



time in h 

fig. 12: Temperature behaviour for the kitchen 1 
( low outside temperature; two pipe heating 
system; TRV ) 

outside temp. 
temp. kitchen 
outlet temp. rad. 

inlet temp. rad. 

outside temp. 
living room temp 
outlet temp. rad. 
inlet temp. rad. 

time in h 

fig.13: Temperature behaviour for the living room 9 
( low outside temperature; single pipe heating 
system; TRV ) 
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PERFORMANCE MONITORING. FAULT DETECTION AND DIAGNOSIS OF 
RECIPROCATING CHILLER 

Meli Stylianou and Darius Nikanpour 
EDRL-CAhX&T 1615 Lionel-Boulet Blvd, Varennes, Quebec, Canada 

ABSTRACT 
This paper presents a methodology which uses a combination of techniques: thermodynamic 
modelling, pattern recognition and expert knowledge to determine the "health" of a reciprocating 
chiller and to diagnose selected faults. 

The Jystem is composed of three modules. The jrst one deals with the detection of faults that 
are more discernible when the chiller is oflsuch as sensor drifl. The second module detects 
faults during start-up and deals with those related to refrigerant Jow characteristics, which are 
generally more apparent during the transient period Finally, the third module detects 
deterioration in performance followed by diagnosis when the unit is operating in a steady-state 
condition. 

The approach has been expe'rimenfally fesfed on one iaborafoly unif and results presented It 
is emphasized thatfurther data is required to establish the repeatability of the emergingpatterns 
and validate the applicability of the approach to the reciprocating chillers in general. 

INTRODUCTION 
Vapour compression refrigeration systems constitute the largest portion of commercial and 
industrial refrigeration capacity, accounting for an important portion of energy consumption in 
these sectors. In large office buildings for example, it is estimated that 10% to 25% of the total 
electricity consumption can be attributed to cooling systems alone (Huang, Akbari, Reiner and 
Ritschard, 1991). Moreover, these percentages can be sigmficantly higher if a cooling system 
is operating at low performance levels due to the presence of faults (Herzog and LaVine, 1992). 

Fault detection systems for commercial chillers currently focus primarily on preventing 
mechanical failures, which is generally achieved through the use of switches that cut out the unit 
when temperatures and/or pressures exceed preset limits. Generally, these systems do not provide 
direct information as to the "health" of the chiller prior to its shut-down, resulting in unexpected 
periods of unavailability and to extended periods during which the unit operates under abnormal 
conditions. However, as chillers become better instrumented, advanced low-cost fault detection 
and diagnosis modules become increasingly more attractive. 

Fault detection and diagnosis systems (FDDS), developed for application to vapour compression 
units, generally employ one of the following two procedures: 

1. Estimation and 
2. Pattern Recognition. 

Estimation-based procedures are used in systems which employ physical or statistical models to 
estimate relevant process variables. Figure l(a) shows the strbcture of this type of FDDS. In 
general, process system models are used to estimate the values of the process variable. These 



values are subsequently compared with measured process variables. The resulting differences (or 
so called innovations) are then supplied to a separate module where the diagnosis is made. 

Inputs System Monitored 
Outputs > 

System 

(a) Fault detection and diagnosis through estimation 

(b) Fault detection and diagnosis through pattern recognition 
igure 1 Procedures for fault detection and diagnosis 

Figure I(b) shows the structure of pattern recognition-based FDDS. In this type of scheme, 
features particular to the process in qu'estion are extracted from measured data. These features 
are then matched to pre-determined classes (normal operation, fault 1, fault 2, ... etc.) which have 
been generated a priori from training data. 

Researchers have used FDDS employing one of the above two procedures and in some cases 
estimation and pattern recognition procedures have been used together (Shoureshi and 
Wagner, 1992; Sarni, Zhou and Tulej 1993; Grimmelius, Klein Woud and Been, 1994). For 
example, Grimelius,  ~ l e i n  Woud and Been (1994) developed a system that used a non-linear 
regression model of a chiller to estimate the process variables. These estimations were 
subsequently used to generate innovations which were classified by a fi~zzy pattern classification 
routine. The system was developed for a water chiller equipped with a thermal expansion valve 
and was tested on common faults of this type of machine 

G r i i e l i u s ,  Klein Woud and Been (1994) identified three areas for further development: 

1. Generic chiller models requiring no training data; 
2. Fault detection capability during transient conditions; and 
3. Methodologies identifying a wider range of faulty behaviour. 



The purpose of the work presented here is the development of a methodology for a performance 
monitoring, fault detection, and diagnosis system. This methodology is developed for 
reciprocating chillers, and integrates techniques derived from physical modelling, artificial 
intelligence and pattern recognition. This paper focuses on the detection and diagnosis of faults 
for a reciprocating chiller during transient and steady-state conditions. An innovative approach 
is the utilisation of the transient characteristics during start-up to provide useful information on 
the "health" of the laboratory test unit. 

Chilled Water Cooling Wat 
Chiller 

Circuit Ci rcu i t  

T ;Tompc,-rr a" = crnponlor 
cx = crpmolon nlx m a  -way mixing valvc 

"0, = "0l"rn. nar nu roll = allu5.r 
re, .roCurn 

Sdcncid valve 

wrosum redur1ng vslvc 

lgure 2 Test Unit 

Experiments and FDDS development was carried out on a refrigeration test unit, shown 
in Figure 2. It is based on a commercially available reciprocating chiller using refrigerant R22 
with a cooling capacity of 17.6 kW (5 RT). 

The chiller components include a two cylinder semi-hermetic compressor, a cleanable shell and 
tube type condenser with water circulating through the tubes, and a direct expansion shell and 
tube evaporator. The chiller is equipped with a thermal expansion valve. 



The test conditions for the chiller are achieved using a single storage tank and two three-way 
mixing valves serving two PID controllers. In order to have a controlled set point temperature 
at the inlet to the evaporator and condenser, the three-way valve supplying the evaporator mixes 
warm water from the storage tank with return water, while the valve serving the condenser mixes 
city water with storage tank water respectively. 

Instrumentation and Data Acquisition System 
The instrumentation of the testbench is composed of eleven platinum Resistance Temperature 
Detectors (RTDs) (tolerance: *0.25+0.0042T), four pressure transducers and two flow meters 
as given in Table 1. 

With the exception of the RTD which measures the crankcase oil temperature (TE107), dry 
surface-mounted RTDs are used. This type of installation was chosen not only to avoid problems 
with refrigerant leaks, but also to duplicate the most likely way RTDs would be installed in the 
field. Pressures are measured using optical pressure transducers (accuracy: i6 .5  @a ( i 1  psi)), 
mounted in the manner usually employed for pressure gauges, and as close to the desired point 
as conditions would allow. Flow rates are measured using positive displacement flow meters 
(accuracy: i0.077 11s (*1.2 gpm)). 

Data acquisition is carried out using a microcomputer-based system which enables the user to 
establish sampling frequencies of up to 1Hz. The output data files can be stored on the PC 
serving the test unit and can also be transferred to other platforms with specialized software 

applications for further analysis. 

TEl01 Discharge ternperamre, OC (OF) 

TE102 Bighpressure(HP)liquid linetempcramre, 'C (OF) 
TE103 BP liquid line temp. @cfore filter dryer), 'C (OF) 
El04 BP liquid linc temp. (aACr filter dryer), -C (OF) 
TElOS Low prruure liquid linc ternpcnmre, "C (OF) 
TE106 Suaion linc ternperamre, OC (OF) 
TE107 Crankcase oil ternperamre, 'C ('F) 
TE108 Evaporator entcdng water tcrnperamrc, "C (OF) 
TE109 Evaporator leaving water ternperamre, "C (OF) 
TEI10 Condenser entering water ternperamre, 'C ("F) 
TE111 Condenser leaving water tempemre, "C (OF) 
FTlOl Crankcase oil pressure, W a  (psi) 
FT102 Discharge pressure, kI'a (psi) 
FT103 Suaion p m r e ,  kPa (psi) 
FT104 High pressure liquid line pressure, kPa (psi) 
FT101 Condewr water flow rate, Us fgprn) 
FTlGZ Evaporator water flow rate, 118 fgprn) 

Table 1 Measured variables 

EXPERIMENTAL METHODOLOGY 
The unit was used to map the normal range 
ofoperating conditions for commercial chillers. 
This was accomplished by changing the setpoints 
for the entering water temperatures at the 
evaporator and the condenser, simulating different 
c o o l i n g  a n d  ch i l l ed  w a t e r  r e t u r n  
conditions.Cooling water temperature was varied 
between 22°C (71.6OF) and 34°C (93.2'F), while 
the chilled water entering temperature was varied 
between 10°C (50°F) and 15°C (59°F). The flow 
was set at 1.0 11s (15.9 gpm) for both the 
condenser and evaporator for all experiments. 

Five faults were used to develop and test of the 
Chiller Fault Detection and Diagnosis System, namely: refrigerant floodback at start-up, 
refrigerant leak, refrigerant line flow restriction and condenser and evaporator fouling. The fault 
associated with the refrigerant floodback was the only fault not deliberately introduced, as it was 
inherent in the chiller system due to a slightly undersized evaporator unit. The remaining four 
faults were introduced asshown in Table 2. The experiments were performed under ambient 
conditions, and temperature, pressure and flow variables were monitored every 10 seconds. 



Separate files were created for transient and steady-state behaviour, and were subsequently used 
to develop and test the CFDDS. 

rable 2: Fault Types 

CHILLER PERFORMANCE MONITORING, FAULT DETECTION AND 
DIAGNOSIS SYSTEM 

The system is subdivided into three distinct modules as shown in Fieure 3: 

Fault Type 

Refrigerant leak 

Refrigerant line flaw restriction 
(Plugged filterdrier, obstnrctions in the piping ctc.) 

Condenser water side flaw resislance 
W m p  fault, fouling, ctc.) 

Evaporator water side flaw rcsistancc 
Wmp fault, fouling, etc.) 

- The O&Cycle Module is activated as soon as the chiller is tuked "Ofr' for night 

Fault InIroduetion Mechanism 

Rcmoval of refrigerant 

'IhmtUing of linc aRer condenser 

Reduction of water flow 

Reduction of water flow 

13kagnom 
M d e  

Diagnosis 
(~etarmn'ePattemH Classify Pattem )-+ 

n& 
.............................................................................................. ............................................................................................ 

eady 1st Load nagnosis 
State Cycle 

? 
m e  

Steady i ? ? 'IhisscQionnot 
State i diXlLEscd in thispapa 

I Fwfammce Btermine Pattem 

gure 3 Flowchart for a Chiller Performance Monitoring, Fault Detection and Diagnosis System 
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time. It checks the performance of selected sensors and alerts the operator if one 
or more mechanical problems are detected before the next start-up. 

The Start-Up Module is activated as soon as the chiller is turned "On" in the 
morning and remains active for about 15 minutes of operation. 
It detects faults associated with refrigerant flow control that are easier to detect 
before the system reaches steady state. 

The Steady-State Module is activated once the chiller reaches steady state. It 
remains activated while the machine's operating status is not changed. It ensures 
that the unit is operating within acceptable energy performance limits and 
performs fault detection and diagnosis primarily for faults that can not be 
compensated by the thermal expansion valve. 

A detailed description of the individual modules follows. 

Off-Cycle Module 
Temperature sensor failure can take one of two forms: sensor bias and sensor drift. Sensor bias 
can be manifested as either a hard failure, where the sensor fails completely, or a soft failure, 
where the sensor still operates but produces incorrect readings. In the case of sensor drift, the 
bias exhibited by the sensor continuously changes in a given direction with time and can be seen 
as a special case of sensor bias. 

In aerospace applications, where the reliability of the sensors is essential, hardware redundancy 
ensures the continuity of measurement in the case of a faulty sensor. Due to the high costs 
associated with multiplicity of sensors required for hardware redundancy, software redundancy 
is an area of active research (Patton, Frank and Clark, 1989). This method uses a number of 
approaches to model the expected behaviour of a system so that any measurement errors will be 
detected by deviations (or innovations) between state variables determined using the expected and 
measured data. In commercial chillers, it is possible to have both software and hardware 
redundancy with no sensor duplication and minimal computational requirements. This is possible 
primarily due to the mode of operation of the chiller. In a typical office building, commercial 
chillers are turned "Off" between 10:OO pm and 7:00 am. This provides a period during which 
the temperature of the unit approaches that of the mechanical room. The only part of the unit 
that does not reach room temperature is the crankcase oil reservoir, which is equipped with a 
heater designed to maintain the oil temperature between 8°C (14.4"F) and 14°C (25.Z°F) above 
ambient conditions. The Off-Cycle Module uses this cooling period in two ways: for the 
verification of the dynamic performance of certain sensors and of the steady-state measuring 
capability of the sensor. 

Immediately after the chiller is turned off, the temperature decay may, in some cases, be 
approximated by a first order model. The variables (Equation 1) may be established during 
commissioning. As these variables rely on the unit's time constant (7) and the ambient 
conditions, the model will be valid provided the environmental conditions in the mechanical 
room are not changed significantly. 



In addition to dynamic testing, sensors are tested for bias. This is accomplished by using the 
sensor measuring the crankcase oil temperature (TE107) as an independent measurement. The 
Off-Cycle Module takes advantage of the built-in control of the oil crankcase heater to ensure 
the reliability of TE107. The module checks that the sensors have reached steady-state by 
monitoring the respective rates of change of temperature with time. The method used is based 
on functional variation, whereby the variation of the measured variable over a fixed time interval 
is compared to a hand-tuned value. This temperature variation, for a fixed time interval t, may 
be represented by: 

Once steady-state is achieved, the difference between individual sensors and TE107 are computed 
and compared to values established during commissioning. The procedure used, generally known 
as hypothesis testing, determines whether the temperature differs from the established one using 
the t-distribution: 

If the test is successful, the samples are added to the population from which 11, is estimated. If, 
however, the test fails then the sensor in question is declared faulty. 

An application of the first order model is shown in Figure 4, which indicates the predicted and 
measured decay of the temperature read by sensor TE101. The model predicts the decay of 

Figure 4 First order model approximation for the decay of TElOl 



TElOl with an error of less than 3% between 78°C (172.4"F) and 35°C (95"F), the usual 
operating range of the sensor. A larger error (< 7%) is encountered at lower temperatures, from 
30°C (86°F) to 26OC (78.S°F). 

The spike on the measured value of TE101, shown in Figure 4 is representative of the pump- 
down transient. The Off-Cycle Module measures the frequency at which this transient occurs and 
compares it to a pre-determined value. Any increase in the number of pump-downs is indicative 
of a deterioration of either the compressor valve seal or that of the solenoid valve, which isolates 
the high pressure from the low pressure parts of the unit (Figure 2). 

Start-up Module 
The Start-up Module is activated following the night (or weekend) "Off' period and monitors 
four of the 12 variables installed on the test unit: the discharge temperature (TE101) the 
crankcase oil temperature (TE107), and the refrigerant temperature entering (TE105) and leaving 
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Figure 5 Features with diagnostic si&~cauce 

(TE106) the evaporator. 

Figure 5 shows a "baseline" transient response of the test unit during start-up. The features are - indicated by boxes in the plots, with each feature being defined by its location in terms of time 
after start-up (x-axis) and the magnitude of the variable (y-axis). These features are particular 
to the unit and, as shown in figure 6, are repetitive. The room temperatures under which the tests 
were carried out varied by about 6°C. This variation did not have a detectable impact on the 
start-up transient profiles. 



Figure 6 Start-up transients for the test unit 

A typical list of faults and start-up features are given in Table 3. It is noted that the list of faults 
is not exhaustive and that the effefect of simultaneous faults on the traflsient behaviour of the unit 
needs to be examined. 

Table 3 List of start-up transient features and their possible faults 
6 i 

Feature* 

Feature Possible faults associated with shifts in magnitude or timing of features U 
I! Description !I 

11 3 1 Slope of TE107 I Liquid refrigerant floodback, thermal expansion valve faults II 

1 

2 

Minimum of II I I Liquid refrigerant floodback, thermal expansion valve faults 
TEln7 

Peak of TElOl 

Inflection of 
TElO5 

Liquid refrigerant floodback, refrigerant loss, obstruction in refrigerant circuit 

Obsuuction in refrigerant circuit, refrigerant loss 

5 

* Refer to Figure 5. 

83 

AT 
(TE105-TE106) 

Refrigerant leak, obsuuction in refrigerant circuit 



Either the presence or a shift in features can be used as a diagnostic indicator. This shift is 
influenced by the ambient conditions and, in case of outdoor packaged system applications, needs 
to be normalized. However, as chillers are indoor units, they do not experience a wide range of 
ambient conditions, thereby ensuring that the Start-up module encounters nearly similar 
conditions every time it is turned on. 

In case of refrigerant liquid floodback to the compressor, the features associated with this 
condition include the decrease in the discharge (TEIOI) and oil (TE107) temperatures, and the 
minimum of the oil temperature. The slope of E l 0 7  (Figure 5) indicates that liquid refrigerant 
continues to enter the compressor until the minimum is reached, about 6 minutes later. This 
minimum coincides with achieving the 7°C of the superheat as shown by the difference between 
the low pressure liquid lime temperature (TElOS) and the suction temperature (TE106). This time 
period is therefore associated with the thermal expansion valve response time to arrive at the 
operating superheat level of the unit. 

The variation between the start-up transients under "normal" or baseline conditions and for 
progressive refrigerant loss is shown in Figure 7. It is apparent that start-up transients of the 
"normal" chiller are markedly different from those of the faulty chiller in terms of mainly peak 
temperatures (TEIOI), and this feature is progressively modified according to the severity of the 
fault. Figure 8 displays the temperature transients for a progressively more severe flow 
obstruction in the refrigerant line. As shown, there is a clear upward shift of the E l 0 1  peak as 

Figure 7 Comparison of start-up transients between baseline and unit with progressively 
lower refrigerant charge 



well as a displacement in time while the inflection of E l 0 5  appears to occur at a lower 
temperature than the baseline case. Increased obstruction produces a further shift to the 

Fire 8 Comparison of start-up transients between baseline and unit with progressively bigger obstruction in liquid 
refrigerant line 

magnitude and timing of the peak. The inflection of E l 0 5  was not affected by the increase in 
pressure drop. 

The features exhibited by the increased obstruction are nearly similar to those exhibited by 
refrigerant loss as seen in figure 7. Although this process allows us to detect a faulty condition, 
it may also permit the classification of each fault, but this needs to be further investigated. 

Steady-State Module 

Steady-state condition is determined using the same detection method used in the Off-Cycle 
module (Equation 2). Once steady-state is reached, the module performs two functions: the first 
one deals with the units' performance and the second one seeks to detect and diagnose a pre- 
determined number of faults. This approach was devised so that the Chiller FDDS can detect 
deterioration in performance even in cases where no fault models have been defined, or in the 

q event of multiple simultaneous faults. The performance level is established using a simple 
thermodynamic model of the chiller based on the manufacturers' data, while the fault detection 
and diagnosis procedure uses multiple linear regression models to generate innovations. The 
pattern of these innovations is subsequently classified in predetermined fault classes according 
to rules derived from literature and experiments. 



Performance Level Monitoring 
A simple thermodynamic model for the chiller is used to determine the actual performance of the 
unit, as described in detail by Gordon and Ng (1994). The following expressions for the 
condenser and evaporator temperatures are derived from heat balance considerations: 

In addition to the approximation with respect to condenser and evaporator temperatures, the 
model makes a number of assumptions that are specific to commercial chillers. In particular, the 

model assumes that the zero net change in entropy of the chiller fluid can be expressed as: 

10s loss 
Qcond - qcond - A S = O =  Qoop + 4 ,  

where 6"'" refers to the Iosses due to heat leaks, fluid friction, throttling and superheating. All 
heat transfer processes are approximated as isothermal since the deviations from isothermal 
behaviour is small relative to the absolute temperatures T,, and T,,. 

An expression for 
and T,,,: 

the COP is obtained by combining equation (6) with the expressions for T,, 

COP 

Where: 

' ~ a s e d  on chiller performance data, the only term on the right-hand side of Equation 7 that 
depends on cooling rate and which contributes significantly is the term proportional to 1/Q,. 
Therefore, for typical commercial chiller operating ranges, Equation 7 can be approximated 



linearly by: 

In order to use the particular characteristics of commercial chillers, additional assumptions are 
imposed regarding the linearity of heat transfer and the isentropic nature of throttling and 
superheating (Cerepnalkovsky, 1991). Under these assumptions q""' is approximated by: 

and 

Using equations (8)-(10) and setting A,=A,+&, one obtains: 

1 T", - A + ~ T A + ~ ( T L / ~ )  -=-I+-+ 
COP F w QW 

A, A,, and A, are constants that characterize the irreversibilities of a particular chiller and are 
derived from data routinely provided by chiller manufacturers using linear regression. The 
required data consists of tables representing the performance of the chillers (Q,,, P) for a 
number of entering and leaving water temperatures at the condenser and evaporator respectively 
( T , )  To estimate A, A,, andA,, use is made of the bilinear nature of equation 11, which 
effectively is a function of two variables, namely T",, and ?",,mZ:, . This is as follows: the 
first step in estimating the constants is to plot: 

1 c,"nd 
Q,,, against - 

The resulting lines, one for each of the given T",, , have a slope that is equivalent to the value 
of A, . 
Once A, is estimated a second plot of: 



produces a straight line with A, as the y-axis intercept and A,,= the slope. A detailed 
description of the method for determining &, A,, and A, is described in Gordon and Ng (1994). 

The above method was applied to develop the model for the test unit. Figure 9 displays the 
calculated COP values for various load conditions for the test unit. 

Condenser E W :  26°C (78.8"F) 
Evaporator E W :  lS°C (59T) 

4 

Condenser E W :  30°C (86'F) 

Evaporator E W :  14S°C (58.I0F) 

Figure 9 Calculated COPS for test unit under different operating conditions 
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Figure 10 Comparison of measured and predicted COP for test unit 
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The calculated COP values compare well with the measured COP and, as shown in Figure IO(a), 
the difference between the model-based (calculated) COP and the measured COP is less than 6%, 
falling within the measurement uncertainty band. Figure 10(b) shows the model COP following 
closely the measured COP during a test where the throttle valve was induced to hunting. 

Fault Detection and Diagnosis 
Symptom matrices for a number of different faults encountered in vapour compression machines 
have been developed (Grimmelius, Klein Woud and Been (1994) and Rossi and Braun (1995)). 
The matrix used in the present work was modified using data obtained from experiments and 
used for the detection and diagnosis of faults in the second function of the Steady-State Module. 
Table 4 displays the modified matrix used for the detection and diagnosis of faults. The "+" 
represents an increase in the value of the variable over the normal operation of the chiller while 
"-" indicates a decrease. 

Table 4 Fault patterns used in the diagnostic module 

Linear regression models are used to generate estimates of the pressure and temperature variables. 
The estimated variables are then compared to their measured values, the innovations thus detected 
are then matched, using a rule-base to the patterns shown in Table 4, thereby diagnosing the 
fault. As indicated in equation 14, the temperature and pressure variables represented by vector 
y are a function of the two independent temperature variables, namely the entering water 
temperatures to the condenser (TE110) and the evaporator (TE108). 



Variable 

TElOl 
TE 102 
TE 103 
TE105 
TE 106 
TE107 
TE109 
TEl l l  
PTlOl 
PT102 
PT103 
PT104 

Adjusted R' Std. Error of 
Estimate 
0.11280 
0.03416 
0.03334 
0.6378 1 
0.1053 1 
0.29026 
0.01872 
0.01969 
0.14052 
0.51470 
0.11641 
0.53479 

Table 5 Results of Regression Analysis 



Figure 12 Differentiation of predicted and measured 
Figure 11 Comparison of measured and predicted EWd values duriog a d  after the inuoduction of a restriction in 
line temperature (TE102) and discharge pressure (PT102) th, liquid refrigerant line 

Figure ll(a) and ll(b) display the measured and predicted values for TE102 and PT102 based 
on the above model. 

The measured pressure (PT104) upstream of the thermal expansion valve and its predicted value 
using the regression model during the introduction of a restriction in the liquid line is presented 
in Figure 12(a). As can be seen, the pressure after the restriction is decreased by about 85 kPa. 
As expected, the effect of this restriction is propagated at other points of measurement around 
the cycle. One such point is the temperature at the discharge of the compressor (TEIOI), as 
shown in Figure 12(b). The average values for the temperature and pressure values were used to 
compensate for temperature and pressure fluctuations. The difference between the measured, 
averaged temperature (TEIOI) and the predicted, averaged value, together with the differences 
of the other measured parameters, are used to create a fault diagnostic pattern that can be 
matched to those described in Table 4. 

The experimental results for the case of a flow restriction of 85 kPa, and for that of 140 kPa are 
shown in Table 6,  and compared to their predicted values ("U", signifies differences that fall 
within the Uncertainty band, with "U+" and "U-" signifying tendencies to the upper and lower 
limits of the uncertainty band respectively). 



It is apparent that the pattern of the differences between the measured and predicted values for 
the first experiment is less discernible than that of the second experiment. This is not only the 
result of the increased severity of the obstruction introduced, but is also influenced by the 
compensating action of the Thermal expansion Valve (TXV) . 

Table 6 Patterns generated using the linear reeression models for overation of the chiller 
with two-dif 

Variable 

Average, 
Measured 

Value 

ar  

TElll 'C 11 32.78 

- - 
:rent obstructions in the refrigerant liauid line 

11 A;;:: 1 A;: A ;  I Predicted Measured Predicted 

78.14 + 11 79.38 1 78.09 

Pattern 

The TXV being the control element in the chiller unit, maintains the refrigerant entering the 
compressor at a pre-set superheat level, thereby preventing damage to the compressor by liquid 
refrigerant. The superheat is maintained throughout the normal load conditions of the unit by 
modulating the TXV. In addition to changing load conditions, the TXV is actuated by 
disturbances caused by faults such as obstructions in the refrigerant circuit and the loss of 
refrigerant. In these cases, if the valve orifice area were maintained constant, an elevated 
superheat would have been produced. Since the TXV can modulate the flow, it reacts to 
compensate for the increase in superheat by allowing more refrigeraqt to flow through to the 
evaporator, thereby maintaining the pre-set level of superheat. 



This feedback action of the W tends to compensate for the disturbances caused by the faults 
modifying the diagnostic patterns, thereby limiting the sensitivity of the rule-based pattern 
recognition approach as presented in Table 3. 

Discussion 
The paper presents a system for detecting and diagnosing faults occurring in reciprocating 
chillers. The nature of the chiller fault detection and diagnosis system requires that the signals 
carrying the sensor data be filtered to eliminate disruptions in the fault detection and diagnosis 
process. The present configuration of the system includes a low pass filter which effectively acts 
as a three point moving average smoothing function. Similar filtering will be required to 
minimize false alarms from electrical noise or other interference in the quality of the signal. 

This system employs three modules each dedicated to a specific operating condition of the chiller. 
The off-line module assumes that the sensors are calibrated and properly installed. The module 
uses data collected during the periods when the chiller is "off' for extended periods (overnight, 
weekends) to estimate parameters that are used to detect temperature sensor faults. Initial 
estimates of the parameters may be determined during commissioning and fine-tuned through 
additional collection of data following the occupation of the building. 

The second module, dedicated to monitoring the initial start-up of the chiller, uses features that 
may also be determined during commissioning to detect and diagnose faults since different 
chillers may display different start-up transients (Tassou and A1 Nizari, 1993). The initial 
transient profiles have been shown to contain useful information on the "health" of the test unit. 
This information is obtained through the observation of the variations of the transients' particular 
features and classified based on a predetermined rule-base. Further work is necessary to ascertain 
if the variations in the features exhibited in the laboratory test unit are generally applicable to this 
type of chiller. 

The methodology followed in the start-up module allows a rapid determination of the chiller 
condition which is independent of the behaviour of the thermal expansion valve. In particular 
for the test unit, it only takes about one minute for the discharge temperature to reach the first 
peak, therefore, it is not influenced by the response of the thermal expansion valve, whose 
response is in about five minutes. Consequently the start-up transients, on which the fault 
detection and diagnosis are based, is not influenced markedly by the final load conditions. 

The detection and diagnosis of faults in this manner accomplishes the detection of faults before 
they become serious ones or cause mechanical failure in the machine. However, this method 
requires fast sampling, of the order of 5 seconds, and its performance depends on the accuracy 
and precision of the sensors employed. 

The Steady-State module requires eight temperature sensors and two pressure transducers to 
perform fault detection and diagnosis as described in the present paper. Although this may 
represent a significant cost, further work may reduce this number through the use, for example, 
of differential temperature measurements. 

The data collected from the condenser and evaporator entering water temperatures are used by 



the Steady-State module to develop a bilinear linear regression to estimate selected variables for 
fault detection and diagnosis during steady-state operation. This necessitates the collection of 
training data which are not contaminated by faulty conditions. Data representing the operating 
envelope of the unit would not be available upon installation and will therefore require several 
months of operation before the data base is complete enough to develop the model. During this 
period of training, the "health" of the unit may be determined by the Start-up module in 
combination with the performance monitoring function of the Steady-State module. This function 
employs a linear model (Gordon and Ng, 1994) for reciprocating chillers. The model was applied 
to the test unit and was found to produce acceptable results. Because the physical basis for the 
model is clearly formulated and not based on empirical fits, one can state the condition under 
which the linear approximation will be inadequate. This deviation from linearity occurs when 
the temperature differences across each chiller component are large, leading to increase in 
magnitude of the contributions of the linear approximations used to arrive at equation 1 1. It has 
also been shown (Gordon and Ng, 1994) that for the normal operating range of water chillers the 
magnitude of these approximations does not afYect the validity of the model. The model was 
tested for 30 chillers varying in size from 30 kW to 1300kW and the difference between the 
calculated and measured COP was within the measurement uncertainty band. 

The results presented in this paper pertain to tests performed on one test unit under laboratory 
conditions. Furthermore as the extent of the tests is limited, further work is required to verify 
the applicability of the approach to the more general population of reciprocating chillers, both 
new and retrofit. 

CONCLUSIONS 
The present paper presents a global approach to the performance monitoring, fault detection and 
diagnosis of commercial chillers. The methodology presented integrates elements from artificial 
intelligence, pattern recognition and physical modelling do determine the "health" of a 
reciprocating chiller and to diagnose selected faults. 

The approach taken pre-supposes that all operating and non-operating phases of the chiller can 
contribute in establishing fault detection conditions. The three modules of the diagnostic system 
include the of-cycle, (initial/morning) start-up and steady-state modules which cover the 
spectrum of the chillers' operating states. This allows the detection and diagnosis of faults at 
operating conditions providing the maximum level of information. In the envisaged application 
of the methodology, faults that influence refrigerant flow such as refrigerant flow obstructions 
or refrigerant leak will be detected and diagnosed by the start-up module prior to the actuation 
of the thermal expansion valve. This is an approach that has not been previously used for the 
detection and diagnosis of chiller faults, and which has been shown in the present paper to 
provide useful information on the "health" of a laboratory chiller test unit. Faults currently not 
in the knowledge base, as well as simultaneous faults affecting the energy performance of the 
chiller, will be detected by the steady-state module. In addition, the steady-state module can 
detect and diagnose faults associated with load conditions as well as providing fault detection 
capability in cases of more severe faults which may not be detected by the start-up module due 
to unpredicted changes in ambient conditions. 



An important aspect of the methodology is the need for training data. In the case of the off- 
cycle, the start-up modules and the performance monitoring portion of the steady-state module, 
the data can be gathered during commissioning. However, the diagnostic portion of the steady-- 
state module requires a larger amount of training data which would not be available during 
commissioning. On-line measurement of variables to establish the normal steady-state operational 
envelope needs to be carried out to allow build-up of linear regression models. The start-up 
module and the model developed from manufacturers' data will be used to build-up the training 
database by filtering out faulty conditions. This requirement will need to be satisfied with a 
minimum influence on the performance of fault detection and diagnosis and to the operation of 
the chiller. 

Generally, steady state and transient fault patterns are modified by a number of factors. These 
depend on the severity of the fault and, for the steady-state case, the compensatory actions of 
the thermal expansion valve. 

As there were a limited number of experimental tests performed, there is need for further 
experimental data to verify the repeatability of the emerging patterns with a high statistical 
confidence level. 

Furthermore this methodology needs additional treatment to improve the definition of the 
thresholds for classification of emerging patterns and to establish the range of applicability of 
these patterns. Further study is required to produce an exhaustive list of faults and their 
associated transient features and steady-state patterns. 
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Nomenclature 
A 
A0 

A, 
A* 
B 
C 
COP 
EWT 
LWT 
m 
n 
N 
NTU 
P 
Q 
4"" 

Constant, "C 
Constant, kW 
Constant, k W K  
Constant, kW 
Constant, "C 
Specific heat, kW/kgK 
Coefficient of performance 
Entering water temperature 
Leaving water temperature 
Mass flow rate, kgk 
Sample size 
Sample size 
Number of transfer units 
Power, kW 
Heat transfer rate, kW 
Heat losses, kW 



S 

S 
f 
P 
T 
TXV 
a 
P 
To 
7 

Standard deviation 
Entropy, kWK 
Time, s, t-distribution 
Temperature, OC 
Temperature, K 
Thermal xpansion valve 
Confidence level 
Regression constant 
Mean 
Time constant, s 

Subscripts 

cond Condenser 
evap Evaporator 

Superscripts 

in Entering flow 
out Leaving flow 
* Estimated 
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Abstract 

A system for on-line process visualisation and failure diagnosis is explained in terms of a prototype realisation 
and its underlying concepts. The first secrion sets the scope: The tasks are failure diagnosis and on-line process 
visualisation of a heat pump plant. The goals comprise openness of the system, userfriendliness and a clear 
knowledge methodology. Section 2 addresses the issues of the chosen system architecture. In section 3 the man 
machine interface for a heat pump application is explained by means of the different screens. The sections 4 
and 5 discuss the expert system diagnosrics and the knowledge engineering methodology. 

1 INTRODUCTION 

1.1 BASIC SYSTEM ARCHITECTURE 

EnDEx a e r g y  System Diagnosis Epert  System) was designed as a generic framework for supervisory tasks 

in the domain of HVAC equipment and plants (see Table 1). Data from the plant is periodically collected from 

the plant DDC or PLC and pasted in a blackboard database (see Figure 1). 

T 

I v 
DDC mntmller I 

I 

t 
plant I process 

Fig. 1: Basic architecture of E?D& (in grey) asframewrk for different tnskr. 



From here the different tasks can get the data they need or can exchange information with other tasks. The 

processed information is displayed in a uniform man machine interface. 

1.2 TASKS AND SCOPE OF THE DESCRIBED SYSTEM 

........... ..... ..... ..... ..... I 
Tab. 1: The current EnDEs prototype incorpornres the mks 11 and 12 

task 
tvw 
\ 

boiler 
heat pump 
heat distribution 
ventilation 

Task types: The present state of EnDEx incorporates the task types of on-lineprocess visualisation and 

failure diagnosis. Extended detection mechanisms as well as long term wear models are considered for 

later implementation. 

Subsystems: The chosen task types were carried out for the heatpump subsystem. Other subsystems could 

be incorporated. 

Development stage: EnDEx was developed to the stage of a demonstration prototype. Testing and valida- 

tion was carried out at the Scheco Ltd. laboratory plant in Wierthur. 

1.3 GOALS 

on-line ~ rocess  
visuali&tion 1 diagnosis 
task 01 I task 02 
~~@~~~$g$$g$g;$~?~~if@~~$~~$gg@j~$g 
task 21 I task 22 
..... ..... 

For EnDEx as a generic framework: Being open for the various plant subsystems and the different tasks 

requires the use of standard hardware and software components and communication facilities. 

For EnDEx as man machine interface: To be operable by unskilled service staff a maximal uter- 

friendliness has to be achieved. 

For the diagnostic part in EnDEx: To ensure a good maintainability of the diagnostic knowledge a ho- 

mogenous structure should be realised with the help of a suitable browledge engineering methodology. 

2 SYSTEM DESIGN 

failure 
detection 
task 03 
task 1 3 
task 23 
..... 

2.1 THE PHYSICAL COMPONENTS 

..... 

..... 

..... 

..... 

Different analog sensors (temperature, pressure, etc.) and binary switches @igh pressure, flow watcher, 

etc.) send their signals to the DDC-wntroller. 

The DDC or PLC plant controller acquires the signals, converts and buffers it as digital values. Besides the 

standard tasks of the controller (e.g. start-lstop-sequence), a simple data processing may take place. The 

controller is equipped with a serial interface. 

An IBMcompatihle PC serves as h a r d w e  platform for the EnDEx-System. 

A high-speed modem with phone- or ISDNconnection access makes the link to the outer world. The entire 

local PC screen can be transmitted to a remote terminal. 

fault ............. 



sensorslswitches controller PC modem 

Fig. 2: The hardware components of the overall system 

2.2 FUNCTIONS OF THE DIAGNOSTIC TASK 

Failure detecrion: Failures are detected directly from the security switches or from threshold supervision of 

analog data within the controller. 

Event management in the plant controller: When a failure event has occurred the controller generates an 

alarm message. An alarm script handles data buffering and event data recording. 

Communication ofthe event data: The buffered values from the last alarm event are uploaded from the 

DDC to the PC. 

Diagnosis by EnDEr Determination of the process state, plausibility check of input data and deduction of 

the cause. 

Diagnostic output of EnDEx: It includes failure location, maintenance domain, explanation of the reasoning 

path, suggestions for correction and input data are displayed. For details see section 3.7 to 3.8. 

2.3 FUNCTIONS OF THE ON-LINE VISUALISATION TASK 

The current process state is displayed in EnDEx by means of: 

gauges of some important process states, 

sensor values in PI-cham or in the process data table, 

calculated process values. 

For details see section 3.5 and 3.6. 

2.4 PROGRAM MODULES AND SOF'IWARE PACKAGES 

As EnDEx is a prototype standard software was chosen for the different program modules (see fig. 3) . 

Since up to now no time critical operations had to be performed no special real time operaring system has 

to be considered. To facilitate the development of user friendly and widely known man machine interfaces 

Microsoft Windows" was chosen. 



Fig. 3: The program modules are programmed in differem standard s o w e  

In particular the multi media authoring software ToolBookm from Asymmetrix, Inc. speeds the develop- 

ment of uniform screens. The object oriented approach (with inheritance features) allows the design of ge- 

neric screens that can be used by the specific screens. 

The bhck board as central database is implemented using Microsoft Excel" 

The generic device driver to the DDC equipment of the plant was realised with the communication software 

DynaCommm from FutureSoft, Inc. A fairly mature scripring language allows quick access to the DDC. To 

move from the prototype to a commercial system, a custom built device driver (written in C or Pascal) 

would replace the current configuration increasing the communication rate. The physical Link is done using 

a RS 232 serial interface. 

The expert system howledge base of the diagnostic task is stored and processed within Neuron Data's 

NexpertObjectm. A combined rule-based and object-oriented knowledge representation and processing is 

provided. The graphical display of the rule network eases development and debugging. 

Remote access and control can be achieved with a standard remote control package such as Microcom's 

Carbon Copy". No explicit communication bas to be programmed, since chis software &ts the entire 

graphic screen to the guest station. A high-speed modem with integrated compression and fault correction 

capabilities is required. 

The different program modules may communicate with each other either via the blackboard or directly via the 

DDE-facilities (dynamic data exchange) provided by MS-Wiadows". 



3 SCREENS 

3.1 INTRODUCTION 

User-friendliness in a supervisory system can only be achieved when cettain aspects are taken into account: 

All the different controls and commands should be uniformly handled: on different screens the same but- 

tons should be placed at the same location; for the same commands always the same command name should 

be used. 

No user entries should be expected from the user: only buttons, chakboxes, choicelists and menus are 

used to control the application. 

Always up to date status information should be displayed. Old information has to be cleared immediately. 

In the following the man machine interface is explained with the German screens of EnDEx. For the better 

understanding most of the screen texts are translated (= German Screen Text). 

3.2 SEQUENCE OF SCREENS 

online pmcess 
visualisation 

hilure 
diagnosis 

event pracess state (Pl-charl) 
event p- state (table) 

definiljon of data points (table) 
mnfigutatnn 

Fig. 4: Sequence of screens 

The users enter EnDEx 0 (Figure 4) in a welcome screen. From here they can choose between the different 

screens O of the on-line process visualisation task or  switch to the failure diagnosis task O. Within the latter 

they can get the different screens in the same way Q. The configuration task of EnDEx has to be accessed 

from Excel O or Nexpen O directly. 



3.3 GENERAL SCREEN LAYOUT (BACKGROUND) 

Besides following the Windows conventions for screen design, a background screen layout (see figure 5) for 

all screens was designed in order to give the user always the same command and display elements at the same 

location. 

The title section explains the topic that is shown in detail further down in the display section. On the right 

hand side in the controls section, all the controls are located to get to the other screens, other task or to get 

further help on the current topic. All the controls and many of the variable screen elements (e.g. icons, PI- 

charts) of the display section are featured with status text that is indicated in the status bar section whenever 

the mouse is located above that control. The starus bar also shows internal states of the program such as 

"loading", "data acquisition", etc. A minimum of optional commands for the mature user are provided in the 

menu bar. 

Fig. 5: Screen elements and sections 

3.4 WELCOME SCREEN (=TITELBLAlT) 

Clicking on the welcome screen's big logo, some information pops up about the systems functions and ha 

dling. Funher information is displayed on pressing the "inaoduction" (=EinMhrung..) button located at the 

lower right corner. By clicking the button "to gauges" (=Zu Anzeigen) in the control section, the user gets to 

the screen "current process state (gauges)" 



Fig. 6: Welcome screen 

3.5 ON-LINE: CURRENT PROCESS STATE (GAUGES) (=ANZEIGEN) 

Practitioners like gauges of the main process states of a plant. The position of scales can obviously easier be 

remembered than an absolute numerical value. 

Fig. 7: Gauges show some important values of the process 



Up to twelve gauges can be configured, each with labels for name and unit of the measurement as well as for 

the displayed and the critical range (red zone). In the top right gauge in Fig. 7 the compressor pressure 

(=p-HD) currently shows 13 bar with a critical range beginning at 18 bar. The needle's position is refreshed 

every 10 seconds. In ToolBook a gauge can be defined as an instancelobject of a custom programmed class. 

Drawing, positioning and updating is thus performed at class level. 

By clicking the button "to PIchan" (=Zu Anlage) in the control section, the user gets to the screen "current 

process state (PIchart)" 

3.6 ON-LINE: PI-CHARTS AND PROCESS DATA TABLE (= ANLAGE) 

Fig. 8: Process chart and measurement values 

To overview the total process behaviour of a plant a process and insmentadon chart is useful. A complex 

plant can be divided into several subsystems. The screen should not be overloaded with labels for the different 

measurements. More than 20 labels are not recommended on one screen when using a standard VGA screen 

and a minimal font size of 8 pt. In order not to cover the process chart with the various labels, the user can 

show or hide it by selecting the corresponding checkbox at the lower right of the controls section. Labels are 

provided for name (= Name), value (= Istwert) and unit (= Einheiten) of every measurement. Special labels 

for the components description (= Kompos) can also be popped up. 

Doubleclicking on one of the minimised charts in the bottom of the boosts it up and places it in the centre of 

the display section. 

In fig. 9 the two blocks left are just measured (= gemessen) process values, whereas the right block shows 

some calculated (= berechnet) values. The table view of the process values can additionally show the thresh- 

old values of each measurement. 



Fig. 9: Process data table 

3.7 DIAGNOSIS: FAILURE TREE (= FEHLERBAUM) 

Fig. 10: Diagnosis &failure tree 

The failure tree screen is explained based on a high pressure alarm case. 

The display section of the screen " failure tree" is divided into four subsections: 



I .  Failure Diagnosis (= Stbrungsdiagnose) 

Displayed are 

name and location of the plant (= Anlage), 

time of occurrence (= Zeit), 

priority of the alarm (= Prioritat) and 

number of diagnosed causes (= Anzahl Diagnosen). 

2. Failure tree (= Fehlerbaum fiir Alarm) 

The failure uee is described in section 4.3. Each node of the tree corresponds to a hierarchical failure sec- 

tion. 

Within the title bar of that subsection the name of the alarm in abbreviated form; here high pressure 

(= HD) is indicated. 

The failure tree picture dynamically reconshucts the tree as processed and evaluated within Nexpen- 

Object. The first level of diagnosis is reserved for a plausibility check of the alarm. The following lev- 

els represent the hierarchical failure sections (see 4.3). Each node of the failure trees changes its colour 

according to its diagnostic state (bright = hue; dark = false; very bright = not evaluated). 

3. Explanation of the node (= Erklarung des Knotens) 

On clicking one of the buttons in the failure tree the corresponding failure section q l o i n s  itself in this 

scroll window: 

The first item covers the rype of the node (starting node, intermediate or "elseN-node and final node) 

and the  me of the failure section. In our case we have an intermediate node (= Fehlerbaurn- 

Mittelknoten) called "heating circuit mixing valve fully open" (=offen). 

The next item indicates the ~ n i e  of the t a t  (= Test) of that failure section or end diagnosis. The test 

"mixing valve in position mixing" (=HKr-Mischventil Beimischung) was carried out. 

The following item gives a verbal aplnnnrion of t h  test (= Testerklarung): "Heating water tempera- 

ture before condenser {=49"C) is higher than return temperature {=37 "C)" (= T-Heizwasser vor Kd 

{=49 ") ist hdher als T-Rucklauf)". In order to suppon the understanding of the user all values of the 

relevant process states are included in brackets. . The last item covers the aplnnnrion of the node (=Knotenerltlamng): The effect of the faulty section on 

the neighbowing sections or the overall system: "An open mixing valve rises the condenser inlet tem- 

perature and thus leads to higher pressure" (= Weil das Mischventil offen ist, wird die Temp vor Kon- 

densator noch erhdht). 

4. Corren'ng actions (= Abhilfemassnahmen) 

Diagnosed cause (= Diagnose): "Heat transfer of the condenser water side restricted" (= Kd wasser- 

seitig behindert ) 



Maintenance domain / specialist (= Fachmann): "Heating or re6igerating technician" (= Kalte / 

Heiztechniker ). . Correcting action (= Abhilfe): " E l i n a t e  fouling sources on the heating water side; clean con- 

denser"(= wasseneitige Verschrnutzungsherde eliminieren, Kondensator reinigen). 

In ambiguous cases several possible causes with correcting actions are displayed one after another. This 

gives the user the possibility to continue the failure isolation himself. In our case another diagnosed cause 

was "heating circuit return temperature high" (= HKr-T-Rucklauf-Heizgr-zu hoch). For further informa- 

tion the user has to scroll the window downwards. 

The described case and node is corresponding to node 2.5.1 in the failure tree of table 3. 

Tab. 2: Sample failure tree for high prasure alarm with tats .  

3.8 DIAGNOSIS: PI-CHARTS AND PROCESS DATA TABLE 

The screens are identical to the ones of the on-line task. But the displayed values are corresponding to the state 

of the event. 



3.9 CONFIGURATION: FAILURE TREE MAINTENANCE (RULES) 

The maintenance of the failure trees mainly takes place within Nexpen Object. 

a) The order of failure sections and the contents of the tests are represented as backward-chaining rules and 

fonvard-chaining contexts. Any cbanges are performed in the rule editor. 

b) In special cases it is necessary to cbange the type of a node. This operation can be carried out by simply 

changing from one class membership to another. 

c) The test thresholds are not stored in Nexpen; they have to be set in a table (see next sub-section). 

3.10 CONFIGURATION: DEFINITION OF DATA POINTS 

The blackboard of EnDEx is realised in MS-Excel. 

The configuration spreadsheet contains several tables. The main definition table holds name, value and unit 

of each data point. 

For each failure tree a separate table is set up containing the threshold values for the various tests. 

4 HVAC DIAGNOSTICS OF ENDEX 

4.1 PLANT CHARACTERISTICS AND MAINTENANCE 

HVAC plants are all quite similar in their general set-up, but very different in detail. It's stated that each plant 

is a 'prototype" made up by standard components from different vendors. The components are linked by pipes 

or air ducts incorporating many different primitive elements such as throttles, fire dampers, valves etc. The 

status of these devices is normally not monitored. 

The plants are equipped with several security devices that switch it off in emergency situations. They generate 

alarm messages that can serve for failure detection. Semors are normally only used for control purposes, en- 

ergy measurements and for security functions. 

Expen interviews have shown that in practice only a limited number of alarms occur, but with many different 

causes. Failures leading to a breakdown are in most cases single faults. 

The mcu'nfe~nce actions are undertaken by specialists kom the domuins of 

heating, 

refrigeration, 

air conditioning, 

control systems and 

the electrical pan. 

In future. each service group maintaining DDC controlled plants will be equipped with portable PCs to access 

the plant status or the information from a central service station by means of a standard modem link. 



4.2 PRECONDITIONS 

Preconditions and effects on the reasoning of EnDEx: 

I .  Since no physical interaction is possible in the case of remote access the order of questions in the diagnos- 

tic process needs not be taken into account. 

2. For safety reasons no active tests have up to now been allowed by the customers. A remote diagnostic 

system has to come out with a pmsive data acquisition. However, the optional input of human observations 

should be possible. 

3. A simple failure detection is implemented in the plant (security switchps) or in the DDCcontroller 

(detection of no-start, of exceeded comfort intervals etc.). 

4. Most parts of the HVAC-plant can be treated quasi-sfationmy. Dynamic models are possible but not neces- 

sary. 

5. The potential failures or at least failure groups can be foreseen. No failure synthesis has to be performed. 

4.3 EXPERT SYSTEM REASONING 

A special approach is made to the deduction of the causes. It is based on the fault tree analysis known in safety 

technology. For its diagnostic use, however, the reasoning direction and the resolution mechanisms have to be 

changed. 

Fig. 11: From plant structure and componentjiinction to the failure tree. 

The reasoning process follows a failure section isolation scheme. Starting from the place of the failure detec- 

tion (e.g. alann from the high pressure switch) the search goes on to the neighbur failure sections (FS) (see 

Figure 1 I). This neighburhood is defined by information, mass flow and energy transfer. According to the 

experts experience, certain FS's can be dropped if not relevant, or directly subdivided if no test for that FS 

can be found. 

Each supicious FS has to prove itself by a test, based on an expected failure or function behaviour compared 

to the actual state. A test may be performed on relevant and robust process features that are derived from di- 

rect sensor measurements, controller states or characteristic values calculated with analytical or empirical 

models. 



From one established FS, another set of sub-FS is considered and tested until an end hypothesis can be found 

or until no sub-FS can be established. The last mentioned condition is important in order to draw conclusions 

even if no end hypothesis can be found. This leads to a more "graceful degradation" than the one of other 

systems. 

4.4 DISCUSSION 

The proposed expert system method comprises both heuristic and model - based diagnosis. The structure as 

well as the tests of the failure tree are strongly derived From a mental or  described model of the plant s!mccure 

and failure behaviour. But the form is still Free allowing heuristic knowledge to be embedded, which is rec- 

ommended to take advantage of the a priori knowledge of experts e.g. in order to exclude theoretical cases that 

never occur in practice. 

5 KNOWLEDGE ENGINEERING METHODOLOGY 
This section describes the knowledge engineering methodology used to generate the failure tree. It is derived 

From practical experience and h m  [I] to [ 5 ] .  The full methodology is explained in 161. 

5.1 ABOUT KNOWLEDGE 

According to Table 3 the diagnostic task incorporates reasoning over various accessible knowledge resources 

with different orientation and type. 

I I I - simplifications 
model - based l formal I function oriented I - ~ l a n t  scheme I 

I oriented plant 
expert strategy 

knowledge 

Tab. 3: Different bwwledge resources can be accessed within the diagnostic erpert system. 

A major challenge of a diagnostic system is the integration of these different resources. In conmast to other 

fields, the real component behaviour is poorly h o r n .  As the components are quite cheap and the competition 

on the market is tough, no manufacturer is ready to publisb more component behaviour data than necessary for 

the layout at a nominal operating point. 

This is one of the main reasons why simply a classic model -based approach cannot be applied. 

For a remote diagnosis the data of the plant state have to be gained From sensors and controller-states only. 

informal 

- component functions I processes 
- control strategy 

knowledge I 1 ented I - failure statistics 
case based 1 formal I diagnosis ori- I - data form diagnosed cases I 
state data 

diagnosis ori- 
ented 

- diagnostic strategy 
- shortcuts of the diagnostic process 

formal none - data of the actual operating point including 
temperatures, pressures, energy etc. 



5.2 EXPERT INTERVIEWS AND KNOWLEDGE STRUCTURING 

A key issue is the elicitation and representation of the knowledge. As a result of that work, the diagnostic 

knowledge should be compiled into the form of explained failure trees. 

A clear but open methodology helps the novice knowledge engineer to get a complete diagnostic tree structure 

out of the plant scheme, out of qualitative knowledge of the component functions and out of expea knowledge 

(see Figure 12): 

Fig. 12: Multiple approach to thefailure nnntysis. 

A. General problem analysis (together with a maintenance engineer): Overview of the functions and con- 

trol smtegies of the plant and identification of the weak points within its subsystems. 

B. Analysis of the component behaviour concerning functions, failure modes and its local consequences 

(by the knowledge engineer). 



C. Analysis of the system tasks (howledge engineer with expert): Building up a functional hierarchy for 

the main tasks of plant and subsystems. 

D. Failure tree analysis (together with a domain expert): With the acquired howledge the failure tree can 

be set up. Tests have to be found for each decision. Optimisation of the tree. 

E. Input of the failure tree into a diagnostic program, testing of the system (howledge engineer). 

Discussion: 

In contrast to the approach of some existing diagnostic tools the above described failure tree does not corre- 

spond to a hierarchy of functions but rather to a topological structure according to the components in the plant. 

6 SUMMARY AND DISCUSSION 
With the demonstration prototype of EnDEx the following issues could be shown: 

- EnDEx as an open framework is able to embed several different tasks to run simultaneously. 

- A uniform graphical man machine interface facilitates the handling of the different tasks. 

- Common data can easily be exchanged between the different applications by means of a shared blackboard. 

Tl is  is accessed by the Widows  dynamic data exchange facilities (DDE). 

- For cost-effective protorype development. a PC-based solution with standard software can be chosen. 

L i t a t i o n s  may arise in case of real-time-tasks. Remote access to the plant can be performed with standard 

modem links and remote access or remote control software. 

- The on-line process visualisation task of EnDEx comprises the indication of the process state in PIcharfs, 

data tables and in the form of gauges. 

- The diagnostic task of EnDEx comprises the various indication of the process state at the time of the event. 

The data is processed in the expert system. The results are displayed in the graphical form of an failure 

tree. On selecting a tree node more information about the meaning of that specific failure section, about the 

tests and the actions to be taken are given. 

- In order to develop EnDEx from prototype to a commercial product, the following functions would have to 

be realised: Continuous data acquisition; alarm history management; replay and reevaluation of former 

failure situations. 

The second part of the paper has shown the use of a knowledge engineering methodology: 

- The failure tree analysis can be carried out from an analysis of the component behaviour (causeeffect- 

relations) and an analysis of the system tasks (hierarchy of the system functions). Tl is  method incorporates 

model - based as well as heuristic approaches. 

- The model - based pan helps the knowledge engineer to achieve a completeness of possible causes whereas 

the heuristic style of rule implementation offers a great flexibility. Several different howledge resource 

types can be embedded. The use of fault descriptions instead of detailed component behaviour models 

dmtically reduces the development time over the one with a model -based approach. 



- The drawback of the methodology compared to fully model - based approaches is the amount of papenvork 

prior to programming. Also after a topological change of the plant, a mental re-engineering phase has to be 

carried out. 
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Abstract 

The W A C  system is one ofthe mosl complicated .systems whose subsystcrns interact each other. so that its pedormance 

can not be optimized except for being considered liom the total ?stem point of view. Another important idea is that 

faults take place anywhere in the production and operatkin stage. so that l ib  cycle commis..ioning, o.g. the life cycle 

B O D ,  is r e q u d  in the h u e .  The present papR k u s s e s  the method of total ?stern BOFD tiom the life cycle point 

of view. In case of the water thermal storage vstem, most of the design and convol taults appears as the abnormal 

temperature profiles in the t d .  An bottorn-up process for thc thermal storage faults utili7ing the symptom?; in the 

temperature profiles and other process variables is also dixussul at the latter part of thc papcr. 

1 BOFD IN TOTAL SYSTEM 

1.1  TOTAL HVAC SYSTEM 

Thc flow diagram showing four kinds of subsystems in a I-IVAC total ?stem, thc heat generating plant, air and water 

vansporting, air handling unit and building model is shown in Figure 1, to which the energy sourcc and BEMS may 

be added. 

Figure 1 Flow Diagram of HVAC Total System 



It is clearly seen from this figure how additional energy consumption is needed to drive h e  system and hen  reduces to 

t h d  energy to warm up our environment Building Optimization, or BO, is to minimize energy consumption without 

sacrificing, or rather to say optimizing, human environment. 

1.2 THE BASIC STRUCTURE OF PRIMARY ENERGY CONSUMPTION 

Each item of the Building Services Engineering that is. air-conditioning, sanitary enginwring, lighting, power supply 

or transpon systems, has h e  load which results in the 'seconda~y cnsrgv consumption' evaluated by h e  final stylc of 

energy, such as electricity, and then in the 'primary c n s r p  consumption' whch is evaluated as h e  oil wnsumption. 

The figure 2 [ I ]  shows how an initial load causes a cznain amount of e n m p  consumption in h e  course of energy 

transfer, m g y  transport and pumping energy from a low temperature to a high temperature. The philosophy of energy 

conservation technology is clearly shown in the diagram, that is, 

fzzGzGz4 

Figure 2 Basic Structure of Orimary Energy Consumption 



I )  to reduce thermal loss 

2) to reduce mixing energy loss[2] 

3) to recover heat andor power 

4) to make use of natural energy such as solar energy, wind ene rp  and temperature ditferencc fiom room temperature 

such as well water, surface water and atmosphere. 

5) to reduce air andor water transport energy 

6) to maximize the efficiency of energy conversion 

7) to maximize the COP of heat pump 

8) to minimize harmful effluent gas on the global environment 

1.3 THE ROLE OF OPTOMAL DESIGN AND BOFD 

n e  Building Optimization can only be performed atier the optimal design based on minimum m e r p  consumption with 

masimum environmental satisfaction is realized, and alier an optimal control h r  each subsystem based on a practical 

performance function with constraints and FDD for system components is accon~plished as well. 

Any origjnal dmgn n d y  includes faults or inoptimality. Also, no y l e m  has evrr proved to operalc satisfactorily 

without any adjustment of design factors as well as various parameters in control a l g o r i h s .  NI the componenlr 

deteriorate, reduce their performance and offset their characteristic values tiom their i ~ l i a l  values 

Even if no deterioration occurs, control parameters, which should guarantee satisfactory environment and life cycle of 

actuators, must be optimally tuned in the course of load change. Thus, the BO of total HVAC system is a summed up 

result of the BOFD of each subsystem. 

1.4 THE WAY TO SUCCESSFUL BOFD OF THE TOTAL SYSTEM 

The way of BOFD in the total HVAC system will be establishni as fbllows. 

1.4.1 Around the time of Completion 

1 )  Review the design documents and understand the plulosophy of design, the targets of energy and environmental 

performance that the designer guarantees to the ordrrer. 

2) Review the commissioning documents and understand how well or how poorly the system satisfies the design goal 

at the time of completion. If there are no commissioning documents, make use of reports of system adjustment by 

consmctors and completion documents of components manufacturers. 

3) Review the operational manual which must have been prepared by designas for fundamental &sign concept and by 

control manufacturers for detailed specifications. If thcre are no operational manuals prepared by designers, it should 

be requested to submit them, because they must have heen obliged lo submit it. 

4)  Make sul'e if the full training course for operators on BEMSBOFD operabun at the manul'acturms training site is 



prepared before delivery. 

Commissioning using emulatorIteSer at the factory site is desirable. And understand the methods and the objects of 

m t o l  algorithms and check if the algorithms are Sill appropriate at thc time of completion. Slatus of occupancy may 

have changed during the course of construction. 

1.4.2 During one to two year after completion 

Two years of experience are necessary to identify the HVAC systcm performance and to accumulate data for learning 

proccss for BEMSBOFD. Two years will be an important p a i d  tiom the viewpoint of guarantee of the system in 

general. The following are the must items. 

I )  Make sure ifeach function of BEMS works satisfactorily. 

2) Make notice of how control functions and algorithms nork well and realize the initial targets of the conl~ols. 

3) Watch the movement of actuators ifthere i re  no hunting movements at a u-rtain time or season. 

4) Compare the energy performance with the reference values and the goal of design 

5) Analyze the environmental elaims tiom occupants. Check the conceived causes of the claim from the hllowing. 

a) Merent load condition from designed value 

b) insufficient adjustment of system components during conslruction. 

c) malfunctioning of system components 

d) set point error 

r) insutficient capacity at the design stage 

1) improper zoning design 

g) excessive requirements of occupants over the design value 

h) fundamental problems included in the conventional design, such as neglected radiative effect in comfort 

desigdcontrol. 

6 )  Analyze the optimality of optimal conlrol based on the performance function and conslraints. 

7) Enrich the knowledge database from operators' experiences 

8) Implement BOFD algorithms in combination with all items above described. 

Operators should not hesitate to ask the designem, constructors and manufacturm of the system, if there are any doubts 

in the system design, adjustment data and component performances. 

1.4.3 After one year 

BOFD &ware described in this manual and the technical reports can be applied, if the system has these functions. In 

case of design and commissioning faulLs Chapter 6  ol'the Source Dwk should he refmed. 

For each subsystems as classified in Fig. I, corresponding s~xtions and technical reports will be helphl. However, it 

should be noticed that these methods are not sufficiently verified, so that operators should not fully depend on the original 



algorithms, but consult with the vendors or consulting engineers who are responsible for the BOFD system. 

Top-down approach for the total system is also described in the next chapter, BOFD in the thermal storage system. 

Watching thermal storage characteristic values may ohen lead to BO of total system, because the storage tank is the 

buffer of the faulty operation phenomena as well as the heat. The next chapter should be reffered. 

1.4.4 Introduction of the new BOPD system to the existing system 

BOFD system is under development for now. However, it is a v q  ek~ecting technology for the Future to realize both 

energy c o m a t i o n  and to parantee environmental satisfaction during life cycle of the building. Costhenetit analysis 

is advised to cany into effect in case of new introduction of BOFD system. referring the Section 5.5 of the Source Book. 

2 BOFD SYSTEMS IN THERMAL STORAGE SYSTEM (TES) 

2.1 FAULT TREE ANALYSIS WITH TYPICAL FAULTS AND CAUSE-EFFECT 

RELATIONSHIPS 

The reference system and its typical faults has been shown ill the Section 3.4 of the Souree Hook. More detailed 

explanation was reported in references[3]. Simply expressed system diagram is shown in Figure 3. 

Caw-Effect relationships were listed in the reference[4] in which symptoms for implementation and relalions among 

BOFD subsystems are also included. Several kinds of fault simulations will strengthen the qualitative knowledge by 

e q a t s  to include into knowledge database and further discover interactions among faulty phenomena. These knowledge 

lead a fault tree to diagnose the system and localize the point oftarget as the candidate ofthe cause of faults. In order to 

attain a s u d  result, try and error method will be applid and fault simulations during diagnosis may be necessary. 

note: V W V  : variahle water volume system. CWV : codan1 wata  volume s y l m  

Figure 3 Simplified Reference System Diagram d T E S  



2.2 STORAGE EFFICIENCY AND IMPORTANT FAULTS 

The storage eficiency[5] as defied by 

plays an imponant role in BOFD. The Qs is lhe heat to be stored, or the heat actually availlable, A 0 is lhe weighted 

mean tempaatlne difference through the coils and Vois the volume of the t a d  water. The eficiency is largely effected 

by design factors such as temperature difference across the cooling coil, allowable temperature rise, or d o w  in case of 

warm storage, system control methods and air-conditioning load profile. The estimation table of lhe storage efficiency 

for the multi connected complete mixing ranks based upon factorial etfects by three levels of simcant factors is s h o w  

in Table 1[5][6][7], whch has been revised fiom lhe original table inthe bibliogaphy[5]. 

Table 1 Signficant Factors and Factorial Effects of Storage Eficiency 

INTERACTION (IR) I 

note 
B: mio  of Minimum load to Marimurn load in a day at !he peak load C: ~rirtanee of Conctant wntm Delivery Trmpsraturc mnml, 
refer Fiwrc 3 D: ratio load ratio of VWV synm load to CWV r y ? m  load F: ratio o f  allowable tmpsrnrure riw of&livny lank. to - 
design tmpsrnfwe diffnsnsc rhrough Ihe mil at p k  load G: n u m b  of Wlk. H: szhedule of l h l  nmge opcratim 

When a highly etfieient system falls into faulr). state due to malkimctioning of these significant factors for storage 

efhiency, it is easily coneeived that the system may nut sutkiently atford the air-conditioning load, even in case of 



partial load, which mw!result in some kind of abnormal tanperature profiles in Lhc t d .  This leads to applicability of 

pattern recognition melhod for ROFD with temperature profile analgses[8]. 

2.3 KNOWLEDGE DATA THROUGH FAULT SIMULATION 

Thermal storage system simulation necessarily includes HVAC total system, because thermal storage tank is not used 

solely by itself, but m m  be combined with secondq HVAC hytem as well as p r i m q  heatinglcwling plant. Therefore, 

the temperature transition profiles represent all the thermal incidents which are being realized in the whole system. In 

the same way all the faulty operation in the y'stem must result in Lhc abnormal profiles. 

(a) Fault in V 1 @) Fault m V2 & V3 

"ole: hor i rmh l  axis is time for the load profiles and lhe n u m k  o f  Llnk for lhc temperatwe profiles 

Figure 4 Examples of fault simulation results, load pmfdes (left) and temperature profiles (right) 



In the same manner as practiced in establishing ezimation tables of storage eficicncy using design of experiment [5][6], 

fault simulations with some mica1 faulty conditions[7] were perform& and produce a lot of new knowledge for BOFD 

concaning to the fault symptoms and relationships between f'aulLs and ahnormal tumperature transition profiles[4][8]. 

Figure 1 shows examples of fault simulation resulls[4]. 

2.4 APPLICATION OF PHYSICAL MODEL TO INSULATION AND WATER PROOF 

DAMAGE 

The application ofphysical model to the on-line fault detection caused by insulation damage andor water proof damage 

was applied[9]. Physical model of the multi-connected complete mixing fads was developed and nvo kinds of 

parameters, one representing the heat transference cmficient of the tank wall and the other representing the effective 

volume ratio, was introduced. 

N o d  valusofparametm should be identified beforehand during normal operation. Fault simulation studies showed 

the method successfully applicable, while in the actual ?stem i t  waq claritied that lots of noises, such as meawing 

errors, sensor errors, data transmission errors and some manual errors in reading and copying should be eliminated 

beforehand. 

2.5 TEMPERATURE PROFILES AND PATTERN RECOGNITION OF FAULTS 

The temperam profile means the visual graph of the temperature distribution ofthe t a d  or tanlis in the course of time. 

?here are two ofexpressim for the twodimensional temperature profile. Type A, shown as Figure 5, is the graph 

in which the horizontal axis is the time of a day and the parameta is the number of tanks. The other type B, as shown 

in F i v e  4, has the horizontal axis as either the position of the tank or the number of tanks curresponding to whether 

the tank type is thermal .&titied tank or themulti-connected complete mixing tdv[5][6]. The m l  storage is supposed 

for explanation purpose in the following. 



The type A is used in BOFD with physical model for the insulation andlor water proof damage.[9] The t)pe B is 

appropriate to recognize the macroswpic performance of the thermal storage tank and use for defining storage 

eEciency[5][6][7]. Acritical value is the limit temperature rise at the coolest side of the tank which directly affects the 

cooling power of the coil in AHU. The characteristic parametm Ibr BOFD in this profile are the phase, cycle and 

amplihlde ofthe curbs. Ditfuent kinds of faulls wd1 r w l l  in dinerent kinds of patterns with corresponding characteristic 

parameter values[8]. 

In case ofnearly peak cooling demand the m a h  temperature rise in tlic ciwlest pan is an easiest and best parameter 

of symptoms to detect the existence of any faults. in the otl-peak cooling demand the value does not always become 

abnormal, .w that the pattern recognition mcthod is useful for hoth fault detection and diagnosis. These characteristie 

values as described above analyzes directly in time domain, as shown in two dimensions, F i p e 3 ,  as well as in three 

dimemions as shown in Figure 6, or in Fourier domain as shown in Figure 7[81 Actually, mapping data using some 

kind of parameters are useful for FDD as shown in Figure 8 just as used in the Fault Vector Direction Method[lO]. 

(a) three dimension graphs for a normal case (b) hree dimension graphs for a faulty case 

note for axa :  m u m k  oflank. yl imr  z:tmpraNre 

Figure 6 Three Dimensional Temperature Profiles tor the same case as in Figure 4 

(a) Fourier domain graph for a normal case (h) Fourier domain gaph for a faulty case 

note for axes: s: cosine compnenu. y: sinc cumponcnb. z: Fourier value 

Figure 7 Temperature Pmtile as expressed in Fourier Domaintor the same case as in Figure 4 



Figure 8 Example of Data Mapping on the Plane 

2.6 BEMSBOFD SYSTEM STRUCTURE 

The BOFD systm is to be combined with the BEMS, either cxisling or not, in practical applications. The figure 9 shows 

an example smcture of lhe BEMSBOFD system[l I]. 

Knowledge database m i s t i n g  of various reference values, esperts knowledge and updating databaw with statidcally 

analyzed on line. 

The main frame of FDD y s l a n  wnsisls of the software establishing FTA, cause-effect relationships, inspection manual 

and video display of condition charts. The FD software as described in Chapter 4 of lhe Source Bmk may be included 

eilher in the mainfi-ame or outside lhe mainframe. 

On-line data from the field are collected by the BEMS which includcs data loggmg and analyzing software, alarming 

sobare ,  predetRmined and regulatory and wntrol software, optimization control software, maintenance software and, 

sometimes, the FD software. 



Figure 9 BEMSIBOFD Structure 
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Abstract 

This paper briefly describes the fault diagnosis method as developed by the authors for 

application to W A C  systems. The proposed diagnosis method is featured by the fact that it aims 

a t  improving the technical ability of the personnel in charge of maintenanceloperation of HV.4C 

systems. This method is intended to help the maintenance personnel detect the cause of 

improperly high room temperature by the aid of the " fault tree " formulated on the basis of the 

experts' knowledge. (The proposed diagnosis method is hereafter referred to as " the FTA 

system ". ) Here, FTA means Fault Tree Analysis. For verifying the validity of " the FTA system 

" , some simulation studies were conducted by applying the FTA system to a number of faulty 

W A C  system models. 

1. Introduction 

.4s M e r e n t  types of HVAC systems are in use, different kind of faults naturally occur in them. 

Generally, it is not easy for an average W A C  system maintenance crew to detect faults in HVAC 

systems, and even if they are notified of a fault by the building's occupants, it is often difficult for 

them to diagnose the precise cause of such fault efficiently ; and it is in most cases more diffkult 

for them to remedy such fault. Thus, all that most maintenance crews can do when they are 

notified that the temperature in certain rooms is excessively high is to reset the temperature for 

the problematic rooms to a lower degree. Various factors including not limited to equipment 

deterioration, control system malfunctions and internal heat generation exceeding the HVAC 

system capacity can cause excessively high room temperatures, Hence, it is important for the 

maintenance personnel to detect the real cause of the trouble out of numerous possible causes 

and eliminate the real cause quickly. To make this possible, the building maintenance crew who 

keep vigdant watch of the system should be able to make an appropriate diagnosis of the trouble 

cause quickly. The fault hagnosis method proposed by authors (i.e., "the FT.4 system" ) has two 



main features : one is that various on-going measured values concerning the W A C  system are 

displayed on the control room screen in a graphic form easily comprehensible for the 

maintenance personnel ; and another is that the system is designed to enable the maintenance 

personnel to diagnose the cause of the problem by the use of the " fault tree " formed on the basis 

of the experts' knowledge. 

2. The FTA system comprising a part of BOFDD 

The hierarchy of BOFDD total structure and the FTA system is shown in Fig.1. [I] 

Here, BOFDD means Building Optimization and Fault Detection and Diagnosis. 

As you follow the chart vertically from below to upward, you will be able to see that the 

optimizing process of the objective system increases. As you follow the chart horizontally from 

right to left, you will be able to see the process through which the faults (or the anti-optimizing 

factors) are  eliminated. The position of this system in BOFDD is shown in Fig.1 as " Fault 

Diagnosis". Once any fault has been detected , this system enables the maintenance crew to 

diagnose the cause of the fault utilizing the experts' knowledge and a t  the same time the system 

indicates to the crew a proper method by which to eliminate the cause of the fault. 
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Fig.  1 Hierarchy of BOFDD (11 



3. Deacription of the reference ayatem 

The reference system which was used in developing the FTA system is described in this section. 

If an object system is similar to this reference system, the FTA system can be used to diagnose a 

fault. 

(1) Construction of the reference system 
Construction of a reference system is shown in F i g 2  

This reference system is a VAV system without terminal reheating, and no preheating is included. 

Fig2 Construction of the reference system 

(2) Control method 
The HVAC system control method compatible with the FTA system is described below and the 

design parameters of the model system are as shown in Fig.3 and Table. 1. 

a) Control for the VAV damper opening 

The VAV opening is regulated by P control. The room air temperature is set a t  26'C, with a 

proportional gain of 0.5. The VAV damper opening changes within a range of 40-100% when the 

room air temperature is within a 25-27 ' C range. 

b) Supply air temperature control method 

The two way valve opening for the cooling coil is regulated by PID control to keep supply air 

temperature within 14.6-18.7 ' C range. 

C) Supply air volume control method 

The number of revolutions (r.p.s) of the supply fan is controlled by the measured pressure inside 

duct. The pressure is set a t  249 Pa at  a 213 point of the total duct length &om the entrance of the 

duct. 



Room a i r  Temp. ["CI Propotional Band 

Fig.3 Control algorithm of VAV damper 

Table.1 Design Parameters of Controllers 

I SUPPLY AIR TEMPERATUKE 1 0.01 I lOO(s) I 0.001 ( s )  ( 

CONTROLER 

(3) Inputs to the FTA system 

The information that are used for diagnosis is shown in Table.2. 

KP 

FAN SPEED 

Table.2 indicates the information that  is usually completed within the local controllers and is not 

reported to the central supervisory machine. Such items of information include a VAV opening 

signal. The FTA system can be used more advantageously and more conveniently, if the amount 

of information required for diagnosis decreases. This, therefore, poses a problem which must be 

Ti I Td 

0.20  ( 200(s) ( 0.0005(s) 

solved in future 

VAV 

Table.2 Information by FTA system inputted 

0. 5 . 

.Room air temperam 
Supply air temperahue 
Supply air fan speed 
Supply air fan static pressure 
.Inlet water temperahue of cooling coil 
Outlet water temperahue of cooling coil 

-CONTROL SIGNAL 
.Load reset signal of VAV 
.VAV opening signal 

-SET UP VALUE 
Supply air temperahue 
Supply air fan static pressure 
,Inlet water temperature of cooling coil 

-ALGORITHM 
Control algorithm of VAV 

. 



4. Process of making the fault tree 

The process of making the fault tree which is utilized when in diagnosing the cause of 

" excessively high room temperature" is described in this section. An HVAC system consists of 

various sub-units such as rooms, AHUs, VAV box units, piping systems, and duct systems. Various 

factors in each sub-unit may trigger faulty condition. Thus, the authors made a fault tree by 

arranging the relations between the causes and the condition of faults in these sub-units. 

Firstly, a fault ;rising from excessively high room temperature is assumed, and the probable 

causes of such a fault can be enumerated below 

EVENT : " Room air temperature is excessively high " 

PROBABLE CAUSES: 

a. Inadequate VAV supply air temperature 

b. Excessive internal heat generation 

c. Lack of VAV supply air volume 

d. AHU start is too late 

e. Inadequate position of air diffuser 

f. Wall insulation not meeting design requirements 

g. Windows larger than those specified 

h. Keeping windows or doors open 

I. Inadequate use of shade 

Some of these causes may be confmed  on site while, the other require further checking in detail. 

Second, the causes of nine probable causes listed above can be considered. As an example, two 

causes are selected. " Inadequate position of air diffuser " and " Inadequate VAV supply air 

temperature " will be considered the examples of the former case and the latter case respectively. 

Next, the probable causes of" Inadequate VAV supply air temperature " can be enumerated as; 

EVENT : " Inadequate VAV supply air temperature " 

PROBABLE CAUSES: 

a.  Inadequate supply air temperature from AHU 

b. Poor insulation of duct 

Next, the probable causes of"  Inadequate supply air temperature from AHU" can be enumerated 

as; 

EVENT : " Inadequate supply air temperature from AHU " 

PROBABLE CAUSES : 

a. Heat load exceeds a design capacity of cooling coil 

b. Failure of supply air temperature controller ......... etc. 

The process described above was repeated to make up fault trees formed by the events (i.e., the 

faults) and the probabIe causes thereof. A fault tree applicable to a cause for an excessively 

highAow room temperature shown in Fig.4. [3] 
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Fig.4 Fault tree for the fault that the room air 1.empwalure is excessive highllow 



5. The diagnosing method by using the fault tree 

The flow diagram of the diagnosis using "the FTA system" is shown in Fig.5.[2] This system asks 

the maintenance personnel questions and presets the diagnosis result. When diagnoses are made 

by the use of the fault trees, the method for judgmg whether or not the measured values are 

compatible with the rules of the diagnosis becomes a highly important factor. Hence, proper 

judgment standards are required for all cases. For instance, whether or not the room 

temperature is really too high can be readily ascertained by comparing i t  with the preset 

temperature. However, if the proposed diagnosis method, is to be really trusted by the 

maintenance personnel, the process of such diagnosis must be clearly shown and understood by 

them. To make this possible, the diagnosis method includes the use of a screen on which the 

judgment standard as well as the measured values is displayed. What is displayed on the screen 

is referred to as "operating condition charts." However, there are also the cases when the data 

and information necessary for preparation of such "operating condition charts" are not available. 

Therefore, fustly, an attempt is made to detect probable causes of a fault by the use of "operating 

condition charts," and after such probable causes have been narrowed down: real causes are 

ascertained by on-site visual inspection as necessary. In this chapter, the essence of "the 

operating condition charts" as well as the utilization method and the judgment standard for some 

of such charts are described. The judgment standard given here has been obtained through 

analyses of the data of a number of simulated cases (i.e., the data nine cases including one 

normal fault-free case). 

@Installation of FTA system 

I Iinowledze of desizners. contractors. maintenance versonnel ( 
1 @Update the knowledge 

to FTA system 

@FT diagnosis. 

Show the result 

Determine the causes Uaintenance 

Select rules personnel 

I 

FTA system BDetectine faults 

?r faults 

.MU systems 

Fig.5 Flow diagram of the diagnosis with ETA system [2] 
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(1) The room sensible heat load variations by the use of "the operating 
condition chart A" 
1) Composition of the "operating condition chart A" 

This " the operating condition chart " consists two of sub-charts. The lower sub-chart shows 

changes in room sensible heat load and the design load. This example shows that sensible heat 

load exceeds the design load value during 11:40-11:50 and 13:50-14:OO. 

Fig.6 The operating condition chart .4 

2) Faults indicated by this chart  

" excessive internal heat generation " 

" insufficient wall insulation not meeting the design requirement " 

" windows larger than those specified " 

" window I door is open " 

" inadequate use of shade " 

3) How to interpret the  "operating condition chart An 

O Judgment as to whether or not the sensible heat load in any room is in excess of the 

specified value is made by checking time-sequential changes in the air temperature and 

sensible heat load in that room. 

O By checking the time-sequential data, judgment is made when the room sensible heat load 

exceeded the design load (in other words, when a fault in this respect took place). 

4) Data necessary for forming the "operating condition chart  A" 

O Room sensible heat load (computedvalue) 

Q = C  X ( T I  - T 2 )  X V 

where, C : a constant 

T 1 : room air temperature (=re tu rn  air temperature) 

T 2 : supply air temperature 

V : supply air volume presumable from VAV opening signal 

@ Design room sensible heat load 



(2) Supply air temperature control by using the "operating condition chart B" 
1) Composition of the "operating condition chart  B" 

The chart given below indicates the changes in the supply air temperature in reference to the 

preset temperature and the control signals, The charts also indicates the time period during 

which the measured temperature exceeded the preset temperature (13:20-13:40) 

SUFPLY 
AIR 
TEMPERATURE 
I ' C )  

VAVl RESF 

VPPE RESF 

VAV3 RESF 

TIME 

-+SET 3 i N T  
MEASUREMENT POINT 

Fig.7 The operating condition chart B 

2) Faults indicated by this chart  

" VAV supply air temperature is inadequate " andlor 

" supply air temperature is set inadequately " 

3) How to interpret the  'operating condition chart  B" 

@ Judgment as to whether or not the supply air control is satisfactory is made by referring 

to the preset supply air temperatures and the time-sequential data on actual supply air 

temperatures. Under normal conditions, the changes in the actual supply air temperatures 

follow those in the preset ones with some time lags but almost in a similar way. In this case 

study, a temperature difference of k2-C and a time lag of 30 minutes or less were 

considered to be allowable. 

Judgment as to when a fault occurred in the supply air temperature control is made by 

reference to the time-sequential air temperature data. 

@ Judgment as to whether or not the supply air control is satisfactory is made by referring 

to the mode of reset control signal and the time-sequential data on actual set point of the 

supply air temperature. If the system is working satisfactorily, the supply air temperature 

changes when the load setting signal is given according to the preset supply air 

temperature program. In the system now being discussed, the supply air should change 

within a range of 14.6%-18.7". 

@I The time sequential temperature data is frequently examined so that, if any fault occurs 

with respect of the reset control, the time of such fault occurrence can be correctly 

determined. 

@ Symbols in the charts: The thin line-and-circle symbols and the thick line and symbols 

represent the actual supply air temperatures and the preset supply air temperatures 

respectively. 



4) Data necessary for forming the "operating condition chart-B" 

@ supply air temperature 

@ preset supply air temperatures 

@ preset V.AV signaling points as estimated from the room temperature and the VAVcontrol 

algorithm. 

(3) VAV control by using the "Operating condition chart C" 
1) Composition of the "Operating condition chart  C" 

The "Operating condition chart-C " consists of four sub-charts. The sub-chart on the left side 

shows the algorithm related to VAV damper opening with respect to the room temperature as 

seen in Fig.8. The three sub-charts to the left show in a top-to-bottom, the room air temperature 

variation. VAV degrees of opening and VAV damper opening deviation. The chart given here 

indicates that the VAV damper for Room-3 was in some trouble during 12:30-14:OO 

inadequate data 

Fig.8 The operating condition chart C 

2) Fault indicated by this chart 

" lack I excess of VAV supply air volume " 

3) How to interpret the "operating condition chart C" 

@ The relation between the room air temperature and VAV opening signal shown in the chart 

indicates that the VAV was opened to an incorrect position. Under normal conditions, VAV 

opening control signals are controlled according to the control algorithm. (In this system, the 

degrees of VAV opening are supposed to change within a range of 40%-100% in proportion 

to the room air temperature that changes within a 25°C-27°C range.) 

@ From the time-sequential data which indicates a certain deviation from the algorithm, the 

time when some trouble occurred to the VAV control system can be determined. In this 

specific case, judgment was based on the condition that deviation exceeding i 2 0 %  from the 

preset value would regards as a fault. 



4) Data necessary for forming the "operating condition chart C" 

a room air temperature ( return air temperature ) 

@ VAV opening signal 

O conditions under which the VAV control algorithm was established 

(4) Control of supply air fan speed by using "Operating condition chart D" 
1) Composition of the "operating condition chart D" 

The captioned chart is composed of four sub-charts as seen in Fig.9. The sub-chart in the left 

shows the fan speed pressure relation of the supply fan while those in the right show changes in 

the pressure, the fan speed, and the fan speed. deviation of the supply fan. 

This sample chart indicates that the supply fan pressure deviated from the design pressure 

during 10:OO-14:OO 

SUPPLY 
FAN ............... C i C E  

inadequate data RATE 
2ATE ( rPS I 

ClCLE RATE 
3:MAiiON 
( % I  

I 
250 3 0  

SUYLY FAN P W U R E  ( Wa I 

Fig.9 The operating condition chart D 

2) The cause of a fault indicated by the chart 

" The static pressure was too low or too high " 

3) How to interpret the "operating conditionchart D" 

@ From the relation between the fan speed of the supply fan and the static air pressure 

developed by it, it may be judged that the supply air fan was at fault. Lf the conditions had 

been normal, the supply air fan would have developed generally stabilized pressure 

irrespective of the fan's fan speed In this sample case, the static pressure developed by the 

supply air fan was taken as 249 Pa with an allowance of f 20%. 

@ The time at  which any fault occurred at  the supply air fan can also be determined. 

4) Data necessary for forming the "operating condition chart D" 

@ The fan speed of the supply air fan 

@ The static pressure developed by the supply air fan 



6. Example of FTA system application 

In order to verify the effectiveness of the FT.4 system, the system was applied to some HVAC 

system models developed by the use ofHVACSIM+ in such a way as to contain various faults. In 

this paper, a mode1 in which the controller reguIating the r.p.s. of the supply air fan is a t  fault 

will be selected for a case study. 

Cause of a fault : Inadequate range setting of the pressure sensor 

(The value was amplified ten times.) 

A process of diagnosis by using the FT.4 system is summarized below. 

(1) Investigating the air temperature in each room. (Fig.10-a,b,c) 
Although the room air temperature in each room is within the predetermined range (25-27.C): 

the air temperature in Room-3 is on a little high side; so, analysis will be conducted for this room. 

Fig.lO-a Room temperature and internaI heat generation in ROOM-] 

ROOM 
SENSIBLE 
HE.:T LOAD 
( k c a l  

Fig.10-b Room temperature and internal heat generation in ROOM-2 
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Fig. 10-c Room temperature and internal heat generation in ROOM-3 

(2) Confirming the internal heat generation. (Fig.10-a,b,c) 
In each room, the internal heat generation is lower than the design value; hence, the internal 

heat generation is not the cause of the fault. 

(3) Confuming the supply air temperature from VAV. Wg.  11) 

The supply air temperature deviates from the preset range during a certain period of time (i.e., 

13:OO- 13i30 hours). 

Supply air temperature variation is within the preset temperature range.(The temperature is 

so controlled as to be in the neighborhood of 14.7 "C which is the lower limit of the preset 

temperature range.) 

Even when the supply air temperature is 14.7 O C  which is the lowest within the preset range, 

the air temperature R ~ o m - 3  is still too high. 

Hence, the cause of the fault is not the supply air temperature. 

'i 
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Fig. 11 Supply air temperature 



(4) Conlirming the opening of damper of VAV-3. (Fig.12) 
Control values are distributed on the control line. 

In case that room air temperature is high, the VAV damper opening is maintained by 100%. - Cause of the fault isn't the VAV damper opening. 

Fig. 12 The VAV damper opening of VAV-3 

(5) Confirming the supply air volume. (Fig.13) 
The fan speed of the supply fan is about half of the design value at  all times 

+Hence, i t  is considered highly probable that something is wrong with the system which 

controls the revolutions of the supply fan. If the fan speed of the supply fan is controlled 

satisfactory, the fan speed is closed to the design value (249Pa). 

I -a .............. .............. ........-.--.. -------....... 
2 5 0  5 0 0  1Oh 11:OO 12:OO 13:OO 1A:OO 

SUWLY FAN BiSURE I kPa TIME 

Fig. 13 Supply air volume 



(6) Advice which the FTA system gives to the operator 
- I t  i s  highly probable that  the malfunction of the system which controls the 

fan  speed of the supply a i r  fan is responsible for the fau l ts .  

The control l ing parameters related with the supply a i r  temperature need t o  be 

readjusted. 

Subsequent to the above diagnoses, the FTA system only can give above advice to the operator. 

After the operator receives that advice, he requests the building automation maintenance 

company to check the system which controls the fan speed of the supply air fan. The maintenance 

crew of the building automation maintenance company will find out that the cause of fault is 

inadequate range setting of the pressure sensor. 

7. Conclusive Remarks 

The merits and demerits of the FTA system may be summarized a t  follows. 

MERITS 

(1) All significant information concerning the system operation is displayed graphically in the 

form of "the operating condition charts"; hence, the maintenance crew can easily follow the 

minute-to-minute state of the system operation correctly. 

(2) Even if the input data leaves out some items of information, it is still possible for the 

maintenance crew to conduct diagnosis properly. 

(3) Since the FTA system expresses the information in ordinary writing, even the third party 

persons can understand the essence of the information without diff~culty. 

DEMERITS 

(1) Diagnoses are impossible if any faults occur due to causes not covered by the FTA system 

input program. 

(2) The users need to have the information necessary for making judgment as well as the proper 

judgment criteria; so, the means to provide the users with such information (e.q., one as provided 

by the sensor) and criteria must be considered. 

(3) The ability of the FTA system is limited to the diagnoses of air temperature-related faults. If 

the FTA system is to serve the practical purposes more usefully, i t  should be capable of 

diagnosing energy-related problems, too. Future development of the system to cover this area is 

considered necessary. 
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Abstract 

This paper presents the results of a simulation study on typical operational faults in a VAV system 

of a commercial building. Basic equations for the main simulation mod& are described. The static 
models for coils and fans are based on characteristic curves. They are dso recommended for real 

time applications in an automatic fault detection system. The simulation results demonstrate the 

applicability of system simulation sr a generic tool for constructing fault detection and diagnosis 

systems. Simulation aids choosing the suitable process variables to be monitored in an automatic 

fault detection system. By computing the expected magnitude of changes in energy consumption and 

thermal comfort the importance of faults can be evaluated and considered in fault diagnosis. 

1 Introduction 

Fault detection and diagnosis (FDD) of HVAC systems is the main research field within 
IEA project Annex 25 /14/. Operational faults of a HVAC system can be found 
automatically, if the model behaviour of a system operating under regular conditions 
deviates from the behaviour of the real monitored system. The lower part of Figure 1 
illustrates the basic idea adopted from 1221. Hereby the process of recognizing fault 
effects is called fault detection whereas the process of searching symptom's causes is 
called fault diagnosis. 

Automatical fault detection and diagnosis in HVAC systems is a youngresearch field. 
Only few expert knowledge yet exists according to the importance of operational faults 
and their influence on total systems. 

Independently by the methods and algorithms to be implemented in a FDD system, 
when constructing such a system, HVAC system related information are required 1251. 



Figure 1 : Design, control and FDD of HVAC systems 
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These information can be named as FDD project data and they can be classified as 
follows: 

sys tem topology (components, interconnections, instrumentation) 

ma in  process variables (those monitored variables which might provide robust 
symptoms) 

possible faul t s  a n d  their effects (impact of faults on monitored variables, 
security, environment, thermal comfort, energy consumption, operational costs, 
service and maintenance costs) 

t resholds ( to avoid false alarms the grade of the deviation should be considered 
and an alarm should be released only , if the deviation exceeds a certain limit) 

se tpoints  (controller setpoints and how they are determined and the possible 
operational modes of a system or subsystem) 

The sources for these information can be design data, human logic, practical experience, 
lab experiments and system simulation (see upper part of Figure 1). 

Tresholds can be found by statistical methods and by expert knowledge. They may 
depend on accuracy of process variable measurements (sensors and converters), control 
tolerances of local loop controllers, individual tolerances (concerning comfort, energy 
waste, environmental damage, service cost), selection of reference model (type: phys- 
ical, neuronal networks, fuzzy logic, characteristic curves, .....) and model accuracy 
(numerical accuracy) /I/.  But also the classification of faults may help t o  eliminate 
problems of treshold adjustment 1211. 

The selection of the main process variables to be monitored can be derived from the 
knowledge on possible faults and their effects. The aim of the presented study is to 
demonstrate the applicability of system simulation as a generic FDD tool, especially 
for the selection of suitable process variables to be monitored in an automatic fault 
detection system. Furthermore, by computing the expected magnitude of changes in 
energy consumption and thermal comfort the importance of faults can be evaluated 
and considered in fault diagnosis. 

In the following example faults are introduced just by intuitivly tuning some of the 
characteristic values of the simulation models. The effect of model accuracy on the 
results is not analyzed. Such a study would require large experimental investigations 
according to fault models (impact of degradation, fouling, clogging, leackage, ... on 
characteristic values of simulation models). The presented study gives for the first 
time a global impression about the possible impact of faults on energy consumption, 
thermal comfort and usually monitored process variables. 



2 Simulation Example 

The example presented here is chosen because the Variable Air Volume (VAV) system 
is similar t o  the Annex 25 reference air handling unit 1131. Design data and real 
measured data form the base of the developped simulation model 1171. The complete 
weather data of a german test reference year are used to represent realistic climatic 
conditions (TRY05 121) for the execution of one-year-period simulations. 

2.1 Building 

The building is the administration and education center of a computer company near 
Stuttgart. It  has a total area of 74 000 mZ . Figure 2 shows the shape and the blueprint 
of the building and the selected training rooms. The training rooms are oriented to 
the east. Each room has a ground area of 40 mZ and a height of 3 m The observed 
HVAC system supplies only 6 of these nearly identical rooms. All internal walls have 
the same structure. Table 1 includes the list of building structure materials for these 
rooms. T h e  windows are double glazed. They cover 70 % of the external walls and 
they have a global heat transfer coefficient of 2.9 W/mK . 

2.2 HVAC System 

Figure 3 shows the scheme of the HVAC system which supplies the teaching rooms. 
It  consists of a single-duct pressure independent VAV system with a central air hand- 
ling unit and local terminals and an additional hydronic heating system equipped with 
radiators in each conditioned zone. The additional hydronic heating system allows 
t o  have lower supply air temperatures and airflow rates in winter than observed in 
traditional VAV-concepts. The VAV-system consists of mixing box, air filter, finned 
tube preheating and cooling coils, centrifugal supply and extract fans with revolving 
speed control and finned tube reheating coils and VAV-boxes for each zone. In Table 
2 nominal characteristic values for the coils and fans are listed. 

2.3 Control Strategy 

The complete system is controlled by a Direct Digital Control (DDC) unit and local 
controllers. Figure 4 represents the  implemented control strategy. Also the daylight 
is controlled. The DDC-unit includes the supervisory control strategy for the optimal 
set points of temperatures, massflow rates and pressures to be realized with local 
PI-controllers. Figure 5 gives the setpoint temperatures for zone air and supply air 
as functions of the outdoor temperature. Variable air volume is realized only in the 
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Table 1: Building structure materials 

Table 2: Nominal values of HVAC components 

supply and return fan I 
I 

air flow in m31h 7nnn 

radiaton I 
power in kW 

1.3 

component 

air flow resistance 
(see equation 9) 
exponents 
(see equation 9) 

filter 

24.28 

2 

preheat 

7.47 

2 

cooling 

22.41 

2 

reheat 

91.82 

2 



Figure 3: HVAC system 
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summer mode. In winter the zone temperatures are controlled by variable zone supply 
temperatures modulated by the reheting coils. The minimum air flow rate for each 
zone is about 70 % of the maximum value. Both fans are fitted with variable frequeny 
control for varying the aidow rate. A single controller is used to control both fans. It 
is set to hold a static pressure of 400 Pa at the measured point indicated in Figure 3. 
Further assumtions are 

operation of the plant between 9 am and 8 pm; 

100 % outside air during operation period in summer mode, additional daily 
one-hour-preheating periods in winter mode with 100 % return air; 

solar beam radiation used to control the daylight: if beam radiation is greater 
than zero, the total solar gains through windows is reduced 70 %. 

3 Simulation Models 

The simulation program TRNSYS 13.1 1281 is used to realize the coupling between 
a detailed building model and the plant model. The chosen simulation time step 
is 36 seconds. The VAV-system is modelled in a modular way. Each component is 
represented by a stand-alone program called TYPE. In the following subsections the 
models for building and plant components are described. 

3.1 Building 

The TRNSYS subroutine TYPE 56 based on the response factor method is applied. 
The walls are modelled according to the transfer function relationships from wall surface 
to wall surface 1281. The long-wave radiation exchange between the surfaces within a 
zone and the convective heat flux from inside surfaces to zone air is considered according 
to a star network approach 1231. The computation of radiation transmittance through 
windows takes into account the incident angle of solar beams and glazing type 1271. 

3.2 Centrifugal Fans 

The performance of the fans is modelled by a relationship between the fan pressure 
increase Ap , air volume rate v and revolving fan speed rr 171. No geometrical 
data are needed, contrary to the dimensionless representation given in the IEA Annex 
10 and 17 specifications 13,291. 
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Even if manufacturers often use the fan laws to generate performance curves at different 
rotation speeds, just a single square polynomial can describe all curves in a more 
compact but still accurate way: 

Ap = c l . n 2  + c z . n +  c 3 . n . v + c 4 . v +  c 5 . v 2  + Q .  (1) 

The basic advantage of the approach is that the parameters of the model are only the six 
polynomial coefficients of this equation. In this example manufacturers' measurements . . 

(catalogue data) are used for the estimation of the supply and exhaust fan model. The 
lower part of Figure 6 displays the curves measured by the fan manufacturer. The 
upper part of Figure 6 describes the same characteristic curves as a 3D-space-surface. 
I t  is achieved with the following polynomial coefficients : 

It  is assumed that all electrical energy is converted to an increase of air enthalpy 
and kinetic energy. A polytropical process is assumed to calculate the increase of air 
temperature. The fan total efficiency tit is assumed to be constant (0.7) in the feasible 
operational range (partial load varies in this example only between 75 % and 100 % 
total air volume rate and about 500 to 1000 P a  pressure increase). 

The outlet temperature can be calculated from the energy balance: 

3.3 Coils 

Within the IEA projects Annex 10 and 17 a detailed physical coil model was developped 
/ l o /  and applied for system simulation applications. Most of the parameters of this 
model are geometrical data of a coil, like fin thickness, fin spacing and so on. In this 
model the global thermal resistance is the sum of the waterside thermal resistance, 
the coil material resistance and the airside thermal resistance. Empiric relationships 
are given for the computation of the thermal resistances on each flow side depending 
on the flow velocity . Especially relationships given for the thermal resistance on 
the airside should be used with care. They often relate to &ous coil constructions, 
especially with different settings of water tubes (e.g. shift in columns and rows) /8,9/. 
Furthermore, geometrical data are often not available or manufacturers hide these even 
as a secret. 

A more simplified way to roughly characterize the heat transfer in dry coils can be 
done with the socalled coil effectiveness @ 151. It is defined as the fraction of the 



total heat transfer to the product of the maximum possible temperature difference and 
the minimum flow capacity. 

For an air to water heat exchanger the total heat transfer is expressed by the following 
equation 

with 

. ,  : inlet air temperature 
8n..t,l : inlet water temperature 

and the minimum thermal flow capacity 

If measured data are available (catalogue, BEMS) the model of a specific coil can be 
easily calibrated. The result of a model calibration for dry air conditions could be a 
relationship between the effectiveness and the air and water flowrates: 

If such a relationship is available, the outlet air and water temperature can be computed 
with the  energy balance: 

- 9 T o t  = m ~ i r  ' $,Air '(g~ir,? - g ~ k , l )  (7) 

Again a square polynomial approach is chosen 1181: 

The parameters of the model are then only the six polynomial coefficients of this equa- 
tion. Measurements under relatively dry conditions have been used for the calibration 
of the coil models. The latent duty is neglected. 
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Figure 7: Static model of cooling coil 
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The upper part of Figure 7 displays measured d u e s  for the cooling coil in a 3- 
dimensional plot. The lower part of Figure 7 displays the calibrated characteristic 
curves achieved with the following coefficients : 

It  might be surprising to see a maximum in the variation of the effectiveness with the 
air flow rate since the effectiveness approaches unity asymptotically. But it  should be 
noticed that  the outlet air temperature is measured after the supply fan. Therefore, the 
curves consider the temperature increase caused by the fan. The value for the cooling 
coil air outlet temperature can be estimated by computing backwards using equation 
2. 

The pressure drop is modelled by using the following equation 

The air flow resistances are determined by using the manufacturers d u e s  of pressure 
drop and air flowrate under nominal conditions (see Table 2). 

3.4 Air Filter 

Any characteristic curve of an air filter /6/ can be transfered t o  the following equation 

3.5 Ducts 

For calculating heat transmission through the duct walls and insulation an overall heat 
transfer coefficient U. A is used /19/. The approach assumes steady-state conditions: 

PI-controllers are modelled explicitly and as to be digital: 



with 

Xnf : input signal (measured) 
Xs : set point 
Y : output signal 
Yo : constant value 
Kp : proportional coefficient 
KI  : integral coefficient 
At: measurement time interval 

Valves and dampers are modelled to provide massflow rates which are directly propor- 
tional to controller output signals. 

3.7 Air Pressure Control 

As mentioned in 2.3 in this example the fan controller is set to hold a certain static 
pressure pStati ,  at the measured point indicated in Figure 3. The mixing box is closed 
during plant operation. The pressure drop between fan and pressure sensor is negli- 
gible due to relatively small distance. Therefore, the necessary pressure increase Ap 
provided by the supply fan is caluculated as a sum of pressure drops in each component 
and the demanded static pressure : 

3.8 Radiators 

The exponential relationship between heat emission and temperature difference of ra- 
diator and zone is implemented. The characteristic curve of a radiator is related to 
nominal values (see Table 2) on a radiator test bench /4/: 

Hereby the logarithmic temperature difference is computed with 



4 Simulation Cases 

The simulation results for the reference case and for all fault cases described in the 
following section are one-year periods time series and yearly energy consumtions. As 
an example Figure 8 and 9 show simulated process variables for a three-day midseason 
period in the reference case (no faults). 

The yearly energy consumption in the reference case is for electricity (fans and pumps) 
30.1 kWhlm2, for cool (cooling coil) 19.1 kWhlm2 and for heat (heating coils and 
radiators) 69.1 kwhlm2. 

Considering surveys on typical faults in VAV systems 112, 24, 301 the following faults 
are investigated in the presented study: 

0 a clogged air filter, 

a defective supply air temperature sensor, 

0 a defective preheat coil water pump, 

a a fouled cooling coil with a reduced heat transfer performance. 

4.1 Clogged Filter 

The Figures 11 and 12 show the revolving fan speeds in the reference case and in the 
case that the air filter is clogged. Usually, the fault is detected by the pressure drop 
increase monitored at  the air filter. So, it is also assumed that the pressure instrument 
at the air filter which is indicated in Figure 3 is defect. The black bars result kom 
the on/off switching of the plant during workdays. The gaps in both plots indicate the 
weekends. 

The full filter is simulated by increasing the flow resistance El. The filter pressure drop 
at design air flow rate is now 400 Pa instead of 130 Pa in the reference case. 

Figure 14 shows the influence of this fault on main process variables and yearly energy 
consumption. The fault has no influence on zone temperatures. The additional pressure 
drop is compensated by higher revolving fan speeds. This leads to an increase of air 
temperature at the supply fan. But the small temperature increase can be easily 
compensated by the supply air temperature controller. On few hours i n  summer the 
cooling coil valve position is therefore up to 19.1 % higher than it is in the reference 
case. But the influence on total energy consumption for cooling remains negligible. 
Only the yearly electricity consumption of the air handling unit (chiller excluded) is 
46.9 % higher than the consumption in the reference case. 
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Figure 11: Revolving fan speeds (reference case) 



Figure 12: Revolving fan speeds (full filter) 
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When using even a static fan model (as presented in section 3.2) the revolving fan 
speed seems to be a robust process variable for the automatic detection of such a fault 
or similar faults. Of course, the value of the actual air flow rate must be also available. 
This might be computed from the position of the dampers in the VAV-terminals. 

4.2 Defective Sensor 

It  is now assumed that during the whole year the measured value of the supply air 
temperature is 2 K lower than the real value. 

The Figures 14 and 15 show the cooling coil water massflow rates in the reference 
case and in the case that the supply air temperature sensor fails. The Figures 16 and 
17 show the reheat coil water massflow rates in both cases. Figure 18 summerizes 
the influence on main process variables and yearly energy consumption. This fault is 
compensated in summer by higher air flow rates and it is compensated in winter by 
lower reheat massflow rates. Therefore, nearly no influence on thermal comfort occurs. 

The fault has a stronger impact on thermal comfort, if the reheat coils are smaller, or 
if no radiators are in t h e  zones. 

The influence on total energy consumption for cooling is strong. The yearly consump- 
tion is 35 % lower than the consumption in the reference case. But this does not mean 
that the original setpoint is not optimal! The lower energy consumption is achieved by 
lower thermal comfort (higher zone temperatures in summer). The yearly heat con- 
sumption is 2 % higher than the consumption in the reference case. Because sometimes 
the higher supply air temperatures are not needed on warm winter days. On such days 
the reheat valves are closed in both cases. 

4.3 Defective Pump 

In this case it is assumed that the warm water pump in the preheat coil is defect. Due 
to bad hydraulic balance the water massflow rate in this circuit is assumed to be not 
zero but reduced 75 %. 

The Figures 19 and 20 show the preheat coil supply water temperatures in the reference 
case an in the case when the pump is defect. Figure 21 summerizes the influence of - 
the defect on main process variables and yearly energy consumption. Again the fault 
has nearly no influence on thermal comfort. 

The yearly heat consumption is 13.9 % lower than the consumption in the reference 
case. But again the lower energy consumption is achieved by lower thermal comfort 
(this time lower zone temperatures in winter). Due to full load limits the reheating 
coils and the radiators cannot fully compensate the fault. 
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Figure 16: Reheat coil water massflow rates (reference case) 
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Figure 17: Reheat coil water massflow rates (defect sensor) 
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Figure 14: Cooling coil water massflow rates (reference case) 

Figure 15: Cooling coil water massflow rates (defect sensor) 
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Figure 18: Influence of a defect sensor on main process 
variables and yearly energy consumption 
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Figure 19: Preheat coil water temperatures (reference caw) 



Figure 20: Preheat coil water temperatures (defect pump) 

Figure 21: Influence of a defect pump on main process 

variables and yearly energy consumption 
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4.4 Fouled Coil 

I t  is assumed that due to water side fouling the cooling coil effectiveness is simply 50 
% reduced in all partial load conditions: 

The constant factor reduction in effectiveness might be a too simple assumption. But 
there is still no experimental investigation available on the impact of fouling on the 
thermal performance of a coil. Fouling should increase the thermal resistance between 
the two fluids and so far it reduces the UA-value and the effectiveness of a coil. Probably 
it  influences the coil performance stronger at low flow rates. 

The simulation results show that the reduced coil pedormance is compensated by higher 
chilled water massflow rates. Figures 22 shows the cooling coil water massflow rates in 
the case of the fouled cooling coil. The Figures 23 and 24 show the air temperatures 
in a zone in the reference case and in the case of the fouled coil. In opposite to the 
other cases thermal comfort is strongly violated on summer days. The reason is that 
the fault compensation is limited by the maximum coil waterflow rate. This leads to 
higher air supply temperatures (up to 5 K). The cooling loads in the zones must be 
therefore exported with higher airflow rates. 

Figure 25 shows the influence of the fault on main process variables and yearly energy 
consump tion. 

The water massflow rate might be a good process variable for the automatic detection 
of such a fault. A more practical value is the corresponding valve position. 

By using even a static coil model based on calibrated characteristic curves (as presented 
in section 3.3) such a fault could be easily detected. 

In the presented example also the exhaust water temperatures of the heating and 
cooling coil are monitored. The measured values are used to calibrate the coil models. 
So, here also the coil exhaust water temperature might be a good process variable for 
the detection of such a fault. But often this value is not monitored. 

5 Conclusion 

The simulation results demonstrate the applicability of system simulation as a generic 
tool when constructing fault detection and diagnosis systems. Simulation aids choosing 
the best process variables to be monitored for the detection of certain faults. As a 
result of the presented simulation study fau l t / symptom relationships as shown in 
Figure 26 can be derived. Figure 26 shows the relationship between the investigated 
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Figure 22: Cooling coil water massflow rates (fouled coil) 

Figure 23: Zone air temperatures (reference case) 



Figure 24: Zone air temperatures (fouled coil) 
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faults in the presented example and typical process variables which are usually already 
monitored for control and energy management purposes. 

The impact of operational faults on yearly energy consumption and thermal comfort 
is shown. But the computed values cannot be generalized. They strongly depend 
on concept, sizing and control strategy of an HVAC system. Due to small sizing the 
presented VAV system runs only on few weeks of the year with variable air flow rates. 
In summer most of the time maximum available aidow rates are needed to export the 
cooling loads from the zones. Also the faults according to  the heating mode (defective 
sensor, defective preheat pump) have a stronger impact on thermal comfort than it is 
shown here, if the system is equipped with smaller reheat coils, or if no radiators are 
available in the zones. For more systematic classifications further investigations are 
required. They will be executed within IEA Annex 25. 
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Abstract 

The approach used in this research is based on a combination of two technologies: 
- Model-based reasoning 
- AFS modelling 
Model-based reasoning is a technique capable of finding possible diagnoses based on behaviour descriptions and 
interconnections of the separate components contained in the whole system. It can best be understood as the 
interaction of observation and prediction. On one side there is the actual device, on the other side the model, that 
can make predictions about the behaviour of the device. A significant difference between the actual observations 
and the model predictions indicates the monitored device has a malfunction. 

The behaviours are defined using ARX models. An ARX model of the complete system is used to detect a 
degrading performance of the system. After the system model has indicated a possible malfunction, the model- 
based reasoning process will try to calculate a diagnosis using the ARX models of the separate components. 

The fault detection process and the model-based reasoning process are captured in a programmable real-time 
environment, that controls the selection of the models and the used model-based reasoning algorithm. 

The joint evaluations exercise was based on a VAV system of NET.  

1 SYSTEM IDENTIFICATION 

In the system identification approach described in this report, two steps are distinguished: 

- system level 

- component level 

The system level is used to detect faults in the system, based on a degrading performance of the system. After 

a fault has been detected, the fault has to be diagnosed on component level. The use of a system model for 

detection and component models for diagnosis has the advantage that system models are easier to calculate, and 

hence faster in use and more suitable for real-time applications. Continuous propagation of the component model 

is slower and might lead to deviations in the estimated values. This is further elaborated in the real-time chapter. 

A black-box model (AFS-type) is used to predict the output of the system based on the inputs of the system. 

The predicted output is compared with the 'measured' output to detect faults which occur in the system. 



Three data sets were used; first one without malfunctions, second one with one known and two unknown 

malfunctions and one with four unknown malfunctions. The healthy data set (no faults) is used for training the 

models and the other two to detect the fault. 

Exhaust Alr 
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FfgM 1 A simple PI-diagram of the AHU of ihe VAV system of NIST 

' C=Ckl. M=Flow, P=Power, T=Temp. 

The next models can be defined: 

ABCD = System model AHU of the VAV system 

AEDF = Component model Mixing box. 

GHR = Component model Cooling coil. 

KTIK = Component model Heating coil. 

ILKC = Component model Supply fan. 

EBGL = Component model Return fan, 

1.1 SYSTEM MODEL 

TEMP5 

FLOW System Model 
CTR FLOW2 
CTRU 

FfgM 2 The system model ABCD of ihe VAV system 



Inputs: 

temp1 flow1 temp32 flow9 cb136 cb137 

cb136*ctr136 cb137*cb137 flowg*flowg temp32*temp32 templ'flow9 temp32*flowl 

The sbucture of the system model is an 

ARX(5,S) with 12 inputs. 

Figure 3a Results ARX model on system level TEMP5 

4a System lwel TEMP5 with dataset 3 faults. 

Pigwe 9b Results ARX model on system level FLOW2 

Figum 4b System level FWW2 with dataset 3 faults. 



The mining results illusf~ated in Figure 3 show that the system models of TEMP5 and FLOW2 fit well. The 

margins depicted in the figures are exactly 3 times the srandard deviation of the residuals of the mining results. 

This margin is generally used in system identification to determine if a fault occurs. In Figure 4 the results for 

the dataset holding three faults are presented. 

1.2 COMPONENT MODEL 

For the component model five components were distinguished. 

Return fan model 

Return Fan Model TEUW 

Figure 5 The Return Fan model EBGL of the VAV system 

Inputs: 

power2 temp32 

The structure of this component model is an 

ARX(1,l) with 2 inputs. 

Mixing box model 

Mixing Box Model T E U ~  

Figure 6 The Midng Box model AEDF of the VAV system 

Inputs: 

ctr148 ctr149 ctrl50 temp1 temp33 

templ *temp1 

The structure of this component model is an 

ARX(4,4) with 6 inputs. 

Cooling coil model 

TEMP3 

Cooling Coil Model 
CTR TEMP40 

Figure 7 The Cmling Coil model GHFl of the VAV system 



Inputs: 

ctr137 templ temp2 flow2 

ctrl37*templ ctr137*temp2 ctr137*flow2 temp2*flow2 ctr137*ctr137 templ*templ flow2*flow2 

The smcture of this component model is an 

ARX(4,4) with 11 inputs. 

Heating coil model 

'- TEMP4 

Heating Coil Model TEMP3 
C T R F  TEMP48 

Yigurc 8 The Heating Coil model HJlK of the VAV system 

Inputs: 

templ flowl temp3 flow9 ctr136 

temp3*flowl temp3*flow9 templ*templ flowl *flow1 temp3*temp3 flow9*flow9 ctr136*ctr136 

The smcture of this component model is an 

ARX(2,2) with 12 inputs. 

Supply fan model 

" FLOW 3 , U P P ~ ~ ,  ,&I 
P M R l  - tz 

Figwe 9 The Supply Fan model JLKC of the VAV system 

Inputs: 

temp4 power1 flow9 flowl 

The smcture of this component model is an 

ARX(I,l) with 4 inputs. 

In Figure 10 some component model results for the dataset with three faults are depicted. The component models 

of the heating coil and supply fan are not presented because no faults were found in these components. 



Figure 10a Return fan results. TEMP33 

Figwe 10c Cooling Coil Results. TEMP3 

Figure lob Results Mixing Box. TEMP2 

 fig^ 10d Cooling Coil Results. TEMP48 



2 DIAGNOSING THE FAULTS 

2.1 DATA SET WITH THREE FAULTS 

Detection of the first fault 

System level : 

The system model detects a fault aher 60 minutes. The next faults are detected: 

the predicted TEMP5 is much higher than the observations (figure 3a), 

the predicted FLOW2 is lower than the observations (figure 3b). 

After the fault detection on component level, the Model Based Diagnosis (MBD) program switch to component 

level. 

Component level : 

The next step is to diagnose the fault in the component: 

Return fan 

No fault is detected in the return fan 

Miring box 

Fault is detected in Mixing box; Symptom: the predicted TEMP2 is much lower than the observations 

(figure lob). 

Cooling Coil 

Fault is detected in Cooling Coil; Symptom: the predicted TEMP3 is much lower than the observations 

(figure 1Oc). 

Heating Coil 

No fault detected in Heating Coil 

Supply Fan 

No fault detected in Supply Fan 

Diagnosis 

Fault in Mixing Box or Cooling Coil 

The cooling coil is situated after the mixing box, therefore the fault in the cooling coil can be caused by the 

mixing box 

Detection of the second fault 

System level : 

The system model detects a second fault after 500 minutes. The next fault is detected: 

the predicted TEMP5 is lower than the observations (figure 4a), 



Component level : 

The next step is to diagnose the fault in the component: 

Return fan 

No fault is detected in the return fan 

Miring box 

No fault is detected in Mixing Box 

Cooling Coil 

Fault is detected in Cooling Coil; Symptom: the predicted TEMP3 is lower than the observations (figure 

10c) and the predicted TEMP48 is lower than the observations (figure IOd), but between the allowed 

margins 

Hearing Coil 

No fault detected in Heating Coil 

Supply Fan 

No fault detected in Supply Fan 

Diaenosis 

Fault in Cooling Coil 

2.2 DATASET WITH FOUR FAULTS 

Detection of the first fault 

System level : 

The system model detects a fault after the startup period of the VAV system. The next fault is detected: 

the predicted TEMPS is much higher than the observations, 

Component level : 

The next step is to diagnose the fault in the component: 

Return fan 

No fault is detected in the return fan 

Miring box 

No fault is detected in Mixing Box 

Cooling Coil 

Fault is detected in Cooling Coil; Symptom: the predicted TEMP3 is higher than the observations 

(figure 10c) 

Heating Coil 

No fault detected in Heating Coil 

Supply Fan 

No fault detected in Supply Fan 



Diagnosis 

Fault in Cooling Coil 

Note: possible false alarm, because the fault is in the startup period of the VAV system 

Detection of the second fault 

System level : 

The system model detects a fault after 500 minutes. The next fault is detected: 

the predicted TEMP5 is much lower than the observations (figure 4a) 

Component level : 

The next step is to diagnose the fault in the component: 

Return fan 

No fault is detected in the return fan 

Mixing box 

No fault is detected in Mixing Box 

Cooling Coil 

Fault is detected in Cooling Coil; Symptom: the predicted TEMP3 and TEMP48 are much lower than 

the observations (figure I k .  10d) 

Hearing Coil 

No fault detected in Heating Coil 

Supply Fan 

No fault detected in Supply Fan 

Diagnosis 

Fault in Cooling Coil 



3 MODEL-BASED REASONING 

Model-based diagnostic methods are used for localisation of defective components in (technical) systems. The 

kernel of model-based diagnosis is the model, which describes the functionality of the concerned apparatus. 

The principle of model-based reasoning for diagnosis can best be understood as a combination of observation 

and prediction. In the one hand we have an actual device, in the other hand we have a model of that device that 

can make predictions about its intended behaviour. Observations indicate what the device is actually doing, 

predictions indicate what it's supposed to do. Any difference between these two indicates a problem in the most 

broad definition. The difference between the system and its model is called a discrepancy. 

Model-based reasoning has several advantages over the use of rule-bases: 

One advantage is formulated by Dvorak [Dvorak, 19911: 

"Unlike many diagnostic methods, model-based diagnosis does not rely on a set ofsymplom-fault panerns. Such 

panerns are ojien incomplete, since it is difficult for an expen to anticipate all possible faults and predict their 

symptoms, especially the symptom of interacting faults. " 

Another advantage of MBD is that even with a new system, for which no repair experience exists, MBD can 

be used; it only needs the model, which is always obtainable. In this context it can also be stated that the 

creationlsetup-time for an MBD is relatively short (if only the model needs to be created). 

Different reasoning methods have been developed for model-based diagnosis. An important method for model- 

based reasoning is General Diagnostic Engine (GDE), defined by De Kleer & Williams [Kleer & Williams, 

19871. In the GDE approach, diagnoses (candidates with De Kleer & Williams) are deducted from conflicts. A 

conflict is a collection of components whose correct function leads to inconsistencies. All existing conflicts are 

generated by a process called constraint propagation. Constraint propagation performs calculations on the model 

in as many different ways as possible. 

4 
D 

Figore 11 A collection of adders 

This can be illustrated by Figure 11. Output A of component 1 can be 

calculated assuming component 1 works (result A=2), but it can also be 

calculated assuming components 2 and 5 are functional (result A d ) .  The 

result of each propagation step is combined with the corresponding 

assumptions made and recorded in a dependency record. If different values 

are calculated for one and the same output, the assumptions made for the 

calculations are inconsistent and result in a conflict. The collection of 

conflicts for Figure 11 is given in Table 1. 



Table 1: Dependency r e c o r d s  and  c o n f l i c t s  u s i n g  GDE on  F i g u r e  11 

When conflicts are transformed to diagnoses, only minimal conflicts and minimal diagnoses are processed, which 

means superfluous elements in the sets are omitted. In this example, <1,2,5> is a minimal conflict, while 

<1,2.5,6> contains one more element <6>. 

&---,F- h\ 
already found ponible diagnosis already fwmd alrdy found -We diagnosis 

J 3  
a h d y  found 

Figure 12 Generation of diagnoses kom conflicts using a Hitting Set Tree 

\\ 
a h d y  found pmnilcdi&m& 

A proper diagnose has to clarify each discrepancy; it has to contain at least one component assumption of every 

conflict. The transformation of conflicts to diagnoses is illustrated by Figure 12. This collection of diag- 

noseslconflicts is called the Hitting Set Tree (Beiter 19871). 

The hitting set tree, of which the nodes represent the generated conflicts, can be used to search for diagnoses 

that 'cover' every conflict. A diagnose that 'covers' every conflict contains at least one component of each 

conflict. A diagnose consists of the labels of a path from a 'diagnose-leave' of the tree to the root. Paths starting 

at a repeating leaves form a not minimal diagnose. 

' Assumptions that are already contained in a conflict are not used for further calculations. c1.2.5.6> is not 
regarded a new conflict because < 1.2.5> already is. This is part of the '"asswnption-based h t h  maintenance 
system" that GDE uses: "unreliable environments are not used for further calculations". 



In the Diagnose application, the GDE algorithm is used. No special argumenrs underline the choice of GDE for 

the Diagnose application; however, it can be stated that the separation of conflict calculation and diagnosis 

generation in GDE is very suitable for time-efficient FDD, for as long as the system is functioning correctly, 

only conflict calculation has to be performed. 

Once the conflicts have been calculated, generating diagnoses is a quite straight-forward process. A diagnose is 

an assumption that explains every encountered conflict, i.e. a conflict "lightswitch is on" and "the lightbulb does 

not glow" can be explained by the diagnose "LIGHTSWITCH is DEFECT". In practice, only minimal diagnoses are 

generated; if there exists a diagnose "LIGHTSWITCH is DEFECT" the possible diagnose "LIGHTSWITCH is DEFECT and 

LIGHTBULB is D m C r  is ignored. 

The generation of diagnoses from conflicts comes down to a breadth-fust search method. The generation process 

is already illustrated in Figure 12. The nodes of the tree represent conflicts, the leaves represent possible 

diagnoses corresponding to the elements of the conflicts. An 'Already found' on the lowest level of the uee 

indicates a correct diagnose that covers each conflict. 

3.1 MODEL REQUIREMENTS 

The number one question when creating a model for MBD is 'What is a suitable model for 

definition of the desired properties of an MBD model is given in [Soest, 19931: 

MBD?. A usefi 

'An adequate model is one that enables a troubleshooter advisor to advise eficiently on the cheapest effective 

repair' 

Unfortunately, as good as the properties of the MBD tool are defined, as difficult it is to uansform the final 

MBD demands to model properties. Still, five requirements are clearly stated by [Soest, 19931: 

1) the states should be uniquely identifiable; 

2) as few components as possible; 

3) as few connections as possible: 

4) total cost of probing points as low as possible; 

5) behavioral descriptions as simple as possible. 

These requiremenrs still leave some questions unanswered, such as 'Which parts have to be represented in the 

model' and 'which influences between the parts have to be represented'. The specific information that is needed 

to make optimal choices on this account of the modelling process is system-dependent and therefore dependent 

on the insight of the model designer. Using the term 'desirable properties' instead of 'requiremenrs' allows for 

more freedom in the modelling process. 



3.2 HIERARCHICAL MODELLING 

Performing MBD on a system can be quite time-consuming, depending the number of components in a model. 

As there is an exponential relation between the number of components and the number of calculations, the time 

needed for consbaint propagation increases fast with the complexity of the model. In [Bakker,1989] the 

calculation complexity for different approaches is calculated to be O(TJ, where n is the number of components 

in the model. A bade-off between the detail of the diagnose (the number of components) and the reactiveness 

of the diagnose system is obvious. 

This trade-off can be bypassed with model reduction2. By using different models for the same system depending 

the state of diagnosis, the most effective model, in other words the model adding the most information to the 

diagnosis, is used. 

The structure of the interdependent models can be best defined as a bee; on the highest level only one model 

is used for fault detection. When a fault is detected the diagnosis tool descends one level in the model tree, to 

the model containing the different components. 

As soon as a fault is globally localised, the model tree node containing the fault can be expanded. The tree 

smcture can be derived from the system smcture. An example for a Hi-Fi system is given in Figure 13. 

How the efficiency of the diagnosis process can be 

Hi-Fi Set influenced by choosing the right subsequent abstraction 
I \  

Rsdb Amplifii SpeabrJ levels will be illustrated by an example of a very 

I / I  \ / 1 \ simple model with few in- and outputs. In this example 
*nm Par%%+, F ? u n W . P a r ~  h -- 

the functionality of the system is of minor interest, and 
Piglue 13 Example System Structure of Hi-fi Set therefore not defined. 

3.3 LIMITS TO HIERARCHICAL MODELLING 

Unfortunately, the resolution of the computed diagnoses can not be refined infinitely. The effect of defining more 

subsystems depends on two model properties: 

- the number of available observations 

- the component interconnection smcture (connectivity of the model) 

' Model Reduction - ?Re process of discarding certain nudes of motion while retaining olhers in the model used 
by M actrue control system in order that (he control system can compute control commands with sufiient 
rapidity. 



This can be made obvious by the following examples (Figure 14). 

Plgure 14 ObserraUons and ConnectiWy 

All three examples consist of three components. In model A, two observations (1 input, 1 output) are available. 

No observations are available to discriminate diagnose [All from [A21 or [A3]. In model B, four observations 

(3 inputs, 1 output) are available, but no observations to allow discrimination of diagnoses. The third model, 

model C, has six observations (4 inputs, 2 outputs). The shucture of the model combined with enough 

observations allows for some diagnosis. 

The example showed the choice of componentrlsubsystems in the model definition should be based on a 

combination of the number of observations and analysis of the model shucture. The intuitive restrictions that can 

certify the efficiency of hierarchical descriptions are discussed by [Mozetit, 19901. In practice, it would be wise 

to determine the number of sensors depending the desired diagnostic performance. 

The MBD process can reason about sensor faults if sensors are admitted to the model. Introducing the sensors 

as VAV components in leads to a model as presented in Figure 15. 

Pigme 15 Component model including sensors 

This model automatically implies the sensors as pan of every detected conflict. Combining conflicts will 

eventually indicate defective sensors; i.e. if in the model presented in Figure 15 the conflicts 

<Sensor,,Comp,,Sensor,> and <Sensor,,Comp,,Sensor,> are detected, the intersection diagnose of the conflicts 

'Sensor, Defective' is more probable than any other diagnosis. 



In order to model the dependency between the model calculations and the sensors or measured values, two-port 

sensors are used in two configurations: 

Input configuration is used to model the dependency of the model calculations on the observations; the input 

values of the model are always measured by sensors, so a deviation of the calculated value can also be caused 

by a faulty model input value, e.g. a defective sensor. 

Output configuration is used to model the dependency of the observations at the outputs of the system on the 

sensors; any information regarding the output values of the system is collected by sensors, so a deviation of the 

calculated value can also be caused by a faulty output observation sensors. 

3.4 MODEL STRUCTURE OF THE VAV SYSTEM 

In order to decrease the introductory rhreshold and keep realisation costs low, all models are based on sensors 

that are most common in HVAC systems. The structure of the models will apply to VAV systems in general, 

the fitted ARX models are system-dependent. 

The system model is used to verify the performance of the whole system. The verification of the performance 

is based on predictable system outputs that can be labelled representative for,the system performance in general. 

For the VAV system as presented in Figure 1, two outputs can be defined: 

- T5 Outlet air temperature after the supply fan 

- M2 Supply air mass flow mte to the zones 

For the component model, five separate ARX models have to be created; one for each of the identified 

components Mixing box, Cooling coil, Heating coil, Supply fan and Return fan. Besides the ARX models for 

the VAV subsystems, the component model contains a collection of sensor components. To enable model-based 

reasoning, the behaviours of and the connections between the separate components have to be specified. The 

outputs of some ARX models are inputs for other ARX models. 

Note: MBD demands the connections between the components to be ideal. In the VAV model, the connections 

are not ideal. In assuming they are, the possibility of a broken or bad performing connection as independent 

diagnosis is excluded. 



Explicitly introducing connection models would in this case only make sense if enough sensors are available to 

let the MBD system distinguish between connections and components; a luxury that does not apply to the VAV 

system. Since increasing the number of sensors is not desirable, connections are not explicitly accounted for in 

the model; they are part of the connected component. In example, in the VAV system this means that a diagnosis 

<Supply Fnn DefecD on account of M I  (the flow) could mean that the fan itself is defect, as well as the flow 

connection to the fan. In general, component borders are defined by location of the sensors, as is depicted in 

Figure 16. 

PLgurc 18 Connections implicitly and explicitly modelled 

In Figure 17 the combination and interconnection of the separate ARX models is illustrated. The dependency 

of the components is clearly visible. Note that there is no complete depencency relation between any 

components. The effect of the partial dependencies and partial direct inputs for components in model-based 

reasoning is still researched. 

Figure 17 Interconnection of the component models 

The representation of this model useable for the diagnosis tool is given in Appendix I. Theeffect of the use of 

estimated values as input for following models on the accuracy of the component model is not yet studied. Parrly 

this is bypassed by using models on system level where possible. 



4 REAL-TIME FAULT DETECTION AND DIAGNOSIS 

To identify the explicit tasks of a real-time MBD system the existing situation can be analyzed. In general 

HVAC systems are monitored by BEMS and interpreted by system operators. The functions that a human system 

operator performs in real-time system monitoring/diagnosis are shown in Figure 18. 

Figure 18 Operator Strategy 
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The actions of the system operator can be simplified into five subsequent steps: 

1) Monitoring the system 

2) Detecting discrepancies / conflicts 

3) Creating Diagnoses 

4) Advising Testvector / probing for discrimination 

5) Repairing system 
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Basically, these are the functions the real-time MBD system must perform. Since diagnosis systems are not yet 

capable of mechanical probing and repairing, the operator's actions can be transformed to three system tasks: 

1) the output of the system is compared with the expected behaviour 

2) if there is a difference between actual and expected output, the difference must be explained as either 

an allowed deviation or an indication of malfunction 

3) if a malfunction is suspected, it must be traced 

If the systems operator is replaced by a MBD system, a situation like in Figure 19 arises. 

Diagnose Energy 
Observations 

System Management 
System 

Pigwe 19 Monitoring the BEMS 

In this structure, the MBD system is a separate system that communicates with the Building Energy Management 

System, which conmls the W A C  system. The underlying structures of the BEMS and the MBD system will 

be discussed in the next chapter. 

The need for flexible problem-solving strategies can be explained on two levels: 

- the system has to be flexible enough to choose the best problem-solving strategy 

- the system has to be flexible enough to cope with a variety of given strategies 

The second approach is preferred, for the following three arguments: 

1) since no information is available about how real-time model-based reasoning should be accomplished 

on HVAC systems, it is desirable to create a tool for testing different diagnostic strategies 

2) it is most difficult to make a machine choose between different swtegies if the performance demands 

are unknown 

3) for W A C  systems of the same type, strategies will most likely be identical, so once a optimal strategy 

is found it can be universally appIied to similar systems 



As a realisation of a semi-flexible way to let a system act like a system operator, a simple diagnostic 

programming language holding the different system operators actions as well as typical model-based reasoning 

actions is implemented. 

This language should i.e. be able to perform the following actions: 

- load different reasoning models depending the diagnostic situation 

- load observation data if available 

- perform different types of conflict calculation and diagnosis consmction 

- check the reasoning results 

- simple imperative loop and jump constructions to let the system run automatically 

- perform simple calculations for loop counting etc. 

- give output on system conditions 

- trigger an alarm situation 

An example of the implemented language and program is given in Appendix 11. A program (=real-time diagnosis 

strategy) was designed that accomplished the following actions: 

1 Load the system model 

2 Load observations and calculate conflicts until a conflict is found 

3 Load the component model 

4 If no conflicts are found return to system model (Step 1) 

5 If conflicts are found calculate diagnoses 

6 If possible diagnoses hold sensor/component combinations that can checked using the corroboration 

models load the corresponding corroboration model 

7 check for conflicts 

8 .  If corroboration model gives no conflicts, the corresponding sensor is indeed functioning incorrectly 

Based on the functional implementation, the conclusion is justified that model-based diagnosis can be performed 

real-time. The implementation described in this chapter gives a possible approach. Specific tests will provide 

information about the actual performance of the real-time MBD system. Test results will be discussed in the next 

chapter. 

4.1 TEST WITH CORRECT DATA SET 1 BASED ON THE VAV SYSTEM 

Running the MBD program with the correct dataset should give no problems. However, one conflict was 

detected. This conflict occured at the start-up period of the system; the ARX models were not able to fit the 

start-up pulse. The conflict that was detected at system level, caused the diagnosis t w l  to switch to the 

component model to start the diagnosis procedure! Propagation of the component model did not reveal a conflict, 

so the system concluded it was a false alarm. In fact, the reliability of the ARX models in the startup phase is 

very low. since they need a cenain time to reach a 'stable' condition. The figures of the training estimations 

illustrate this. 



4.2 TEST OF DATA SET 2 WITH THREE FAULTS 

Fault Detection 

For this data set, fault detection starts after the ARX models have reached a 'stable' condition. A somewhat 

critical situation occured, since the first fault is close to, or almost in the unstable area of the ARX models. Still, 

the ARX model on system level was able to detect each of the three faults. 

Fault Diagnosis 

Using the component model to enable automatic diagnosis did not result in the correct diagnoses. For each fault 

the supply fan was diagnosed to be defective. It is suspected that this is caused by the narrow margin of the 

Supply fan model and the fact that it is the last 

component in the row of connected components3. 

4.3 TEST OF DATA SET 3 WITH FOUR FAULTS 

The dataset with four faults provided the same results as the dataset with three faults. 

4.4 TEST OF SENSOR STUCK-AT FAULT 

An other possible and common fault was manually introduced as a stuck-at sensor fault. A stuck-at fault is a 

situation in which a measured value becomes static, e.g. stuck at a certain value, which can be explained as a 

defective sensor or a broken sensor connection. For the test, the TEMPS sensor was set at 0 OC from a certain 

observation on. 

Due to propagation ofestimated values it is possible that a well-fitted component exceeds the margins while 
Ule component actually causing the dniation does not. 
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As the results illustrate, the Diagnose tool almost immediately identified the broken sensor 

In this example, SYS-8 corresponds with FLOW2 and SYS-7 with TEMP5. The left values are the observations, 

the right values the estimations. The allowed margins are also available on-screen. Obviously SYS-7 (=TEMPS) 

is observed to be zero, while the ARX estimation is still about 14 "C. Propagation of the component model 

results in 6 possible diagnoses, including TEMP5. Of course, the MBD system is unable to distinguish between 

the different sensors, because for that purpose, observations regarding the sensors would be needed. 

5 REQUIRED RESEARCH 

The research described in this report is only the beginning. A lot of questions are still unanswered. A few points 

of further research are: 

- the mixed use of direct observations and propagated values in the component model 

- the requirements of the ARX models to enable proper diagnosing (i.e. the margins) 

- the effect of switching between the system level and component level models 

- the consequenses of the use of historical values in the ARX e>timations for MBD 
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APPENDIX I 

In this appendix the component model, as used by the MBD tool is presented. 

COMPONENTS: 

TEMP1 real-sensor 
FLOW1 real~senso: 
TEMP32 real-sensor 

TEMP5 real-sensor 
FLOW2 real-sensor 

CTRL49 real-sensor 
CTRL5O real-sensor 

TEMP3 real-sensor 
TEMP48 real-sensor 
TEMP4 real sensor 
TEMP49 realIsensor 
POWER1 real-sensor 

DESCRIPTION: fowardl 
ARLINPUTS: in1 in2 
ARLTIME-ORDERS: [l [l 11 [O 011 
RRX-COEFFICIENTS: 
-4.1194995e-001 7.9163022e-002 5.9358247e-001 

ARX-MIIRGIN: 0.390990 

NIWOX matlab_Sin-lout 

DESCRIFTION: fowardl 
Anx_INPUFS: in1 in2 in3 in4 in5 in4+in4 
ARX-TIME-ORDERS: [ 4 [ 4 4 4 4 4 4 I [O 0 0 0 0 0 
ARX-COEFFICImS: 

-6.481282832371505e-001 -6.582179894622993e-001 
7.928607489118034e+000 0.000000000000000e+000 
0.000000000000000e+000 -1.670719803668529e+OOl 
0.000000000000000e+000 0.000000000000000e+000 

DESCRIPTION: forwardl 
ARX-INPUTS: in1 in2 in3 in4 inl+in2 inl+in3 inl'in4 in3+in4 inl'inl in2*in2 in4-in4 
RRX-TIME-ORDERS: [ 4 [ 4 4 4 4 4 4 4 4 4 4 4 1 [O 0 0 0 0 0 0 0 0 0 0 I I 

DESCRIPTION: foward2 
ARX-INPUTS: in1 in2 in3 in4 inl-in2 inl'in3 inl'in4 in3*in4 inl'inl in2*in2 in4-in4 
ARX_TImRDERS: [ 4  [ 4 4 4 4 4 4 4 4 4 4 4 1  [ O O O O O O O O O O O I  I 



DESCRIPTION: forwasdl 
INPUTS: in1 in2 in3 in4 

inl'inl in2-in2 in3*in3 in4'in4 
ARX-TIME:ORDERS: L 2 [ 2 2 2 2 2 2 2 2 2 2 2 2 1 
ARX COEFFICImS: 

DESCRIPTION: forward2 
ARX~INPUTS: in1 in2 in3 in4 - 

inl'in2 inl'in3 
inl'inl in2*in2 

AKTIME-ORDERS: [ 2 [ 2 2 
ARX-COEFFICIENTS: 

-3.510550680349328e-001 
4.204685163172011e+000 
3.134552831771393e+000 
0.000000000000000e+000 

-1.686190808456064e-001 
-1.114748450953000e-001 
-8.014921488079371e-002 

ARX-MARGIN: 0.087871 

DESCRIPTION: fowardl 
ARX-INPUTS: in1 in2 in3 in4 
ARX-TIME-ORDERS: [ 1 [ 1 1 1 1 I [O 0 0 0 I I 
ARX-COEFFICImS: 

2.381369923515381e-001 3.463933217979033e-003 1.234503451901340e-002 
1.259769859321848e-000 

7.815893954051693e-002 

DESCRIPTION: forward2 
ARX-INPUTS: in1 in2 in3 in4 
ARX-TIME-ORDERS: [ 1 [ 1 1 
ARX-COEFFICImS: 

-5.871170150442758e-001 
-7.288116708521500e-003 

CONNECTIONS: 

POWER2 2 RETFAN 1 

R E T b  3 NIXBOX 5 
MIXBOX 6 TEMP2 1 
CTRL37 2 COOLCO 1 
TEnPl 2 COOLCO 2 
MIXBOX 6 COOLCO 3 
FLOW2 2 COOLCO 4 
COOLCO 5 TEMP3 1 
COOLCO 6 TEMP48 1 .----- 
CTRL36 2 HEATCO 1 
TEMP1 2 HEATCO 2 
COOLCO 5 HEATCO 3 
FLOW2 2 HEATCO 4 
HEATCO 5 TEnP4 1 



APPENDIX II 

The 'diagnosis language' program that 
detection and diagnosis: 

used to accomplish real-time fault 

VAR count 
VAR compo 

:lop 
rern First start with the system model 
c1s 
Load-Model sys 

count=O 
rern * * *  A  loo^ to read historical data 
:lopje 
Load-Observations 
count=count+l 
If countc6 Goto :lopje 

:loop 
rern "' This is where the conflict detection loop starts 
c1s 
Load-Observations 
count=count+l 
Calculateqrop2 
If No-Conflicts Goto :loop 

rern "' A conflict is found 
POS 5.5 
Echo Conflicts Found 
Beep 
pos 5,6 
echo Now loading Component Model.. 
rern *" if historical observations are available, 
rern '** these are automatically read when a new model is loaded 
Load-Model comp 
Calculateqrop2 
If No-Conflicts=O Goto :ohno 

rern "* seems like a false alarm 
rern *" stay in component mode for a few runs to be shure 
rern **' If after 5 runs still no conflicts are found 
rern *" the system assumes it was a false alarm due to inaccuracy 

compo=O 
:checkloop 
Load-Observations 
compo=compo+l 
Calculateqrop2 
If compo=5 Goto :lop 
If No-Conflicts Goto :checkloop 

: ohno 
rern *'* Now we're in serious trouble.. 
rern *" a conflict is found in the component model 
Calculate-Hit-Best 
Show-Diagnoses 
Keypress 
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Qualitative Model-Based 
Fault Detection in Air-Handling Units 

A.S. Glass, P. Gruber, M.  ROO^, and J. TSdtli 

T he feasibility of a qualitative approach 
for detecting faults in an air-condition- 

ing system is considered. The system con- 
sidered is a multi-zone variable air volume 
air-handling unit, and the faults investi- 
gated include types which result in deterio- 
ration of operation, as distinct from actual 
failure. The operating modesofthe sequen- 
tial controller for the central air-handling 
plant can be matched to a corresponding 
qualitative classification of steady-state 
temperatures. Observed mismatches indi- 
cate the presence of faults. Trials of the 
method in an air-conditioning test labora- 
tory are reponed. 

Introduction 
This micle extends and consolidates the 

investigations reponed by Fomera et al. [I] 
and Glass [21, in which a qualifadve ap- 
proach to detecting a class of faults in a 
variable air volume air-handling system 

I COIL COIL I - 
Additional Zones 

I 
Fig. I .  The simplified reference air-handling sysrem. 

- .  
was developed. The qualitative approach identifies certain so- 
called "landmark" states of the controller regulating a central 
air-handling unit and relates them to corresponding "landmarks" 
of the relevant air temperatures and flows. 

Using this approach, a wide class of operating faults can be 
analyzed. In particular, we deal with faults which result in 
deterioration of operation as distinct from actual failure-a situ- 
ation known to occur frequently in practice. Conflicts between 
qualitative values of thecontroller statesas actually observed and 
those expected-as derived from the measured qualitative tem- 
perature states-provide evidence of such faults. 

This micle describes a technique for analyzing the symptoms 
expected to result from given faults, and by applying this ap- 
proach to known faults, a rule-table can be compiled to aid 
diagnosis. 

An earlier version of rhis article was presented at the 3rd IEEE 
Conference on Control Applicarions. Strarhclyde Universiry. Glas- 
gcw Aug. 24-26.1994. Three of rhe aurhors, A.S. Glass, P. Gruber 
and I .  TGdtli, are with h n d i s  & Gyr Corp.. CH-6301 Zug. Swirier- 
land. M .  Roos is with rhe lnsrirure for Strucrural Engineering, Swiss 
Federal lnsriture of Technology. CH-8193 Zurich. Switzerland. The 
rerearch described in rhis arricle was partially funded by the Swiss 
Federal Energy Ofice  (Bundesamt fGr Ener~ien~irrschafr) and the 
Swiss Narional Foundorion (Schweiierische Narionalfonds). to 
whom we are grarefully indebred. 

The qualitative detection method described presupposes the 
temperatures and control settings of the central air handling unit 
(CAHU) to be quasi-stationary. Consequently a class of proto- 
type steady -state detectors has been developed and implemented 
in a fault detection system in the simulation model. Funhermore. 
it has been tested on a laboratory heating, ventilation, and air- 
conditioning plant (HVAC plant). A theoretical analysis of the 
threshold problem for various designs of a steady-state detector 
(SSD) is discussed by Todtli and Gmber [3]. 

Description of the Test System 
Simulation tests have been carried out using a SIMULlNK 

model of a simplified variable air-volume system (VAV system) 
based on the Annex 25 reference air-handling system described 
by Kelly [4] (SIMULINK is acomputer simulationenvironment, 
pan of the MATLAB software package supplied by The Math- 
Works Inc.). The system comprises a controlled central air-han- 
dling unit supplying air to three independently controlled zones 
with differing loads. Both the reference system and the simplified 
version are described in more detail in Fomera et al. [ IS] .  We 
summarize the components andcontrot strategy of the simplified 
system below. 

The Component System 
The overall system under test is illustrated inFig. 1. It consists 

of a central air-handling unit. depicted in Fig. 2, supplying air to 
a number of separately controlled zones. The CAHU comprises 



a bypass mixer and a heating coil followed by a cooling coil in 
a single air duct. The bypass dampers are controlled to provide 
a mixture of outside air and recirculated air: the amount of outside 
air may vary between 20% and 100% of the maximum airflow 
through the CAHU. The air for each of the three zones is 
processed through a VAV box containing a damper and a reheat- 
ing coil. The airflow to each zone as regulated by the damper 
may vary between 40% and 100% of the specified maximum. In 
point of fact, the maximum flow from the CAHU is not sufficient 
to provide maximum flows through all three zones simultane- 
ously, so limiting effects can be expected to occur. 

The system illustrated differs from standard Noah American 
practice in not including dehumidification of the cooling coil. 
However, the qualitative fault detection technique described 
below can also be applied to some such systems. 

The Control Strategy of the System 
Three controllers share the task of regulating the fans, damp- 

ers, heating coils, and cooling coils so as to attain the required 
temperatures and airflows in each of the three zones. Refening 
to Fig. 1, Controller C,  regulates the CAHU and attempts to 
maintain the supply airtemperatureTsat itsset point by operating 
the preheating coil, dampers, and cooling coil in sequence. 
Controller Cz, which regulates a single zone, attempts tomaintain 
the zone temperature Tz at its set point by operating in sequence 
thedamperandreheatingcoil in the VAVbox.The thirdcontroller 
is an idealized "flow control" governing the airflow through the 
CAHU and the various zones. It ensures that the flows h,, . 
mZz. and ma meet the requirements set by the zone controller 

C2, provided the resulting total airflow in through the CAHU 
d w s  not exceed its specified maximum. If the CAHU airflow 
maximum is reached, the toral flow is shared among the rhree 
zones in proponion to their respective requirements. 

The Central Air-Handling Unit 
The fault detection methods described below are applied 

specifically to the CAHU. As mentioned above, its task is to 
supply air at a controlled, fixed temperature Ts by operating the 
preheating coil, dampers, and cooling coil in sequence. The 
corresponding outputs of Controller CI are denoted UH, UD, and 
Uc, respectively. The controller also includes an economy con- 
trol feature, in which the control action on the bypass is reversed 
whenever the outside air temperature To~exceeds  the return air 
temperature. 

As mentioned, this system does not provide for dehumidifi- 
cation. If, however, the temperature control in such a system 
operates as described above, and the humidity control only 
operates while the cooling coil is in operation, then the fault 
detection method described below can be applied. 

The overall system, including the zones, affect the CAHU 
indirectly. The VAV boxes, acting in response to any loads in the 
zones, determine overall air flow h, while the return air tem- 
perature TR results from mixing the air extracted from the zones. 
Thus, controller C I  must respond to three quantities over which 
it hasnocont ro l ,To~,T~.  and h, which can be formally regarded 
as disturbances in this control loop. 

The Qualitative Model-Based Fault Detection Method 
The detection method described below involves reducing 

measured controller outputs to quolirotive values and at the same 
time using temperature measurements to predict expected quali- 
tative controller outputs in steady state. This procedure necessi- 
tates reliable sready-srare derecrion. Although we classify faults 
in terms of observed discrepancies using rule tables. such rules 
are derived analytically from the models as distinct from empiri- 
cal data. Thus our fault detection method incorporates a model- 
based approach. 

The Fault Detection and Diagnosis Strategy 
The current faultdetection strategy relies on analyzing the 

steady-state behavior of the system, including controls. Our 
objective has been to identify quolirorive modeling methods that 
can lead to successful fault detection and diagnosis procedures 
(FDD procedures). 

Qualitative models are investigated because, even if conven- 
tional quantitative mathematical models are available for the 
system components. it is frequently impracticable if not impos- 
sible to obtain all of the relevant physical parameters of the 
system. Thus FDD methods based on qualitative models are 
particularly robusz. Obviously, there is atradeoff in that the same 
methods are often less sensitive and therefore may not be able to 
detect faults in all operating states of the system. Fudermore, 
they may not be able to discriminore between different types of 
fault. One of the goals of this work was to assess the circum- 
stances under which it is possible to detect given faults in a 
CAHU using qualitative information. 

The strategy adopted corresponds to the general scheme 
described in Fornera et al. [I]. The overall structure of such a 
qualitative model-based fault detector is shown in Fig. 3. This 
conforms to the structure of the so-called general diagnostic 
engine (de Kleer & Williams [6], Dexter & Glass [7]). The fault 
detector models we consider are also related to the generic FDD 
scheme proposed by Rossi and Braun [8]. 

From the cenml air-handling unit the measured values of the 
temperatures TO*. TR. TS and the control variables UH, UD, UC 
are obtained and fed into the first stage of the analog pre-proces- 
sor, which serves to test whether the system is in steady state. 

RETURN 
Relief Air FAN ... 

Refurn Air 

"latea ; 

HEATING CWLING 
COIL COIL I 

Fig. 2. The central air-handling unit. 
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Fig. 3. The qualitative model-based fault-detection strategy. 

Referring to the left half of Fig. 3, the controller outputs are 
convened to qualitative values US,  US,  and US. In the right 
half of the figure, the temperature data is input to a model-based 
predictor which outputs 68, @, and @,  the expected quali- 
tative controller states under steady-state conditions. The quali- 
tative values of the outputs of the transformation and predictor 
blocks are chosen from the following sets: 

US E {CLO,NCLO], 

U S E  {MINO.BETW. MAXO]. 

US E {CLO,NCLO], 
(1) 

where  the l inguist ic  mnemonics  
"CLO." "NCLO." "MINO," 
"MAXO." and "BETW' stand for 
"closed," "not closed," "maximally 
open," "minimally open," and "be- 
tween." respectively. 

Faults are detected on the basis of 
discrepancies between the measured 
qualitative controller outputs and the 
corresponding model-based predic- 
tions based on temperature measure- 
ments. 

In point of fact. the method involves quanritarive pre-proc- 
essing of temperature data, but panicular stationary states are 
identified in which the qualitative settings of the control signals 
("minimum," "maximum," or "between") betray the presence of 
faults. This differs from the type of purely qualitative formalism 
in which, for instance, all physical quantities, such as tempera- 
tures, etc., are strictly described in terms of intervals. 

Transition States of the CAHU Controller 
The strategy hinges on analyzing the transition states of the 

sequential controllerregulating the CAHU. One transition occurs 
when the controller switches from operating the heating coil to 
operating the bypass dampers; a similar transition occurs when 
the controller switches from the bypass dampers to the cooling 
coil. A third transition occurs when the controller switches into 
economy mode and reverses the direction in which the dampers 
are operated. These transitions correspond to the idea of land- 
marks used in some approaches to qualitative physics (Kuipers, 
[9,10,111; Dexter & Glass, [7]). Landmarks are physical values 
of special significance. For example, freezing and boiling tem- 
peratures can serveas landmarks because phase transitions occur. 

The values taken by qualitative variables can either be on one 
of the landmarks themselves or in an interval between two 
landmarks. In our case, neglecting the issue of economy control 
for the time being, we identify five qualitative values of the 
CAHU controller states, depicted in Table 1. 

An equivalentclassificationoccurs when the system goes into 
economy mode, the only difference being that xmm and x m i n  

should be interchanged in the above table. 
The two landmark controller transition states can be simply 

related to corresponding critical temperatures. Given a particular 
flow m. s u ~ ~ l v  air temDerature Ts and return air temcerature TR. .. . ( ~ n )  critical values of the outside air temperatures, T&:) and ToA , 
can be calculated corresponding to controller states (4) and (2) 

- ~ ~- 

Table 1. Qualitative States of the CAHU Sequential Controller 

Qualitauve Controller State 

1. The controller output sets the out- 
side-air dampers at minimum. the 
cooling coil off, and the heating coil 
on. 

2. Landmark state: transition between 
heating coil operation and bypass 
damper operation. 

3. The controller output sets the by- 
pass dampers somewhere between 
theu extreme values. 

4. Landmark state: transition between 
bypass damper operation and cooling 
coil operation. 

5. The controller outpul sers the out- 
side-air dampers at maximum, the 
heating coil off. and the cooling coil 
on. 

Controller outputs to ... 

UH = 0 

UH = 0 

UH = 0 

UH = 0 

Cooling Coil 

Uc=O 

Heating Coil 

uH > 0 

UD = Xmin 

xmin  < UD, UD < xmar 

UD = Xmax 

UD = Xmax 

Bypass Dampen 

UD = xmin 

UC=O 

UC = 0 

Uc=O 

UC>O 



on whether or not TOA 5 TR and Ts < TR, the optimal damper 
setting will correspond to xmin or xms. 

The various regimes are depicted in the diagram. The line 
TOA=TR determines when the economy control feature should 
switch x fmm xmin to xma. or vice versa. The unshaded re,' 01ons 
are those in which it is only necessaq to operate the dampers to 
achieve the desired effect. The shaded regions in the upper right 
sectors require cooling, with x = x,,, if ToASTR, or x = xmin 
otherwise. Similarly, the shaded regions in the lower left sectors 
require heating, with x = x,,, ifToA<TR, or x =  otherwis wise. 
We summarize the six operating regimes inTable 2 (the number- 
ing of the operating regimes differs from that used in Fornera et 
al. (1993) &Glass (1993)). 

As previously noted. the above analysis also applies to air- 
handling units which incorporate dehumidificarion in the cooling 
mode, provided humidity control is subservient to temperature 
control and the dehumidifier can only be operated while the 
cooling coil is active. 

I I Temperature States Corresponding to Controller Transitions 

Fig. 4. Graphical represenrarion of CAHU conrroller operaring To ensure that a fault detection strategy using controller 
regimes in terms of sready-srare rernperarure conditions. landmark values functions correctly, the temperature states cor- 

responding to the landmark values must k modeled accurately. - 
Indeed, this aspect of the analysis involves quanritarive model- 

respectively. Outside air temperatures are then classified quali- ing. However, the models used are suflciently simple that the 
tatively, according to whether they are on or somewhere between method as a whole may be qualitative, 
the critical temperatures. 

For the sake ofsimolicitv we shall assume that T ~ A  < Ta and . . .. 
Steady-State Behavior consider only the fmt three operating regimes from Table 2. The 

fust transition we consider occurs when the controller switches 
To illustrate the relevant steady-state conditions which may 

between cooling and operating the bypass dampers. The second 
occur we a plot Of TR - Ts vs' -Ts as in occurs when thecontrollerswitches betweenoperatingthedamp. 
Fig. 4. 

ers and heating. 
In order to optimize energy consumption, the controller must 

anempt to mix the outside air and the return air so as to ensure Under steady state conditions the first transition occurs when 

that the temperature TM of the mixed air is as close as possible the mixed air temperature exactly matches the supply air tem- 

to the supply air set-point temperature. If the fraction of outside perature for damper settings with maximum outside air. The 
second transition point occurs in the corresponding situation 

air in the mix is given by X, the temperature of the mixed air is when the dampers are set for minimum outside air. 
given by 

or 
where x is consmined between a specified minimum xmin and 
maximum x,,, 

TS = xminT0~ + (1 -xmin)TR. (7) 

O < X ~ ~ " < X < X " , ~ ~  l (4) The corresponding critical outside air temperatures are: 

In our case, xmin = 0.2 and xmax = 1.0. 
Combinations of TOA and TR yielding a given mixed air 

(Cl) - T S - ( l - ~ m s ) T ~  , 
T~~ - 

temperature correspond to suaight lines in this representation. Xmpr (8) 
Combinations in which TM = TS are straight lines through the 
origin. However, in view of the constraints imposed on X, only Or 

those lines with slopes between 
(C2) - T ~ - ( l - ~ r n i n ) T ~  

T~~ - 
Xmin Xmax - Xmin (9)  

1- Xmar 1 -  Xmin ( 5 )  
For general values of xmin and xmar these temperatures are 

correspond to situations in which the supply temperature can be time-vaqing quantities depending on the current return air tem- 
achieved by operating just the dampers. Otherwise, depending perature; the supply temperature itself may reasonably be re- 
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o---- -.------- 
(heatmg mode) (damper mode) ( w h g  mode) 

> 
Controller State 

'ig. 5 .  Conrroller ourputs in terms of conrroller stare 

The objective is to identify such faults by observing only 
whether the control signals are maximum, minimum, or simply 
somewhere in between. !n particular, we consider what happens 
when such faults occur singly. 

To analyze graphically what discrepancies are to be expected 
when faults occur, it is useful to develop an alternative repre- 
sentation to Fig. 3. Fig. 3 subdivides a two dimensional repre- 
sentation ofthe three relevant temperatures, TOA, TR, andTs, into 
regions corresponding to heating, damper operation, and cooling. 
In the alternative representation we plot one of the temperatures 
directly against the controller state. 

In Fig. 5 the three CAHU controller outputs are depicted 
graphically in terms of a single PI controller state v. In the 
following figures v is used to furnish a one-dimensional descrip- 
tion of the (quantitative) controller state. 

To obtain aone-dimensional representation of temperature, it 
r laced by the corresponding setpoint. However. in ourexamples, is convenient to assume TR, Ts, and h to be consranrid to plot 
since xm., = 1.0, the first critical temperature reduces to the controller variable v against TOA. as depicted in Fig. 6 .  The 

characteristic curve shown in this diagram is based on the as- 
(CI) - 

To, - Ts 2 
sumption that the temperatures, the flow, and the controller 

- ~ , , 
outputs are in steady srate. 

which is the situation discussed in Examples 1 and 3 of the fault 
detectors described in Fornera et al. [1,5]. 

We summarize the qualitative temperature states in Table 3. 
#------ 

To take the effect of economy mode operation into account, we To* / 
note that the direction of damper operation reverses whenever / 
TOA= TR. We label the extreme damper settings by the symbolic /' 
values X I  and ~ 2 ,  in which X I  is the damper setting at the 
controller transition to cooler operation and ~2 is the damper ,a- 

/* 

setting at the mansition to heater operation. When TOA < TR (the /-- 

normal situation), they correspond to xmin and xmar as given 
above 

If TOA > TR, however (economy mode), the direction of 
damper operation is reversed, and (mnlroller slate) 

(heating modej (dampermode) ' (mling mode) V 

X I  = Xmin , XZ=Xrnax. (12) Lig. 6.  Characterisric curve of To* vs. conrroller srate. 

Detecting Faults 
In order to predict the observable qualitative discrepancies 

which allow faults to be detected, it is necessary to analyze 
relevant fault models in more detail. 

For single faults, mles can be derived as to what qualitative 
discrepancies (between temperature states and controller states) 
will be observed under what circumstances. Whenever a fault is 
detected, it can be matched to a table of such rules to generate a 
list of possible candidate faulrs compatible with the observed 
discrepancy, thereby furnishing a partial fault diagnosis. 

We consider the behavior of a CAHU in which the operating 
ranges of the three components-bypass, heating coil, cooling 
coil-be constrained to less than their full range (bypass 20% to 
100% of flow), heating and cooling coils (0% to 100% of heat 
transfercapacity). This simulatesa typical classof faults in which 
dampers or valves suffer partial mechanical blockage. In addi- 
tion, the analysis described below can he extended to sensor 
offsets, etc. 

The characteristic curves shown are indeed qualitative in 
nature. Neither the heating nor the cooling curve can be calcu- 
lated without having a reasonably sophisticated quantitative 
model of the thermal effects taking place. By the same token, 
calculating the damper curves requires knowing the pneumatic 
response of the air flow to particular angular settings of the 
dampers and fan pressures. In general, this characteristic curve 
is monotonically increasing (between maximum heating and 
maximum cooling), but in the absence of an adequate quantita- 
tive model its slope is unknown. 

In contrast, the transition points, illustrated by twodotsL1 and 
Lz in the diagram,culate. Strictly speaking, the critical tempera- 
ture corresponding to the minimal damper setting will only he 
known accurately if the CAHU is indeed able to maintain its 
minimum outside air specification exactly. 

It may be noted that a kink appears in the cooling modecurve. 
This corresponds to the transition to the economy mode: the 
increased slope results from the increased efficiency of cooling 



when the quantity of w m  outside air is reduced. This suggests 
introducing a rhird controller landmark corresponding to econ- 
omy control switching. The corresponding temperature is TOA = 
TR. as shown in Fig. 7.  

However, for the sake of simplicity, we omit further discus- 
sion of the economy mode switching for the time being. 

A benefit of this qualitative approach is that it can be applied 
without significant modification to related central air-handling 
units. If the temperature control strategy of a CAHU is as 
described above, and, in addition, dehumidification may occur 
during cooling, this merely has the effect of reducing the effi- - - - 
ciency ofcooling (internsofenergy expended toachieve a given 
temperature drop), and therefore reduces the slope of the right- 
hand curve segment in Fig. 6, but does not alter the positions of 
the4'landmarks"L~ andL2. If,on theother hand, humiditycontrol 
is autonomous, then the position of the transition LI  (if not both) 
will shift, and the above analysis will no longer apply without 
modification. 

In another variant of the above system, the bypass mixers can 
be replaced by a hear recovery wheel. The control strategy of 
sucha systemis analogous; a s sumingTo~ST~,  when thecooling 
coil is operating, both the heat recovery wheel and the heating 
coil are switched off. When the heating coil is operating, the 
cooling coil is switched off and the heat recovery wheel is 
operating at maximum capacity. 

Whena known fault is present, it canbe modeledqualitatively 
in terms of the above characteristic curves. An example is illus- 
trated in Fig. 8, in which the heating coil valve cannot close 
completely, but otherwise operates normally. For cold outside air 
temperatures, when substantial heating may be required, the 
characteristic curve is normal. However, for controller states to 
the right of the threshold at which valve blockage occurs, the 
same minimal amount of heat continues to be delivered, and so 
the characteristic curve remains flat (at the temperature corre- 
sponding to that threshold heating setting) until the transition to 
damper operation isreached.Thereafter,remainingcharacteristic 
curve segments are the same wirh respecr to the modifiedrransi- 
lion poinr Li. 

,..J (eontroller state) 

P3ating node7 (daamparmcde) ' ( d i n g  mode) V > 

Fig. 8. Characrerirric curve of TOA us. conrroller rrare when a faulr 
isprerenr. 
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To illustrate the 
qualitative discrep- 
ancies which may 
occur, two parallel 
axes for the conuol- 
le r  s t a t e  are in- 
cluded: one for the 
expected behavior, 

1 Table 3. Qualitative Temperature States 1 
Qualitative Temperature State in Terms of TOA 

states of the controller are indicated on the upper v-axis in the 
diagram. States 2 and 4 correspond to the uansitions (landmark 
values) themselves. 

The predicted qualitative controller states are obtained by 
determining the controller values on the modified curve which 

correspond to the two transition temperatures TE) and TC). 
The corresponding values have been projected onto the lower 
v-axis in the diagram. Comparing the two axes shows that two 
temperature ranges exist for which qualitative discrepancies will 
be apparent. 

The detectability of the fault in this example is summarized 
in Table 4. It can be seen that for both temperatures at the 
landmark transition poinrs, as well as in intervals below these 
values, the fault can be detected. 

Qualitative Temperature State in Terms of Ts 

and one for the ob- 
served  behavior. 
The observed be- 
havior corresponds 
to that illustrated in 
Fig. 6 .  The five ob- 

Similar behavior occurs for other faults. When TOA = ~ 8 )  
(and TOA < TR) we expect the intake of outside air to be maximal 
and both the heating andcooling coils to be switched off. If either 
the heating coil fails to switch off completely or if the bypass 
mixer takes in less than the specified maximum proportion of 
outside air, the controller will switch on the cooling coil to 

compensate. Conversely, if the cooler fails to switch off, the 
controller will compensate by operating the dampers and heaters 
in sequence. 

The situation whenmore than one fault occurs simultaneously 
is more complex, but can be analyzed by repeated application of 
the technique described graphically in Fig. 8. When 

TOA = TC) (and TOA 5 TR) and both the dampers fail to open 
fully and the heating coil fails to switch off completely, compen- 
satory cooling will result. However, if both heating and cooling 
coils cannot switch off completely, the net effect could be either 
one of cooling or heating, and so the symptoms cannot be 
predicted without further, quantitative information. The same is 
true for the cooling-coil fault in combination with the bypass 
fault, as well as for all three faults in combination. When 

To, =~e) the effect of combination of the cooling coil not 

switching off completely and the bypass failing to close down to 
xrnh will lead to compensatory heating. The symptom resulting 
from any other combination of this group of faulrs is unpre- 
dictable. 

1. 

served qualitative 

3, 

5' 
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P) Toa < TnA 

~ g )  < ToA < TK' 
(C1) TOA = TOA 

(C1) TOA > TOA 

Table 4. Detectability of Heater Valve That Cannot Close Completely 

TS > X ~ T O A  + (I - XZ)TR 

XITOA + ( I  - XIITR < Ts; Ts < XZTOA + (I - X ~ T R  

Ts =XITOA + ( I  - XI)TR 

Ts < X I T O A +  (1  -XI)TR 

Steady-state configuration Fault-free behavior 

U H > > O ; U D = ~ ; U C = O  I ( 4  

Symptom when heater cannot 
switch off completely 

(CZ) Ton << Tnl 



Steady-State Detection 
A prototype steady-state detector has k e n  implemented in 

SIMULWK. It has been both tested separately and incorporated 
in the FDD module of the overall simulation model. 

The separate tesrs have been carried out with generated data 
comprising a mixture of step disturbances and both damped and 
undamped sinusoidal oscillations. In addition, initial tests have 
k e n  carried out on measured data from the new Grafenau 
Building at Landis & Gyr's headquarters in Zug, and, more 
recently, on data generated from the Landis & Gyr HVAC testing 
laboratory. 

The prototype detector computes a geometrically weighted 
running variance with respect to a geometrically weighted run- 
ning average. An alternative would be to compute the variance 
of data within a sliding time interval, but the former scheme has 
been implemented because it has the advantage that the compu- 
tations are recursive, requiring a minimum of memory. More- 
over, it is sensitive in reacting promptly whenever the current 
data depart from their steady-state values. 

Denoting the sequence of data by 

The effect of using differing parameters a and P can be 
summarized in the equation: 

In the simulation tests carried out, the geometrically weighted 
variance has been used with a single parameter a = P. At the 
moment, the merits of using differing weighting parameters are 
not apparent. 

The (single) parameter a can be related to an effective time 
"window" of length r,, by means of the weighted average 

1x0, XI, X2, ..., ~ n )  (13) where At is the time increment between m e k e m e n t s .  Thus 

the geometrically weighted average is defined .=A, 
r,,+At (22) 

- 
X, ( a )  = '=O 

& - k  

k=O 

where a is the (constant) geometric weighting factor (0 < a  < 1). 
The geometrically weighted variance can k formally defined 
with a different weighting factor P (0 < P < 1): 

The above can k computed recursively in terms of the 

running moments xim)(a):  

2 
2 xi%) x!"(P) x!"(a) +[x,!!(a) 1 S,(a,P)=-- 2-- -- 

~ ' R ) ( P )  x;%) ~ ; ' ) ( a )  x, (a)  ' (18) 

The variable xn is deemed to be in steady state whenever the 
weighted deviation falls k l o w  a pre-determined threshold E,, [or, 
equivalently, the variance falls k l o w  

Tuning the SSD has involved adjusting both the threshold ESS 

and the time window r,,. The latter is set to match the typical 
relaxation times of the test system, and the former must k set 
according to how much "noisenis t o k  tolerated when thesystem 
is deemed to have reached a steady state. In the simulations and 
laboratory tests, a hysteresis-type threshold was used to avoid 
rapid fluctuations of the steady-state signal. 

The questions of threshold settings and alternative steady- 
state detector designs are discussed in hller detail elsewhere 
(Tkltli & Grukr  [3]). 

Simulation Tests 
As repo~ted previously (Glass. [Z]), simulated tesrs were 

carried out using the simulation program developed in 
SIMULINK and incorporating discrete-rime modules. 

Tesrs of the steady-state detector itself, after initial tuning had 
been carried out, yielded satisfactory results. When incorporated 
into the simulation model of the reference air-handling unit, the 
steady states were flagged approximately where expected. 

Running the full system including diagnostic modules tuned 
to the two steady-state configurations described above produced 
the expected effects. After the system had staned up (with 
constant outdoor air temperatures and temperature set points), it 
reached steady state after about 10 minutes, and if the operating 
range of one of the components had k e n  consuained, symptoms 
were correctly flagged in accordance with Table 4. 

The simulations also reveal the necessity of proper tuning 
with regard to thresholds. For instance, whenever the steady-state 
configurationof temperatures ought to result in the heating k i n g  
off and the dampers in minimum position, thecontroller outputs 
in realityflucruate around this transition point, and the heating 
may sometimes be briefly switched on a small amount or the 
dampers opened slightly. If the faultdetector is not to be triggered 
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Fig. 9. Schemnric diagram of HVAC loborarory air-handling unir. 

triggered with false alarms. the thresholds must be set to tolerate 
such "normal" departures from theoretical values. 

Experimental Tests 
Experimental tests were conducted on a laboratory air-han- 

dling unit with two goals: first, to test the performance of the 
steady-state detection method of the last section on data deriving 
from realistic conditions, and second, to test the detection 
method described previously. 

The plant used was the air-handling unit in the Landis & Gyr 
HVAC laboratory. illustrated schematically in Fig. 9. It differs 
from the Annex 25 reference plant in supplying a single ?one 
with controlled constant air volume. In addition, the AHU is 
equipped to control humidity. The laboratory is equipped to 
modify the effective load in the zone as well as the 
outside air temperature as may be required to achieve 
desired experimental conditions: the former by simu- 
lating both heat gains and the thermal behavior of the 
walls, and the latter via an additional air-handling unit 
external to the one being tested. 

, The laboratory AHU in Fig. 9 was operated so as to 
match the behavior of the CAHU illustrated in Fig. 2. 
The supply-air temperature prior to the zone was con- 
trolled using only the heating coil, the cooling coil, and 
the bypass mixer; dehumidification was switched off. 
Experiments were carried out using both naturally 
occurring outside-air temperatures as well as tempera- 
tures raised by an approximately constant amount. 
Plant data was captured via an especially developed 
interface and recorded in a SIMULINK software envi- 
ronment, to allow post-processing analysis with SSD 
and FDD modules. Nevertheless, the special interface 
would allow steady-state detection and fault detection 
to be carried out on-line in real time. 

Data were recorded for runs lasting between one 
and five days. Faults of the type described gaphically 

A typical run is illustrated in Fig. 10. The 
upper graph illustrates the outdoor, return, and 
supply-air temperatures TOA, TR, and Ts for a 
durationofapproximately 118 hours. Thesupply 
temperature set point T:' was deliberately kept 
low (initially 1 6 T ,  later 1 2 T )  in order to pro- 
vide conditions in which the outdoor tempera- 
ture was close to its upper critical value 

(TOA = ~ g ' ) .  At approximately 98 hours TOA 
was boosted by means of the external air-han- 
dling unit in order to avoid freezing temperatures 
requiring operation of the frost-protection 

heater, and at the same time a higher TSP was 
chosen (18°C). The changes are evident in the 
diagram. During this last phase a fault was intro- 
duced at approximately I02 hours: the cooling 
coil was prevented from operating below 15% 

of its maximum power. A small drop in Ts is evident in the 
diagram at that point, but the main sequential controller ensured 
that Ts was brought back to its set point of 18°C. 

The lower graph in Fig. 10 illustrates the results of filtering 
the three temperatures with steady-state detectors. The top curve 
is the binary (logical 0 or 1) output of the SSD acting on ToA, 
the second curve the same for TR, and the third the same for Ts. 
The bonom curve is the output showing when all  rhree tempera- 
tures are deemed to be sirnulraneously in steady state. All three 
steady-state detectors were characterized by time constants r,, 
of 15 minutes and thresholds ers of 0.I0C. 

Fig. 11 illustrates the same dam during the first 20 hours in 
more detail. The top graph displays TOA, TR, and Ts, as well as 
the supply-air set-point temperature TsSP. The second graph 
shows the corresponding controller outputs. The upper curve is 

Data set TO7 Toa, Ti Tr. Ts-SP 
30 , - 1 

-101 I 
0 20 40 60 80 100 

t [hours] 

Taa.Tr.Ts. or all 3: in steady state? IT=15min.; Tdev.=O.l(deg.ll 

. . - .  
in Fig. were during pan Fig. 10. Loborarory resr: remperarures and steady-srate derection during 
by re-programming the Operating ranges Of subsidiary appmximarely I20 hours' operation. Top graph: Temperarures ToAOn, TR ,  and 
control1ers serving Ihe individual in Yes- Ts. Borrom ~ r a p h :  Sready-srore srarus of ToA. TR ,  Ts, and a!/ rhree 
tion. simulraneous!y 
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Data sel T07: Toa. Tr, Ts, Ts-SP 
25 

I Tr 

a 2 0  - i 
e 
$ 1 5 7  - 
rn 
m Toa Ts 

j 1 0 -  

5b k ; ; ib 114 do 
I [ ~ O U I S ]  

Controller OU~PUIS 

............................. ................ J 
I 

1 [hours] 

i 
Data set 107:Toa. Tr, Tr, or all 3: in steady slate? [T-15min.;Tdev=O.l(deg.)] 

n 
I I Toa SS? 

I I Tr SS? 
...................... ..I.. .......... - .  ..... 

n 1 s  SS? 
........... 

0 i I I All SS? 

0 2 4 6 8 10 12 14 16 18 2C 
1 [hours] 

Qua1.T 8 C smes:alarm ISSD Dan.: T=15min.:T.d~.=O.lldea.ll 

0 1 CAHP Alarm 

0 2 4 6 8 10 12 14 16 18 2C 
1 [hours] 

Fin. 11. Loborarow resr: remoeramres. conlroller outours. SSD & FD 

troller outputs. In terms of the classification schemes 
in Table 1 and Table 3, Controller State #I and Tem- 
perature State #I have been assigned a value of 2 and 
Controller State #5 and Temperature State #5 a value 
of 6; the other states have been assigned corresponding 
integer values in between. The bottom curve is the 
binary (logical 0 or I) output of the fault-detection 
module (remaining constant at zero, in this case). 

After about 16 hours both qualitative states are at 
level 4 (i.e., State #3), meaning that the system is 
regulating the supply temperature by using the 
dampers only. It may be noted that between hours 2 
and 10 there is an almost constant discrepancy be- 
tween the temperature state and the controller state: 
the controller is operating the cooling coil (mini- 
mally) even though the outside-air temperature is 
below the supply-air set point. However, no fault is 
signaled, because there is only one shon period 
when all three temperatures and the airflow in are in 
steady state, namely from approximately 6 to 6.5 
hours. During this period the qualitative states of 
both the temperatures and the controller are in State 
#4, so no discrepancy is registered. 

Fig. 12 illustrates the same data as Fig. 10, but for 
the last approximately 19 hours' of operation of the 
laboratory test mn.The information incorporated in the 
four graphs corresponds to that in Fig. I I. However, a 
significant difference between this pan of the labora- 
tory test and that illustrated in Fig. 11 is that from 
approximately 101.5 hours on, the cooling coil was 
constrained to operate at least 15% of its maximum 
power. 

Although To, 2 ~ 2 '  until about 113.5 hours it is 
evident that prior to approximately 101.5 hours Uc > 
0, whereas afterwards, up to 102 hours, UD < xmar and 
then, after 102 hours, UH > 0 for the remainder of the 
run. During much of this period, the system is deemed 
to be in steady state, and. since the qualitative states of 
thecontroller ("observations") and thequalitative tem- 
perature states (classified in terms of the expected 
controller behavior: "predictions") are incompatible, a 
fault is flagged. 

The nature of the fault can be at least oartiallv 
a ~ l y s i s  when nofaulrs present in syrtem. TOP graph: Temperatures TOA. TR. diagnosed from the particularcombinationof incom- 
Ts, and T~". Secondgrapk: Conrroller ourputs UH, UD,  and Uc. Tkirdgrapk: patiblequalitativestatesobserved.ltmayalsobenoted 
Sready-stare sratus of TOA, Tn, Ts,andall three simultaneously. Borrom graph; thatinfig. 12thefaultalamandthethree-temperature 
Qualirarive remperarure and conrroller srares: CAHU faulr-derecrion alarm stead~-statestatusdonotcom~letel~coincide.Thisis 
srarus. because theFDD module alsoincludesaSSD forthe 

flow r i l  (as measured by pressure differences). All 

UH, the output to the hearing coil (constantly at its minimum), four quantities, TOA, TR, TS, and m, must be 

themiddlecurve isuD, [he outputto thebypassdampers (mostly deemed to be in steady state for the fault detector tooutput an 

at maximum), and the lower curve is Uc, theoutput tothecooling alarm. 

coil. For the sake of clarity, UH and UD have been offset by 2.0 
and 1.0 respectively in order to separate the curves. Generalization and Applicability 

The third graph depicts the results of steady-state testing of Classifying the examples from Fomera et al. [I1 in terms of 

the three temperatures (cf. lower graph of Fig. lo), and the transition points of the sequential controller lends this class of 
bottom graph depicts the results of qualitative fault-detection faults generic character, which ought to facilitate its generaliza- 
analysis. The upper half of the graph shows thequalitative values tion to other systems. However a feature of the faults considered 
of the measured temperature states and the corresponding con- is that the transitions occur at the ends of the operating range of 
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the bypass dampers. in which the relevant quanrirarive models 
are comparatively simple and reliable. In other words, the effects 
of adjusting the dampers is highly predictable. If one attempts to 
apply the same idea to the VAV boxes, for instance, one comes 
up against the obstacle that the loads in the zones are not 
predictable in practice, which makes determination of the con- 
ditions for transition more difficult. 

On the other hand, the ideas applied to the CAHU in the 
reference AHU should, in principle, be applicable to other types 
of CAHU, provided a sequential control strategy is used which 
involves similarly predictable transitions. 

Data sel T07:Toa. Tr. Ts. Ts-SP 
24 
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I 
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The concept described ought to be implementable in practice. 
Simulations with the FDD module incorporating operating on 
rime-discrere signals appear to be sufficiently fast to allow them 
to be used on-line with operating HVAC systems. The memory 
requirement is in any case trivial. 

Amore serious question is the applicability of methods which 
require steady states to be achieved which may not occur in the 
course of normal operation. This would mean that the test would 
have to be used as pan of a program of active testing (HVAC 
building tests during night-time, for instance) as opposed to a 
pure monitoring function. 

Fig. 12. lob or or or^ lea: remperorures, conrroller ourpurs, SSD ond FDD 
analjsis when cooling coil connor switch off complerely. Top groph: 

Tempernrures Ton. Tn. Ts, and T:'. Second ~ r a p h :  Cnnrroller ourpurs UH.  

UD,  and U c .  Third groph: Steady-srare srarus of TOA, Tn, Ts, and d l  rhree 
simulraneousl)~. Bottom groph: Quoliroriee remperarure and conrroller stares; 
CAHU faulr-derecrion alarm srarus. 

Conclusions and Outlook 
The fault detection strategy considered here detects 

faults in acentral air-handling unit by analyzingcenain 
steady states of the plant (or a subsystem of the plant) 
in terms of qualirarive criteria. In the overall FDD 
strategy, however, at least some quantitative pre-proc- 
essing of data is required. The behavior of the fault 
detection system implemented in the simulation pro- 
gram was as expected. Symptoms arising from single 
faults can be detected. If multiple faults are assumed, 
the expected qualitative symptoms are, in general, not 
uniquely determined. 

Initial results of the HVAC laboratory tests verified 
the fault-detection method experimentally. Steady- 
state conditions of the system as a whole-and the 
outside-air temperature in panicular-were obsewed 
for a sufficient length of time during the diurnal cycle 
to allow faults to be detected qualitatively. Yet to be 
investigated is the question as to just how big a fault 
needs to be before it can be detected by the above 
qualitative method. 

Future work will also be concerned with investigat- 
ing the applicability of the above methods to other 
HVAC systems. Attention will also be given to linking 
knowledge derived from the comparative qualitative 
analysis of two (or more) different steady states. Fi- 
nally, the possibility of applying qualitative methods 
to the analysis of transient behavior (cf. work by Koch 
[12]) or to other non-steady-state situations needs tobe 
investigated. 
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Abstract A qualitative approach for detecting faults or suboptimal operation in a class of 
heating, ventilation and air-conditioning systems is presented. In particular, qualitative 
models are used to describe the steady-state operation of a controlled central air-handling 
plant. Included among the variants of the underlying faultdetection approach considered is 
one using a model-based predictor in a logical programming environment The predictions 
of the qualitative steady-state models are compared with numerical simulations of the 
dynamical system behaviour. 

Key Words. heating ventilation and air-conditioning (HVAC), m t r a l  air-handling unit, 
fault detection and diagnosis, qualitative modelling, logical programming. 

1. INTRODUCTION 

This paper considers the feasibility of a qualitative 
approach for diagnosing a class of faults in a variable 
air-volume air-handling system. This paper reports 
the results of some preliminary investigations making 
use of logical programming methods (Fomera, et aL, 
1993,1994). 

The system considered is a simplified version of the 
I.E.A. Annex 25 reference air-handling system 
described by Kelly (1993). The paper deals with 
some illustrative faults of the central air-handling 
plant which result in deterioration of operation, as 
distinct from actual failure - indeed. some of the 

I.E.A. is an abbreviation for Lkc llnemational Encrgy Agcncy. 
h n u  25 is part of Lkc LEA. programmc."'Ercrgy 
Comemarion in Buildings and Communiiy Systemr"; and is 
spsificdly cancrmcd with "Real-time simuldon of HVAC 
sysocm for building opiimisation, fault dctsction and 
disgrmsis''. 

faults chosen reflect Situations known to m u r  
frequently in practice. 

The investigations described here comprise 
simulation of the air-handling system, with and 
without faults, an analysis of the faults considered in 
tMns of qualitative models, and testing the models' 
predictions within a PROLOG logical programming 
environment. 

In what follows, Section 2 describes the system being 
modelled, as well as the simulation methods 
employed. In Section 3 the relevant features of the 
steady-state behaviow of the CAHP system are 
discussed. Section 4 deals with the detectors 
themselves, including some relevant examples. 
Finally, conclusions and the outlook for fume work 
arc presented in Section 5. The results of the 
quantitative simulations are included in the 
appendices. 



106 L. Fomera er al. 

2. DESCRETION OF THE AIR-HANDLING 
SYSTEM 

2.1 The reference system 

These investigations have concentrated on the cenual 
air-handling plant ("CAHP') of a simplified system 
based on the I.E.A. Annex 25 reference system 
described by KeUy (1993). The reference system - 
with a slightly different notation from that used by 
Kelly -is depicted in Figure I. 

The cenual unit comprises a bypass mixer and a 
heating coil followed by a cooling coil in a single air 
channel. The bypass dampen are conwlled to 
provide a mixnue of outside air and recirculated air: 
the amount of outside air may vary between 20% of 
the maximum *ow through the CAHP and IOOLRo. 
The air for each of the three wnes is processed 
Uuough a variable air volume ('VAV") box 
containing a damper and a re-heating coil. The 
airflow to each zone as regulated by the damper may 
vary between 40% and IOOLRD of the specified 
maximum. In point of fact, the maximum flow from 
the CAHP is not sufficient to provide maximum flows 
through all k c e  w n a  simultaneously, so limiting 
effects could occur. 

Five controllers share the task of regulating the fans. 
dampers. heating coils a d  cooling Mils w as to 
attain the required temperahues ~d airtlows in each 
of the three zones. Referring to Figure I. Controller 
C,, which mainly regulates the CAHP, attempts to 
maintain the supply air temperature T, at its set point 
by operating the preheating coil, dampers and cooling 
coil in sequence. Controller C,, which regulates a 
single zone. artempts to maintain the zone 
temperature Tz at its set point by operating in 
sequence the d a m p  and -heating coil in the VAV 
box. Controllers C, and C, regulate the airtlow 
through the CAHP: CS attempts to maintain the 
pressure P, in the main supply air duct at its set 
point, and C, conuols the return fan airtlow rate so 
as to ensure that the difference m, - m, between 
the return and supply airtlow rates is a fixed. positive 

Table 1. Notation used 

Corresp. Symbol 
Quan!ily Symbol [Units] in Kelly (1993) 

O u t d o o r a i r t e m ~  T,, ["C] T1 
Supply a i r ~ m m h u e  T, PC] T5 
Renun airtcmpcmrc T, ["C] n 
Zone tcrnperaturr T, ["C] T6 
Supply aimow rate m, Bgls] F1 (dh& 
Renun airflow rate m, [kgls] E! (dhrae) 
Airflow rate to mm mz [kgls] VP (dh& 
Pressure in supply duct Ps [kgls] SP 

Fig. I. The I.E.A. Annex 25 standard air-handling 
system 

amount. 

Controller C, actually consists of' two cascaded 
conmollen: the main zone conuoller attempts to 
maintain the zone temperature Tz at its set point by 
acting in squence on the reheater coil and a 
secondary conuoller, to which it supplies the wne 
air-flow set point The secondary cwtroller attempts 
to maintain the zone air flow at that set-point value. 

'Ihc discriminator D, nceives information from the 
various zone conuollers C, and determines the 
highest supply air temperature set-point in a fixed 
range (13.9°C-18.30C) compatible with ensuring that 
the demands of all the zones can be met. 

2.2 The simplified system 

The system that has been modelled thus far differs 
from the reference system in a number of points. 
First and foremost, for reasons of tractability, neither 
the component models nor the control strategies have 
yet been implemented in full detail. Besides that, 
there are some minor differences in the details of the 
control sUategies used. 

The modified system is illustrated in Figure 2. It 
d i i en  from the reference system with regard to the 

-- 
Fig. 2. The Simplifd System 



following points: 
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specification will be implemented in future 

All heating coils and cooling coils omit the actual 
physical heat exchange between the air and the 
hot water or coolant. The effect on the air of a 
prescribed heat transfer rate is modelled. 

No reference to pressure is made in this model. 
Simulation models for pressuredepndent 
airflows have teen developed. but have not yet 
k e n  integrated in the present system. 

The difference between supply and return airflows 
is assumed to be 0 ( m  = m, = m,). Aii losses 
through open windows, leakage, etc., are ignored. 
'Ihe total airflow through the CAHP is assumed to 
be the sum of the flows through the various zones. 

Controllers C, and C, have teen replaced by an 
idealized 'Wow conuol" which ensures that the 
flows m,, , mz, and mz, meet the requirements 

sct by the zone controller, subject to the limitation 
that the resulting total airflow m through the 
CAHP does not exceed a specified maximum. 
Whenever the total demand exceeds this limit, the 
maximum available flow is shared among the 
thra zones in proportion to the requirements sct 
by their respective controllers. 

Discriminator Dl has been omitted. At the 
momen4 the correct supply temperature set point 
is assumed to be fixed. It is planned to add the 
discriminator to future versions of the simulated 
system. 

Controller C,, the zone controller, does not 
include the zone airtlow among its inputs. It is 
assumed that the zone airflow control operates 
ideally so as to maintain the zone airflow at its 
prescribed value m,, as described in Point 4 

above. In its current implementation. however, it 
includes an economy mode feature not prescribed 
in the reference system, and therefore takes the 
supply air temperature into account. 

versions. 

9. In this implementation of the economy control, 
reversing the direction of operating the bypass 
dampers occurs when the outside air temperature 
T, matches the return air temperature T, rather 
than the fued value of 22.2"C as proposed in the 
reference system specifications. 

2.3 Simulation 

For the preliminary investigations. the layout shown 
in Figure 2 was simulated on an Apple" Macintosh" 
IIfx computer using the MATLAB"/SIMULINKN 

applications software package. The simulation 
program was used to investigate the quantitative 
dynamic behaviour of the system under the various 
fault conditions discussed in the following sections. 

In addition, a MATLAB- program was developed to 
investigate the steady-state behaviour of the system. 
Such investigations are extremely useful in assessing 
whethu the specified design conditions can be met. 
In this case. pending a working simulation model of 
the discriminator Dl, such analyses were helpful in 
deciding what supply temperature set-points would 
ensure correct operation of the system in given 
situations. 

3. THE STEADYSTATE BEHAWOUR OF THE 
SYSTEM 

Consider the operating regimes of the CAHP 
controller C1 under steady-state conditions. In order 
to optimize energy consumption, the controller 
attempts to mix the outside air and the mum air so as 
to ensure that the temperam T, of the mixed air is 
as closc as possible to the supply air set-point 
temperature. If the fraction of outside air in the mix 
is given by X .  the temperature of the mixed air is 
given by 

7. Controller C,, the CAHP controller, functions where consvained between a 
similarly to its reference system counterpart xlmn and maximum x,. 
exccpt for the fact that the supply air temperature 
set point is presumed constant (as mentioned in 5. 
above) and except for the diffuences in control 0 < ~ ~ 5 ~ 5 ~ - 5 1 .  (3) 

shategy mentioned below. In thiscase, x,, = 0 . 2  and X, =1.0. 

8. When Controller Cl operates the dampers in the 
Since it is the temperature difference between T, and 

bypass mixer, the minimal proportion of outside 
air is 20% of the current totalflow, whereas the T, that is crucial. the various situations that may 

reference system sets a minimum of 20% of the "cur can be visualized in of a graphical 

maximum flow. The reference system  p pen tab on with ax- TOA - Ts and TR - Ts as 
depicted in Figure 3. 
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Fig. 3. Graphical representation of CAHP controller 
operating regimes in terms of steady-state 
temperature conditions. 

Combinations of To, and T, yielding a given mixed 
air temperam correspond to straight l i e s  in this 
representation. Combinations in which TM = T, are 
sbaight lines h u g h  the origin. However, in view 
of the constraints imposed on x ,  only those lines 
with slopes between 

correspond to situations in which the supply 
temperature can be achieved by operating just the 
dampers. Otherwise, depending on whether or not 
To, 5 T, and T, < T,, the optimal damper setting 
will correspond to X, or X, . 

The various regimes are depicted in the diagram. 
The l i e  To, = T, determines when x should be 
switched h m  x,, to X, or vice versa. The white 
regions are those in which it is only necessary to 
ope- the dampen to achieve the desired effect. 
The shaded regions in the upper right sectors require 
cooling, with x = x,, , if To, S T,, or x = X, 
otherwise. Similarly, the shaded regions in the lower 
left sectors require heating, with x = X ,  , if 
To, 5 T,, or x = X- otherwise. The six operating 
regimes can be summarized as follows: 

1. To, 5 T, and To, comparatively low: dampen 
set for minimal outside air and controller operates 
heating coil. 

2. To, 5 T, and TM = T, can be achieved within 
the operating range of the bypass dampers: 
heating and cooling switched off and controller 
operates dampers. 

3. To, 5 T, and T, comparatively high: dampers 
set for maximal outside air and controller operates 
cooling coil. 

4. To, > T, and To, comparatively high: dampers 
set for minimal outside air and controller operates 
cooling coil. 

5. To, > T, and T, = T, can be achieved within 
the operating range of the bypass dampers: 
heating and m l i g  switched off and controller 
operates dampers. 

6. To, > T, and T, comparatively low: dampers 
set for maximal outside air and controller operates 
heating coil. 

However, Cases 5 and 6 above can normally be ruled 
out. Since VAV boxes are not equipped with cooling 
coils, the only cooling effects in the zones are 
thermal losses when either the outside air is cold or 
the walls are cold. Thus, in steady-state situations, it 
would only be expected that T, < T, would occur if 
the outside temperature is sufficiently cold - i.e. that 
To, < T, . la fa@ barring transient effects (raking 
the complete system into account), no temperature 
states may be expected to be found anywhere in the 
lower right quadrant of Figure 3, so that the main 
cases of interest are Cases 1 to 4, which correspond 
to the four operating regimes prescriid for 
Controller C, in the reference system (Kelly, 1993). 

4. DESIGN OF QUALlTATIVE FAULT 
DETECTORS OF THE CENTRAL AIR- 

HANDLING PLANT 

4.1 General structure of the fmlt detector 

The task of a fault detector is to recognize those 
changes of mnsient or steady-state behaviour of the 
air-handling system which arise h m  faults. The 
types described here operate on the eenhal air- 
handling plant and are fault detectors in the strict 
sense: they only detect thepresence of faults, without 
attempting to diagnose possible causes. They are 
particularly simple illustrative examples and are not 
capable of IocaIizing or diagnosing faults. Three 
qualitative model-based fault detectors are 
considered. 

The overall shuchue of such a qualitative model- 
based fault detector is shown in Figure 4. This 
conforms to the shucnue of the so-called general 
diagnostic engine ("GDE") (de Kleer and Williams, 
1987; Dexter and Glass, 1993). The fault detector 
models k i g  considered are also related to the 
generic fault detection and diagnosis ("FDD") 
scheme proposed by Rossi and Braun (1993). 
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Fig. 4. A qualitative model-based fault detector. 

From the cenadl air-handling plant the observed 
values of the temperatures To,, T,, T, and the 
control variables U,, U,, U, are obtained and fed 
into the detector. There they are used in the steady- 
state detector which initializes both the 
bansformation of the quantitative control values U, 
and U,, U, to qualitative values ~ 2 ,  U$ and UZ 
and, at the same time, the generation of the 
corresponding predicted values 0 2 ,  0: and 02. 

The qualitative values of the outputs of the 
transformation and predictor blocks are chosen fmm 
the following sets: 

This cornsponds to the idea of defining qualitative 
values in terms of so-called "landmarks" (Kuipm, 
1984, 1985, 1986; Dexter and Glass, 1993), the 
landmarks in this m e  being provided by the e x m e  
settings of the various actuators in the CAHP. 

The predictor block is based on a qualitative 
prediction model of the plant to be supervised. The 
steady-state behaviour of the central air-handling 
plant is used as prediction model with the 
temperatures ToA, T, and Ts as inputs and the 

predicted control variables 0 2 ,  0: and 02 as the 
outputs. The outputs of the transformation block and 
the predictor are then compared and checked for 
behavioural discrepancies, as can be seen in Figure 4. 

Fig. 5. Graphical representation of predicted 
qualitative actuator settings in terms of steady- 
state temperature conditions. 

The differences among the three detectors presented 
here concern the predictor. 

4.2 Fault Detector I 

The fm type of fault detector uses the graphical 
represenintion of Figure 3 as the prediction model. 
For each temperature triple ToA , T,, Ts a point in 
the plane of Figure 3 can be determined whose 
location fully determines the qualitative outputs 62, 
6: and 6: of the predictor. Figure 5 shows how the 
plane of the graphical representation of Figure 3 can 
be partitioned into regions according to the predicted 
actuator settings. Each region is labelled with the 
qualitative predicted &tor settings that correspond 
to the correct behaviour of the plant The predicted 
actuator settings are also shown on some of the 
l i e s  separating the regions. On the line T, = ToA, 
however, the predicted values of 6: are ambiguous. 

Three examples illumate how Fault Detector I 
works. The corresponding steady-state temperatures 
are shorn in Figure 5. 

A steady state with the following values is detated: 

TOA = To, ToA < T,, fuk: none (7) 

It follows that (as indeed the simulations confirm) 

The hausformation block generates the following 
qualitative control values: 

u: = CLO, u: = W O ,  u: = CLO (9) 
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'Ihe steady-state temperatures which are fed into the 
predictor lead to the points laklled "Ex.1" in 
Figure 5. 'Ihis produces the qualitative prediction 
values: 

No d i p a n c y  is found, so no fault is d&, 
which is indeed correct. 

A steady-state with the following values is detwted: 

ToA < Ts, T, < T,, fault: cooling valve 
C M M ~  close if Uc = 0 

(11) 

For example: 

Simulation yields the result that 

The transformation block now generates 

U$ =NCLO. Ug =MINO. U: = CLO (14) 

'Ihe steady-state temperatures which are fed into the 
pdic tor  lead to the points laklled "Ex.2" in 
Figure. 5.  'Ihe prediction is 

No discrepancy is found, so no fault is detected, 
although one is in fact present. 'Ihus, in this 
particular operating steady-state, the fault described 
cannot k deucted. The air is unnecessarily heated up 
and cooled down, which results in wasted energy. In 
the simulation of the above example without the fault, 
the steady-state heating valve setting turned out to k 
U, =0.514. 

The same steady-state is detected as in Example I, 
but this time the fault of Example 2 crcurs, namely 
the cooling valve cannot close completely if Uc = 0. 

T, = Ts, ToA < T, fault: cooling valve 
c m t  close if U, = 0 

(16) 

NoQ Lhed Ibc order of tk ooWmllu o u q ~ t r  in h i s  pmgram is 
(U,.U,.U,). w h e w  duuughoutthc remainder of lhir 
p W  lhe Oulpurr have k e n  shown in the or& wmcsponding 
rotkmnlmucruqumoc, namcly (U..U,.U,). 

Simulation yields the values 

'Ihe nansformation block generates the following 
qualitative contml values: 

U:=CL0, u:=BEW, Ug=CLO (18) 

The location of this steady-state in the diagrams of 
Figure. 5 is the ,same as in Example I. Consequently, 
the predictor produces thc following qualitative 

Fig. 6. PROLOG program2 for Fault Detector 2. 

220 
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pmdimr (based on a 

Fig. 7 Shucture of the predictor for Fault Detector 2 

predicted connol values: 

In thii case the first predicted value differs h m  u:. 
That means a fault has now been detected. 

If in Figure 3 the separation line representing the 
minimal damper position is missing or not known 
exactly, a reduced version of Fault Detector 1 can be 
derived, which is simpler. The reduced version is 
also able to detect the fault of Examples 2 and 3. This 
remark applies especially to the situation occurring in 
the reference system, in which the minimal outside 
air flow is absolute (20% of the maximum flow) 
rather than proportional. In this case, the slope of the 
l i e  corresponding to X, will depend on the 
instantaneous total airflow through the CAHP. 

4.3 Fault detector 2 

The design of Fault Detector 2 starts by describing 
the qualitative behaviour of the components of the 
cen td  air-handling plant: damper, cooler, heater and 
wnnoller. Then the interaction of these components 
among themselves is described by defiing the 
structure of the system incorporating them. The 
resulting qualitative prediction model is represented 
by logical clauses. 

The form of the clauses is such that it can be 
executed as a PROLOG program, which is shown in 
Figure 6. It is structured as follows: in the &'st part 
of the code the structure of the air-handling unit is 
programmed - i.e. the way in which the components 
are linked. The second part deals with the 
components: damper, heater, cooler and connoller. 
Finally, there are some auxiliary statements needed 
for the logical clauses. 

Fig. 8. Graphical representation of predicted 
qualitative actuator settings in terms of 
qualitative steady-state temperature conditions 
(classified in terms of the signs of A,, A, and 

A ao ). 

The overall structure of the predictor is shown in 
Figure 7. It makes use of the auxiliary temperature 
differences 

The qualitative predictor wnsists of the qualitative 
prediction model and the PROLOG interpreter. 

In the qualitative predictor block a prediction-type 
question such as 

is posed to the PROLOG program. The predicted 
connoller states compatible with fault-& operation 
an shown in Figure& based the graphical 
representation of Figure 3. It differs 6om Figure 5 in 
that the plane is subdivided into regions according to 
whether the m i l i m y  temperature differences A,, 
A, and A, are postive, negative or zero. As a 
result, three different qualitative conbuller states may 
be predicted for steady-state temperatures in the 
upper left or lower right quadrants. 

The operation of Fault Detector 2 is illustrated using 
the same three examples as for Fault Detector 1. 

The steady-state is as in Example 1. The following 
qualitative controller values are observed: 

u: = CLO, up, = MAXO, u: = CLO (22) 
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From the temperature measurements the qualitative 
values of the three temperahue differences are 
calculated as: 

With the assumption that the behaviour of the air 
handler is OK. the following predictor-* question 
can be ask& 

- 
The rksult of the PROLOG program is (see appendix) 

So again there are no discrepancies. Therefore no 
fault is detected, which is correct 

Example 2' 

The steady-state is as in Example2. The observed 
qualitative conlmller values are the same: 

The qualitative temperature differences are: 

The question posed now is 

The result of the PROLOG program is (see appendix) 

Again the fault remains undetected, because no 
discrepancies are observed. 

Example 3' 

The steady-state is as in Example 3. The same 
question is asked with the same input arguments 
generating the same predicted qualitative control 
values. The check for the behavioural discrepancy 
leads to the same result as in Example 2: the fault 
detector has detected that there is a fault 

Modelling the prediction model in this way has been 
motivated by work of Bratko et aL (1989) and 
Burkhard (1992). But in contrast to the latter's work, 
the plant has been modelled here in a way that is 

independent of the particular sizing of the plant being 
monitored. This is important since the adaptation of 
the fault detector (or FDD-system) to the plant should 
be as simple as possible and, furthermore, be based 
on easily available information. 

4.4 Fault defector 3 

Fault detector 3 is the same as Fault Detector 2 but 
the predictor part is in a compiled form, i.e. the 
predictor is in a form which, for a given input (A,, 
A,, A,), outputs the corresponding possible 

controller states ( f i t ,  fi:, 02). Such a form is, for 
example, the decision table shorn in Table 2. 

This table has been derived by posing for each 
possible input to the predictor a predictor-type 
question to the PROLOG program. For two input 
cares this leads to situations with three possible 
predictions (see Table 2). 

p o s p o s p o s  

pos pos 0 

Pred- 
iction 0t 0: 02 

- ~ 

CLO MAXO NCLO 

CLO MlNO NCLO 
CLO MlNO NCLO 
CLO MlNO N U 0  
CLO MlNO CLO 
CLO BETW CLO 
CLO MAX0 CLO 

NCLO MAXO CLO 
NCLO (MINO, CLO 

B m .  
MAX01 

NCLO MlNO CLO 
NCLO MlNO CLO 
NCLO MlNO CLO 
CLO MlNO CLO 
CLO BETW CLO 
CLO MAXO CLO 
CLO (MINO, CLO 

B m ,  
MAXO) 
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If the same examples as for Fault Detector 2 arc 
c o n s i d d ,  the same results are obtained. 

4.5 Cornparicon of the three fault detectors 

I) As mentioned before, all three fault detectors have 
the smcture of a GDE and all distinguish the 
same qualitative values for the control variables 
LIE, LIg. u:. Their differences lies in the 
predictors. 

2) Fault Detectors 2 and 3 are equivalent in their 
overall behaviour. This means that they give the 
same output in the same situation. Fault detector 1 
however is not equivalent to Fault Detectors 2 and 
3. It generates different answers in some 
situations. This can be seen by comparing the 
graphical representation of the predictor of Fault 
Detector 2 or 3 with the graphical representation 
of the predictor of Fault Detector 1. The 
comparison shows that the predictor of Fault 
Detector2 and 3 cormponds to the reduced 
version of Fault Detector 1: But although Fault 
Detector 1 is not equivalent to Fault Detector 2 
and 3, there is no contradiction in their behaviour. 
This verifies the derivations of the fault detectors, 
at least to some extent 

3) I h e  difference between Fault Detectors 2 and 3 
lies in the predictor. The predictor of Fault 
Detector 2 has to run a PROLOG program in each 
detected steady-state of the central air-handling 
plant In contrast to chis, the predictor of Fault 
Detector 3 has only to look up some values in a 
decision table. The predictor of Fault Detector 2 is 
model-based, and the model is a deep model in 
the sense that it is composed of component 
models and a description of how the components 
are linked together. In contrast the predictor of 
Fault Detector 3 does not explicitly contain a deep 
model, even if it is derived originally from a deep 
model of the plant. 

5. CONCLUSIONS AND OUTLOOK 

As is evident from the examples discussed, it is 
possible to define a fault detector for a central air- 
handling plant based solely on qualitative observable 
feablrrs. The results of the predictions using this 
qualitative model are in agreement with the 
quantitative simulations canied out. 

As the examples show, qualitative mts  require only a 
minimal knowledge of the system parameters. On the 
other hand, as expected (Dexter and Glass, 1993). the 
qualitative tests investigated h m  were not always 
able to discern faults that quantitative methods might 

have identified. Moreover. a potential limitation of 
the method tried is that the particular steady-states of 
the system that lend themselves to such diagnosis may 
occur very infrequently in ~ r m o l  operatian. One 
way of overcoming such a problem would be to 
devise active tests - say during the time when a 
building is unoccupied - to set up the conditions that 
allow for such fault detection. 

This work is being continued by implementing a 
steady-state detector in the simulation program being 
developad, and linking the diagnostic tests with actual 
simulations (Glass et aL. 1994. 1995). It is also 
planned to implement the types of active diagnostic 
tests mentioned in the previous paragraph. As the 
research work progresses, the methods developad for 
the CAHP will be extended to the full reference air- 
handling system and to the actual localization and 
diagnosis of faults [e.g. using an assumption-based 
mth maintenance system (Glle. 1993)l. 

The fault detectors considered here detect faults by 
analysing one steady-state of the plant (or a 
subsystem of the plant). Qualitative fault detectors 
which also detect faults by comparing two (or more) 
different steady-stam together or by analysing 
uansients will be considered in future work. 
Knowing that a function is monotonic, for example, 
can be exploited in many cases [cf. work by Koch 
(1992)l. 
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APPENDIX I 

PROLOG Program Pertaining to the Decision 
Table of Fault Deteetor 3 (d. Table 2) 

:- aihandler(AimandleSIate, Ud, Uh, Uc, p, p, zem) 
3 timet AihandleStele=ok,Ud=mm,Uh=da,Umda 
3 times A i h a n d l e S l a t ~ M t w , U M o , U ~ d o  
3 times A i h a n d l e S t a t ~ 3 0 k , U h i m , U M o ~ U ~  

I :- airhandler(&, W. Uh, lk, p, pm, neg) 
3 times Wmino,UMo,Uendo 

I :- a i M r ( & .  Ud, Uh. Uc, p, zem, neg) 
1 time Wmino,UMo,Uendo 

:- &handler& W, Uh, lk, p, nag, neg) 
3 times U&betw,UMo,Udo 
3 times U&mino,Uh=cb,Udo 
1 time lM=mino,UMo,Uu~do 

:- aidwder(c4. Ud, Uh, Uc, zem, neg, neg) 
9 times ~ m a x o , U W o . U d o  

:- airhana'kr(ok, Ud, Uh, lk, neg, neg, rag) I )times U d . m a x O , U ~ , U d o  

:- aimandler(&, Ud. Uh, Uc, neg, neg, zem) 
3 times U#maxo,Ukndo,Udo 
3* ~ b e t w , ~ n c b , U m k l  
3 times W=mim.UM,U&o 

:- aimandler(c4, W. Uh, lk, mg, nq, pos) 
lM=mino.Uh=ndo,Udo 

:- airhandler(&, W, Uh. Uc, zem, pos, pos) I 9times ud.mo.uMo,u& 

:- airhana'ler(c4. W, Uh, lk, zero. zero. zem) 
infinite times W=maxo.UMo,U&o 
infinhe times U&betw.UW,Ualo 
infinfie times U&mim,Uh=do,U- 



Fig.9. Simulation of the CAHP in Example I, 
showing ToA, Ts & T, (upper plot) and U,, 
U,, Uc and relative air flow (lower plot). 

Fig. 10. Simulation of one of the zones in Example 1, 
showing T, (upper plot) and the VAV controller 
outputs U, & Uc (lower plot). 

APPENDIX I1 

Simulation of the simpW~ed reference Air- 
Handling System 

The dynamic behaviour of the simplified reference 
system was simulated numerically using the 
SIMULINKTM package using the physical parameten 
specified by Kelly (1993). In each simulation the 
outside air temperature To, was constant and the 
initial temperatures of the zones was 15T .  The 
system was allowed to run for a simulated time of 30 
min. with the zone controllers acting to try and 
achieve a set-point temperature of 20°C and the 
CAHP controller acting to try and achieve the supply- 
air temperatures noted below. 

In each ca$e the simulated system required about 10- 
15 min. to reach steady-state in both the central air- 
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Fig. 11. Simulation of the CAHP in Example2, 
showing ToA, Ts & T, (upper plot) and U,, 
U,. Uc and relative air flow (lower plot). 

handling plant and the zones. In all c a w ,  zone 
temperatures acceptably close to 200C were achieved 
within approximately 10 min and the zone controller 
outputs attained an acceptable equilibrium within 15 
to 20 min. The supply-air set-point temperatures 
were, as a rule, atiained much faster. 

Relevant inputs: 
Ouuide air temperature ToA 14.5"C 
Supply air set point temperature T: 145°C 
Zone set point temperature T;: 20°C 

FaulW none. 

Values of relevant quantities attaining steady-state. 
Return air temperature TR 20.001"C 
Supply air temperature TS 14.5WC 
Controller outputs UH 0 . m  

u, l . m  
u c  0 . m  

Example 2 

Relevant inputs: 
Outside air temperature ToA -15°C 
Supply air set point temperature T F  18°C 
Zone set point temperature T: 20°C 

F a u k  cooling valve cannot close completely - 
cooling coil operates at a minimum of 2.5% of its 
40600 kW capacity. 

Values of relevant quantities attaining steady-state: 
Return air temperature TR c . 2 K  
Supply air temperature Ts c. 18°C 
Controller outputs u, 0.593 

UD 0.200 
u c  0 . m  



Relevant inputs: 
Ourride air temperature Tm 14.59: 
Supply air set point temperatun 14.59: 
Zone se-t point temperature ""C 

Fault: cooling valve c m t  c h e  completely - 
cooling wil operates at a minimum of 25% of its 
40600 kW capacity. 

Values of relevant quantities anfining steady-state. 
Retum air temperature TR 20.0019: 
Supply air'tempaahrre Ts c. 14.5T 
Controller outputs UH 0.000 

UD 0.916 
u, 0.000 Fig. 12. Simulation of the CAHP in Example 3. 

showing T,, , T, & T, (upper plot) and U,, 
U,, U, and relative air flow OOWM plot). 
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Abstract 

The feasibility of a qualitative approach for detecting faults in an air-conditioning system is field-tested on a 
fully operational central air-handling plant. The particular interest in qualitative methods derives from the fact 
that many relevant parameters of an HVAC system and building are very difficult to measure and, in 
consequence, usually remain undetermined in practice. In the approach investigated, plant controller outputs are 
predicted on the basis of temperature data and reduced to qualitative values which are then compared with the 
corresponding obsmedqualitative values. 

The building considered has at its heart a central air-handling unit with more-or-less constant air volume, 
supplying air to several zones with independently controlled ceiling-mounted air coolers and hot-water radiators. 
The methods developed for the Annex 25 reference air-handling system were applied to this plant, which differs 
from the A m e x  25 standard in using a heat-recovery wheel in lieu of an air bypass mixer. The steady-state 
detection parameters were tuned to the known building data and the overall method was applied off-line to 
operational data captured from the building energy management system. 

It was demonsnated that the required degree of stationarity is reached sufficiently often in practice for the 
method to be useful. Moreover, an unplanned fault was detected and it showed up sufficiently often to 
demonstrate the practical usefulness of the qualitative approach. Finally, the successful application of a method 
developed for one type of central air-handling unit to a related, but different plant type illustrates the generic 
nature of this qualitative fault-detection procedure. 

1 INTRODUCTION 
This paper extends and consolidates the investigations initially reported by Fomera et a1 [ I ]  and Glass [Z], in 
which a qualitative model-based approach to detecting a class of faults in a variable air-volume air-handling 
system was developed. As reported by the above authors [1,3,4,2,5] the potential of the method was 
successfully demonstrated on numerically simulated models of the Annex 25 standard variable air-volume air- 
handling system (Kelly [6]) in a MATLABISIMULMK~ simulation environment. This was followed by 
successful mals in a heating, ventilation and air-conditioning laboratory (abbreviated ."HVAC laboratory") in 
which the method succeeded in detecting faults under controlled conditions (Glass, et a1 [5,7,8]). This paper 
reports on successful tests carried out on building energy-management data from a fully operational commercial 
building in Switzerland. 

The qualitative approach identifies certain so-called "landmark" states of the controller regulating a central air- 
handling unit and relates them to corresponding "landmarks" of the relevant air temperatures and flows. Using 
this approach, a wide class of operating faults can be analysed. In particular, we also deal with faults which 
result in deterioration of operation as distinct from actual failure - a situation known to occur frequently in 
practice. Conflicts between qualitative values of the controller states as actually observed and those expected - 
as derived from the measured qualitative temperature states - provide evidence of such faults. Furthermore, 
the procedure relies solely on measurements required by the control system; no extra sensors are needed to 
detect these faults. 

.:. Mailing address for A S .  Glass: Zugerstrasse 60. CH-6318 Walchwil. Switzerland. 
I SIMULR'IKTM program for the simulation of dynamic sysrerns; one of the optional facilities offered with the MAT LAB^* 

software package from The Mathworks. Inc. 
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The qualitative detection method described pre- ,?&id The Simplified A n n a  2.5 Reference Air- 
supposes the temperatures and control settings of the Handling System - cenbal air handling unit (abbreviated ."CAHU) to -.,.- s,, 

be quasi-stationary. Consequently. a prototype 
steady-state detector (abbreviated ."SSD) was & 
developed and tested in both simulation models and 
in the HVAC laboratory (Glass [2.5]). An important 
question concerns appropriate runing of the rime- 
frome and threshold parameters so  that the steady- 
state detectors are matched optimally to the fault 
detectors for which they are needed. A theoretical 
analysis of the threshold problem for various designs 
of a steady-state detector war; provided by Todtli and 

*.t.u- 

Gmber [9] and a practical procedure for tuning the 
SSD parameters to a given air-handling plant (abbreviated " A H U )  has been successfully developed by Gmber 
[10,1 I]. An overview of steady-state detection is included in the IEA Annex 25 Final Repon [12]. 

This paper includes a description of the type of systems under test: both the CAHU for which the fault-detection 
method was developed and the CAHU actually encountered in the test-site. This is followed by an outline of 
adapting the fault-detection procedure to the modified type of plant, a brief section on relevant fault models, and 
a section on tuning the steady-state detectors. Finally selected data from the test-site is analysed. 

2. DESCRIPTION OF THE TEST SYSTEMS 
The fault-detection tests described in this paper were carried out on the central air-handling unit used in a 
commercial building in central Switzerland. It differs in a number of respects from the Annex 25 reference air- 
handling system, which is more closely representative of Norfh American as distinct from European HVAC 
practice. However, the central air-handling unit at the test-site is generically sufficiently similar to the reference 
system to allow effective testing of the qualitative fault-detection method developed for the latter. We begin by 
reviewing the features of the Annex 25 reference air-handling system and then describe the differences found in 
the plant at the test site. 

2.1 THE ANNEX 25 REFERENCE AIR-HANDLING SYSTEM 
At the beginning of the investigations, simulation tests were carried out using a SIMULINK model of a 
simplijied variable air-volume system (abbreviated "VAV system") based on the Annex 25 reference air- 
handling system described by Kelly [6]. This system comprises a controlled central air-handling unit (CAHU) 
supplying air to three independently controlled zones with differing loads. Both the reference system and the 
simplified version are described in more detail in Fornera er a1 [1,3,4]. We summarize the components and 
control strategy of the simplified system below. 

2.1.1 The components of the simplified Annex 25 reference system 

The overall simplified reference system is illustrated in Figure I. It consists of a central air-handling unit 
(CAHU), depicted in Figure 2, supplying air to a number of separately controlled zones. The CAHU comprises 
a bypass mixer and a heating coil followed by a cooling coil in a single air duct. The bypass dampers are 
controlled to provide a mixture of outside air and recirculated air; the amount of outside air may vary between 
20% and 100% of the maximum airflow through the CAHU. The air for each of the three zones is processed 
through a VAV box containing a damper and a re-heating coil. The airflow to each zone as regulated by the 
damper may vary between 40% and 100% of the specified maximum. In point of fact, the maximum flow from 
the CAHU is not sufficient to provide maximum flows through all three zones simultaneously, so limiting effects 
can be expected to occur. 

The system illustrated differs from standard North American practice in nor including dehumidification of the 
cooling coil. However, the qualirative fault detection technique described below can also be applied to some 
such systems. 
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2.1.2 The control strategy of the &mQ The Central Air-Handling Unit of the 

simplified Annex 25 reference system Simplified Annex 25 A ir-Handling System 
RETURN 

Three controllers share the task of regulating the R"" i~ FAN 

fans, dampers, heating coils and cooling coils so as to 
attain the required temperatures and airtlows in each 
of the three zones. Referring to Figure 1, Controller 
C, regulates the CAHU and anempts to maintain the MIX 
supply air temperature T, at its set point by operating DA 

the preheating coil, dampers and cooling coil in 
sequence. Controller C,, which regulates a single 
zone, anempts to maintain the zone temperature T, 
at its set point by operating in sequence the damper 
and re-heating coil in the VAV box. The third 
controller is an idealized "flow control" governing 
the airflow through the CAHU and the various zones. 
It ensures that the flows m,, , mZz and m,, meet the 

requirements set by the zone controller C,, provided 
the resulting total airflow m through the CAHU does COIL COIL 
not exceed its specified maximum. If the CAHU airflow maximum is reached, the total flow is shared among the 
three zones in proponion to their respective requirements. 

2.1.3 The central air-handling unit of the simplified Annex 25 reference system 

The fault detection methods described below were developed especially for the CAHU. As mentioned above, its 
task is to supply air at a controlled, fixed temperature T, by operating the preheating coil, dampers and cooling 
coil in sequence. The corresponding outputs of Controller C, are denoted U,, U, and Uc, respectively. The 
controller also includes an economy control feature, in which the control action on the dampers is reversed 
whenever the outside air temperature To, exceeds the return air temperature. 

As mentioned, this system does not provide for dehumidflcation. If, however, the temperature control in such a 
system operates as described above, and the humidity control only operates while the cooling coil is in 
operation, then the fault detection method described below can be applied. 

The overall system, including the zones, affect the CAHU indirectly. The VAV boxes, acting in response to any 
loads in the zones, determine overall air flow m , while the return air temperature T, results from mixing the air 
extracted from the zones. Thus, controller C, must respond to three quantities over which it has no direct 
control, To,, T, and m , which can be formally regarded as disturbances in this control loop. 

2.2 THE TEST-SITE AIR-HANDLING SYSTEM 
The overall plant differs from the A M ~ X  25 reference air-handling system in a number of respects 

In conformity with modem European practice, 
the central air-handling unit uses a heat-recovery The Air-Handling System at the Test Site 

wheel (abbreviated "HRW) instead of a bypais 
mixer. 

The central air-handling unit operates with more- 
or-less constant air volume. 

The air-handling plant serves to ventilare and 
cool the zones only. Heating is accomplished by 
radiators. 

The CAHU control strategy incorporates a dead 
zone in the control sequence between the HRW 
mode and the cooling mode. One set-point is 
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used for the supply-air temperature when the Fipurel The CentralAir-Handling Unitatthe Test 
outside air must be warmed, and another set Site 
point, 4 T  higher, is used when the outside air mmm 

BBlVRN 
must be cooled. 

The switching to economy mode incorporates a 
hysteresis effect. The system switches to 
economy mode when the outside-air temperature 
exceeds the return air-temperature by 2'C and is 
switched off if the outside-air temperature drops 
below the return-air temperature. Furthermore, 
when the system switches to economy mode, the 
HRW is not subject to continuous control, but is 
switched on at Full capacity. 

2.2.1 The components of the test-site 
system llLk7Vx : : : : a  mn 

The overall system under test is illustrated in Figure 3. It consists of a central air-handling unit (CAHU), 
depicted in Figure 2, supplying air to ventilate, and possibly cool a number of separately controlled zones. The 
CAHU comprises a heat recovery wheel and a heating coil followed by a cooling coil in a single air duct. The 
use of the heat recovery wheel ensures that a maximum of fresh air is supplied at all times. The air for each 
zones is passed through a ceiling unit which can locally cool the air to the zone as may be required. Heating is 
supplied by hot-water radiators in each of the zones. 

In response to Swiss building regulations, which demand economy of energy use, the system is not equipped to 
dehumidify the air. 

2.2.2 The control strategy of the test-site system 

Two main controllers share the task of ultimately supplying air at a regulated temperature and volume to the 
zones. Controller C, regulates the CAHU and attempts to maintain the supply air temperature Ts at its set point 
by operating the preheating coil, heat-recovery wheel and cooling coil in sequence. Controller C,, which 
regulates a single zone, attempts to maintain the zone temperature T, at its set point by operating the radiators or 
ceiling cooling coils in sequence. The HRW is equipped with bypas  dampers to reduce the pressure differential 
in the system when it is not needed. The fans operate at two fixed levels and have the task of supplying a 
constant volume of air from the C A W .  

The zone temperature set point is largely prescribed by the central building energy management system 
(abbreviated "BEMS") in response to external conditions. This set point may vary from about 21°C. during 
most of the year, up to a maximum of 26°C during hot summer weather. In addition, the set points of the zone 
controllers can be varied manually by i2'C from the prescribed norm, to accommodate individual needs. The 
nominal set point actually consists of two, slightly differing set points differing by a constant amount: a heating 
set point and a cooling set point. Thus there is a dead zone in the sequential control between the temperature 
levels requiring heating and cooling. 

2.2.3 The central air-handling unit of the test-site system 

The test-site CAHU differs from that of the Annex 25 reference system both in its use of a HRW and in some 
features of the control shategy. As mentioned above, its task is to supply air at a controlled temperature T, by 
operating the preheating coil, heat-recovery wheel and cooling coil in sequence. The corresponding outputs of 
Controller C, are denoted U,, U, and U,, respectively. The controller also includes an economy control 
feature, in which the HRW assists the cooling coil whenever To, exceeds the return air temperature. 

As previously mentioned, the control strategy of the CAHU differs from that in the reference system in two main 
respects. The first one is that there is an effective dead zone in the control sequence. Specifically, the system 
uses two set-point temperatures for daytime operation: the lower set point is 16°C and the higher one is 20°C. 
The heating coil and HRW are operated in sequence to keep Ts from falling below 1 6 T ,  and the cooling coil is 
operated to keep Ts from climbing above 20°C. Whenever Ts is between the two set-points, all three 
components, the heating coil, the HRW and the cooling coil, remain switched off. 
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The second difference concerns the nature of the economy control. In the investigations preceding these 
building tests, the control concept simply had the dampers reverse the direction of operation whenever To, > T,. 
As already mentioned, the test-site HRW simply switches on atfull capaciry whenever economy operation is 
required. To avoid situations in which the HRW might be all too frequently switched on and off, hysteresis 
switching is programmed in the controller. Economy mode is switched on as soon as To, > T, +Z0C; it is 
switched off again as soon as To, < T, . 

The overall system, including the zones, affect the CAHU indirectly. The radiators and ceiling coolers, acting in 
response to loads in the zones, influence the return air temperature T, extracted from the zones. Thus, 
controller C, must respond to two quantities over which it has no direct control, To,, and T,, which can be 
formally regarded as disturbances in this control loop. 

3 THE QUALITATIVE MODEL-BASED FAULT DETECTION METHOD 
The detection method described below involves reducing measured controller outputs to qualitative values and 
at the same time using temperature measurements to predict expected qualitative controller outputs in steady 
state. This procedure necessitates reliable steady-state detection. Although we classify faults in terms of 
observed discrepancies using rule tables, such rules are derived amlytically from the models as distinct from 
empirical data. Thus our fault detection method incorporates a model-based approach. 

The outputs U,,, U,. U, in the case of h e  reference syncrn with bypass mixer 

23 1 

3.1 THE FAULT DETECTION AND DIAGNOSIS STRATEGY 
The current fault-detection sbategy relies on analysing the steady-state behaviour of the system, including 
controls. Our objective has been to identify qualitative modelling methods that can lead to successful fault 
detection and diagnosis procedures (abbreviated "FDD procedures"). 

Qualitative models are investigated because, even The qualitative model-based 
if conventional quantitative mathematical models fault-detection strategy 
are available for the system components, it is 
frequently impracticable if not impossible to "" u," UC 

obtain the values of all the relevant physical J 4 & 
parameters of the system. Thus FDD methods 
based on qualitative models are particularly (STUDYSTATE D E T E C ~ O N .  .=, 
robust. Obviously, there is a bade-off in that the 
same methods are not able to detect all types of 
faults, or cannot detect certain faults in all 
operating states of the system. Furthermore they 
may not be able to discriminate between different 
types of fault. One of the goals of this work was 
to assess the circumstances under which it is 
possible to detect given faults in a CAHU using 
qualitative information. 

The strategy adopted corresponds to the general - 9Ylm~a~ve 
..,-:%., BEIUVlOUrUL 

scheme described in Fornera et a1 [I]. The overall j i....; DISCREPANCIES? 

structure of such a qualitative model-based fault '.'...../' 
J. 

rabe1 ------ 9Ualiflfre 
" l t Y C I  

detector is shown in Figure 5. This conforms to i 
DISXEPPJCLES1 & ICi.0. N U 0 1  

the structure of the so-called general diagnostic STEMSTATE? 
K W A i  WEFATffilUESI 

engine (de Kleer & Williams [13], Dexter & Glass .1 
L& [OFF. B W .  MIIX) 

[14]). The fault detector models we consider are FLAC ILAIW1 $ c [CLO, NCLO) 

also related to the generic FDD scheme proposed 
by Rossi and Braun [15,16]. 

From the central air-handling unit the measured values of the temperatures To,, T,, Ts and the control 
variables2 U,, U w ,  Uc are obtained and fed into the first stage of the analog pre-processor, which serves to: 

test whether the system is in "steady state", and 
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optionally filter the data prior to further processing (in the analysis of building data described in this paper, 
moving weighted averages were used which arose naturally from the steady-state testing). 

Referring to the left half of Figure 5. the filtered controller outputs UL , Tf, and U: .are convened to qualitative 

values U i  , u:! and U: . In the right half of the figure, the filtered temperature data TiA , T:, is input to a 

model-based predictor which outputs @, 6; and @, the expected (or predicted) qualilarive controller states 
under steady-state conditions. The qualitative values of the outputs of the bansformation and predictor blocks 
are chosen from the following sets: 

where the linguistic mnemonics "CLO,  "NCLO", "OFF", "MAX" and "BETW' stand for "closed", "not 
closed", "off', "maximum" and "between", respectively. 

This is a modification of the situation in the reference system, in which the qualitative value of the controller 
output to the dampers was assumed to take the values: 

u: €{MINO, BETW,MAXO) (3) 

where the linguistic mnemonics "MAXO", "MINO" and "BETW' stand for "maximally open", "minimally 
open" and "between", respectively. 

Faults are detected on the basis of discrepancies between the mearured qualitative controller outputs and the 
corresponding model-bared predictiom based on temperature measurements. The system signals an alarm 
whenever such discrepancies are detected and the system is deemed to be in steady state. A l m s  may also be 
subject to futther criteria, such as requiring the current time to be during hours of normal daytime operation, etc. 

In point of fact, the method involves quantitative pre-processing of temperature data, but particular stationary 
states are identified in which the qualitative settings of the control signals ("closed" or "not closed) betray the 
presence of faults. This differs from the type of purely qualitative formalism in which, for instance, all physical 
quantities, such as temperatures, etc. are strictly described in terms of intervals. 

3.2 TRANSITION STATES OF THE CAHU CONTROLLER 

One m s i t i o n  occurs when the controller switches state 
heal recovery *heel 

from operating the heating coil to operating the A operating in :~, 

economy mode 4 HRW; a similar transition occurs when the controller - . . - . . - . . 
switches from the HRW to the cooling coil. A third I '.,, I,. . . ; I  .' 

i 1, , : ,.' transition occurs when the controller switches into ' -.. U t , u : , u 
" W .  0;; = economy mode and reverses the direction in which 5 . . . ,  

the dampers are operated. These transitions ! s. : ,;; I 
\ ' , , a  

correspond to the idea of landmarkr used in some . ,  . '.. %, 8 ;, i X 
approaches to qualitative physics (Kuipers, Q '. , ,. ; i ;.r <, 8 ,' I I [17,18,19]; Dexter & Glass, [14]). Landmarks are 0 :  -.-.-.-.-.-.-.-.-.-.-.-.-.-.%------A 

(hromg node) (HRW mode) (coding mod4 
> 

physical values of special significance. For example, Controller State v 
freezing and boiling temperatures can serve as 
landmarks because phase transitions occur. 

The values taken by qualitative variables can either be on one of the landmarks themselves or in an interval 
between two landmarks. In our case, neglecting the issue of economy control for the time being, we identify 
qualitative values of the CAHU controller states, depicted in Table I. Qualitative Controller States 0 to 4 
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correspond to those used earlier in this series of W Qualitative states of the CAHU sequential 
investigations. In the context of the test site, 
however, it is necessary include a sixth state 
(Connoller State NOS) to take economy-mode 
operation into account. In this instance it proves 
inappropriate to defme a transition state between 
normal cooling and economy-mode cooling, because 
the HRW is switched immediately from off to 
maximum; the connoller output is in fact 
discontinuous. 

The two landmark connoller nansition states can be 
simply related to corresponding critical temperatures. 
Given a particular supply air temperature Ts and 
return air temperature T,, critical values of the 

outside air temperatures, Gl' and G;', can be 
calculated corresponding to Controller States Nos. 3 
and 1 respectively. Outside air temperatures are then 
classified qualitatively, according to whether they are 
on or somewhere between the critical temperatures. 

3.3 STEADY-STATE BEHAVIOUR 
Assuming the system to be operating in steady-state 
conditions, it is possible to predict the outputs of the 
sequential connoller in terms of the stationary 
temperatures To,, Ts and T,. The controller 
sequence is illusnated in Figure 6.  For moderate 
outside-air temperatures To, below the lower 
supply-air set point, the system optimizes energy 
consumption by operating the heat-recover wheel at 
the appropriate rate of rotation. For sufficiently low 
outside-air temperatures To, the HRW, running at 
its maximum capacity, must be assisted by the 
heating coil. For outside-air temperatures To, 
above the higher supply-air set point, the system 
operates the cooling coil. 

To predict which stationary controller states 
correspond to which temperature states, it is helpful 
to consider the plot of T, - T, versus To, - T, de- 
picted in Figure 7. Under normal operating 
conditions T, > Ts , so that a sequence of 

cnntroller 

Qualitative Controller 
Stale Conlroller outpufs lo. 

1. The controller output 
sets the heat-recovery 
wheel at maximum, 
the cooling coil off 
and the heating coil 
on. 

I .  Landmark state: [ran- 
sirion between 
heating coil operation 
and heat-recovery 
overation. 

2. The controller output 
sets the heat-recovery 
wheel at less than 
maximum. 

3. Landmark state: tran- 
sition between heat- 
recovery operation 
and cooling coil 
operation. 

temperature states leading to the controller outputs shown in Figure 6 will normally appear as a trajectory in the 
upper hal/plane in Figure 7. The transition to cooling occurs whenever To, > Ts, and the corresponding 
boundary in the diagram is the vertical axis. Thus the transition from cooling to HRW operation corresponds to 
passing from the fust to the second quadrant in the diagram. The transition from HRW operation to heating is 
more complex to model for this type of plant than for a CAHU using bypass dampers, but to a good 
approximation the transition occurs across a straight line through the origin with negative slope as shown in 
Figure 7. 

Hear- 
Heating Recovery Cooling 

Coil Wheel Coil 

1. The controller output 
sets the heat-recovery 
wheel off, the heating 
coil off and the 
cooling coil on. 

5 .  The connoller output 
sets the heating coil 
off, the cooling coil 
on and the heat- 
recovery wheel a t  
maximum. 

In the reference system, economy control is exercised whenever To, > T, , which corresponds to the 45" line 
through the origin in the diagram. The hysteresis which is a feature of the test-site plant is represented by a 
second, parallel line to the right. The figure only shows the hysteresis boundary in the first quadrant, since the 
test-site control strategy implicitly assumes T, > Ts . 

U, = 0 

U, = 0 

The corresponding sequence that pertains to the lower half plane in the diagram has the transition between 
heating and HRW operation across the axis To, = Ts, but further discussion is omitted in this article, because 

Uc = 0 

Uc = 0 

U, > 0 

U, = 0 

U, = O  

U, = 0 

uW = u!y 

us = u:- 

a <  u, < tit" 

Uw = 0 

U, = 0 

U, = 0 

Uw = 0 

u W -  - uEU 

U, > 0 

U, > 0 
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conditions at the test site in which T, < Ts during 
normal operation would necessarily mean that either 
was much honer than it was supposed to be or the 
zones were much colder than they were supposed to 
be. 

It might also be asked how the dead zone in the 
controller sequence has been represented in the 
diagram (Figure 7). In fact, it is not necessary to 
make any modification, since switching between 
HRW operation and cooling is governed (under 
steady-state conditions) by To, - Ts . As an initially 

cool outside-air temperature To, slowly rises, the 
operating state approaches the ( TR - Ts)-axis from 
the left. When it reaches the axis, the controller 
sequence enters the dead zone and the HRW is 
switched off. As long as neither the HRW nor the 
cooling coil are needed, the supply-air temperature 
Ts should be more-or-less equal to To, 3 .  

3.4 TEMPERATURE STATES 
CORRESPONDNG TO 
CONTROLLER TRANSITIONS 

For purposes of processing building data, it is useful 
to compare the outside-air temperature with critical 
values derived from the relevant boundaries in 
Figure 7. For the transition between cooling and 
HRW operation, the critical value To, = Ts can be 

used, so that 

The second, lower transition between cooling and 
HRW operation occurs on the boundary for which 

where q is a positive parameter depending on the 
thermal transfer capacity of the HRW at maximum 
speed, and possibly onTo,, Ts and T, as well. 
Thus, in terms of this model, 

-7 Graphical represenlation of CAHU 
controller operating regimes in t e r m  of 

steady-state temperature conditions 
(including rhe mnemonics for rhe 

corresponding qualitarive conrroller stores) 
0 .a .o 

(II.U,,Uc ) =  ... 

Graphical representation of restricted 
prediction of qualitative conlroller outpurs 
in t e r m  of of To, - Ts and TR - Ts 

a:&$ ) =  ... 

The analogous formula applying to a bypass mixer depends on x,. , the minimum proponion of outside ail 
included in the recirculated mixmre. 

Finally, when taking economy control, into account, the relevant critical temperature is 

where E::)~,, is a switching threshold incorporating possible hysteresis effects. In the case of the test-site: 

There will be some slight discrepancy. since T, does not follow rapid fluctuations in To, exactly. The response of TS 
to changes To, is dampened by the heat capacities of the HRW, heating and cooling coils as well as the ducting. 
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EL:' = 2K ; e$' = OK . (8) &?b!& Qualitative temperature states 

The qualitative temperature states are summarized in 
Table 3, where they are matched to the 
corresponding predicted controller states. In the case 
of restricted prediction, States 0, 1, and 2 must be 
treated as a single group. 

For purposes of testing, it is difficult to calibrate the 
actual factor q for the HRW. Furthermore, the 
calibration would have to be carried out under 
conditions known to be fiulr-free, something which 
cannot be guaranteed in an unknown building under 
test. In this situation, it is necessary to manage 

without precise knowledge of 'I$:), which 
corresponds to the situation described in Fornera, et 
al [1,3,4], described as the restricred qualitative 
fault-detection scheme. 

As illustrated in Figure 8, the predicted controller 
states in the second-and fourth quadrants are necessarily ambiguous. Since in practice we typically observe 
temperature states in the fmt  and second quadrants, this ambiguity becomes equivalent to being unable to 

discriminate in terms of the lower critical temperature T c )  . We can only identify transitions in terms of TZ' 
and TAT'. Either the system is expected to be cooling, or it is expected to exercise a combination of heat 
recovery and heating. In terns of Table 3, Qualitative Temperature States 0, 1 and 2 become indistinguishable. 

4 FAULT MODELS 
Once a fault has been detected following the strategy outlined in the preceding sections, there remains the 
question of analysing the observed discrepancies with a view to diagnosing the causes. To be able to do this, it 
is useful to predict the observed qualirarive discrepancies which might be expected from known faults. 
Consequently, it is necessary to analyse relevant fault models k m o r e  detail. 

Examples of faults in a CAHU include the possible blockage of heating coil (or cooling coil) valves, so that the 
heating coil (or cooling coil) cannot fully shut off, or is otherwise constrained to operate within less than its full 
range. Another example is a temperature sensor with an offset. 

Once the characteristic symptoms of particular faults are known, rules can be derived as to what qualitative 
discrepancies (between temperature states and controller states) will be observed under what circumstances. 
Whenever a fault is detected, the observed symptoms can be matched to a table of such rules to generate a list of 
possible candidate faults compatible with the 
observed discrepancy. E&K& Chorocrerisric curve of To, vs. conlroller 

To analyse graphically what discrepancies are to be store 

expected when faults occur, it is useful to develop an ? 
T i 0"" 

alternative representation to Figure 7. Figure 7 oA 1 0 
subdivides a two dimensional representation of the 1 # 
three relevant temperatures, To,, T,, and Ts, into ! TR /.......-...-..-....-. 
regions corresponding to heating, HRW operation ~ ~ e w m / m m z ~ o / ~  
and cooling. In the alternative representation just OA r e  L..1 G9 
one of the temperatures is plotted directly against the i - . - - - ;d e r a  or requenzla~ 

; TA2' ,. !L, I mruolllrdead w: controller state, symbolized by the variable v as used , T.. rsel to mncn 

in Figure 6. In the following figures v is used to 1 .. , 1 i m e u . 9 , ~ ~  , '  .' I Furnish a one-dimensional description of the 1 ! : 
(quantitative) controller state. 1 ; 6.. op.mm~ rrq.*m, ~ ~ ~ ~ ~ ~ = d ~  o,7.rafon ...I 

1 I 

T o  obtain a one-dimensional representation of is..; : , (mnmuer state) 
temperature, it is convenient to imagine T,, Ts and chcoang n & ' r o d  (coding node) > v 
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Fieure 1Q Characterirric curve of ToA vs. controller Fieure I I  Characterirtic curve of ToA vs. controller 
state when the cooling coil isprevented state when the measured va[ue of the 

from fully closinl: outside-air temperature is too hifh 

8/ , , , , 
I ,  87 , ., I i ., 

I 
1 ,  

I I i : 
, , 

1 I 
: ! 

preaiaed mnvdler stale 
I . i I : / 1 preaiaea mnudler nae 

..J ! : 
0 . .  I ; ,  ... 2... 3: .i4... ... 5... 

' (rtsndsd&O 
> 0.. 1 ; .  2 . .  3; ... 4... ... 5... (heating -84) (HRW mode (c d ing  mode) (hearing ma<) (HRW m d c  (c d i g  mode) > 

... 0.. 1, ...*...' 3 f  ...,... ... 5... ..OK 1. 2 '  3 f  ...,... ... 5... > 
a N R I  - O W  5 3 1  DbZewed mVDUBr  s t i t  

(bun mmeo (faun m m s n  

m to be constant and to plot the controller variable v against To,, as depicted in Figure 9. The characteristic 
curve shown in this diagram is based on the assumption that the temperatures, the flow and the controller outputs 
are in s tea4 state. Furthermore, for the sake of simplicity, the hysterisis of the economy-mode switching is 
neglected. 

The effect of the dead zone in the sequential controller program is to introduce a vertical offset at the point 
where the supply-air set point is allowed to rise to its upper value. 

The characteristic curves shown are indeed qualitative in nature. Neither the heating nor the cooling curve can 
be calculated without having reasonably sophisticated quantitative model of the thermal effects taking place. By 
the same token, calculating the heat-recovery wheel curves requires knowing its thermal m s f e r  properties for 
particular rotation speeds and temperature differences between outside air and return air. In general, this 
characteristic curve is monotonically increusing (between maximum heating and maximum cooling) but, in the 
absence of an adequate quantitative model, its slope is unknown. 

in contrast, the m s i t i o n  points, illustrated by two dots Ll and L, in the diagram, can be obtained. Ll in 

particular is simply determined as gy' = Ts. L, is not as easy to determine since it depends on the performance 
ofthe heat-recovery wheel, but it could be calibrated duriig the commissioning of the plant. 

The kink which appears in the cooling mode curve corresponds to the transition to the economy mode: the 
increased slope results from the increased efficiency of cooling when the quantity of warm outside air is 
reduced. This suggests introducing a third controller landmark L, corresponding to economy control switching. 
The correspondiig temperature is To, = T,, as shown in Figure 9. 

When a known fault is present, it can be modelled qualitatively in terms o f  the above characteristic curves. An 
example is illustrated in Figure 10, in which the cooling coil valve cannot close completely, but otherwise 
operates normally. For warm outside air temperatures, when substantial cooling may be required, the 
characteristic curve is normal. However, for controller states to the left of the threshold at which valve blockage 
occurs, the same minimal amount of cooling continues to be delivered, and so the characteristic curve remains 
flat (at the temperature corresponding to that threshold cooling setting) until the transition to HRW operation is 
reached. Thereafter, remaining characteristic curve segments are the same with respect to the modijied 
transition point L; . 
To illustrate the qualitative discrepancies which may occur, two parallel axes for the controller state are 
included: one for the predicted behaviour, and one for the observed behaviour. The predicted behaviour 
corresponds to that illustrated in Figure 9. The six predicted qualitative states of the controller, numbered from 
0 to 5, are indicated on the upper v-axis the diagram. States I and 3 correspond to the transitions (landmark 
values), State 5 corresponds to the economy mode. 
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IQIdd  Observable qualitative discrepancies for some selected faults 

The observed qualitative controller states are obtained by extrapolating the ~emperalure values of the modified 
Iandmarkr L; and L; to the fault-free curve and determining the corresponding controller values. The 
corresponding values have been projected onto the lower v-axis in the diagram. Comparing the two axes shows 
that two tempelature ranges exist for which qualitative discrepancies will be apparent. 

A second example is shown in Figure 1 I. In this case, the measured To, exceeds the true outside-air 
temperature by a constant offset. 

Symptoms for these two and two other, related faults are summarized in Table 4. It can be seen that for both 
temperatures at the landmark transition points, as well as in intervals below these values, such faults are 
detectable. Moreover, the presence of the dead zone at the transition between HRW operation and cooling has a 
distinctly beneficial side-effect. The transition state (No. 3), instead of being a brief transition, is typically 
maintained for significant lengths of time, thereby affording adequate opportunity to reveal any unexpected 
difference between To, and Ts. 

Table 4 also illustrates a limitation of diagnosis based on qualitative fault detection. It can be seen that the 
qualitative "signature" of a heating coil valve that cannot fully close is identical to that of a measured outside-air 
temperature that is too low. By the same token, a cooling coil valve that cannot fully close manifests identical 
qualitative discrepancies to those which occur when the measured value of the outside-air temperature is too 
high. This ambiguity must be resolved by carrying out further diagnostic analysis on the system, in order to 
isolate and identify the cause of the fault detected. 

Table 4 does no! include the analysis of faults around L,. Possible fault symptoms associated with economy 
control are considelably more subtle. The controller behaviour around L, and L, depends only on the measured 
value of T,, together with the (implicit)physical dynamics of the system. In this case, To, and T, effectively 
serve to provide an independen! check that the system is working properly. In contrast, the transition point L, 
makes use of all three temperatures, so that the same type of check lacks the required independence. An offset 
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in the measured value of To,, for instance, would not reveal an obvious fault around L, because the controller is 
using the same measured value as the fault detection system. 

5 STEADY-STATE DETECTION 

5.1 GENERAL PRINCIPLE 
The prototype steady-state detector described by Glass, et a1 [2,5,7,8], was successfully applied to the data from 
the test site. The essential theoretical issues are described elsewhere [I21 and an alternative approach has been 
used by, for example, Dexter & Benouarets [20]. Basically, the steady-state detector used computes 
geometrically weighted averages and variances, which has two advantages: 

the computations can be carried out recursively 

the attribute "quasi-stationary" can reasonably be applied to the last measured time point; this SDD is 
especially sensitive to departures from quasi-stationarity. 

To briefly review its defmition, if one denotes the sequence of data by 

the geometrically weighted average is defmed by 

- 
X, ( a )  = '=O 

A a n - k  ' 
k=O 

where a is the geomenic weighting parameter, constrained to the range 0 < a < 1 . The corresponding variance 
is defmed by 

The variable x, is deemed to be in steady state whenever the weighted h i a t i o n  falls below a pre-determined 
threshold E,, [or, equivalently, the variance falls below EL]  

S&) 5 ESS . (12) 

The parameter a can be related to the characteristic time r,, of the response of the SSD to a step change in the 
input sequence. The effective time "window" is about three times this parameter. 

where AT is the time increment between measurements. 

5.2 TUNING THE STEADY-STATE DETECTOR 
Tuning the SSD requires choosing appropriate values of both the threshold E, and the time parameter r, in 
relation to the dynamics of the test object. The tuning procedure described was developed by Gmber [I I], and 
the reader is referred to that paper for the details. Basically it proves possible to work with a limited set of plant 
specifications, provided the system is known to be properly tuned. The correct conmller settings provide the 
necessary implicit information concerning the plant and building dynamics. 

The rates of thermal transfer of the heating coil, heat-recovery wheel and cooling coils are needed together with 
the air flow. All of these parameters should be available from plant design and installation specifications. In 
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addition, the conholler settings are required, which can be extracted from the BEMS. To apply the ideas to the 
test-site plant, the following equations from [I  11 are relevant4: 

5.2.1 Time window for the steady-state detector 

Characteristic time responses of the controlled heating coil, heat-recovery wheel and cooling coil are computed 

separately. Taking the hearing coil first, its settling time r~,,,,,, in response to a change in the supply-air set 

point T? is estimated. The relevant expression is 

where 

'I: and K: are the PI controller parameters, Q, is the maximum rate of heat transfer of the heating coil, m is 

the mass flow of air through the CAHU. In this context, 5 is a dimensionless parameter relating derived from 
the type of response the controlled system makes to a step change of its set point, and in a correctly tuned system 
it must be chosen in the range 

0 . 4 ~ 5 ~ 0 . 7 .  (16) 

Values of 6 closer to the upper value are to be preferred. 

In the case of the plant under test, the specifications are m = 5.23 kgls, Q, = 51.4kW, 'I: = 120s, and 

K: = 0 . 1 0 ~ - '  . 

In the case of the heal-recovery wheel, the formulas derived for bypass dampers are applied directly. In the test- 
site CAHU the PI conholler parameters are s: = 180s and Ky = 0 . 1 3 ~ - '  . The nominal rate of heat hansfer is 

Q, = 141 kW but this figure is considerably influenced by the temperature difference T, -To, (see Gmber 

[I I]), so that for purposes of estimation we use Q F )  = 50 kW . The settling time T:,,,,, , which is defmed a 3 
times the characteristic decay time of the response to a step change of set point, is given by 

where 

In the cooling coil at the test-site, the rate of heat transfer is Q~ = IOOkW, and the PI controller parameters are 

'12 = 120s and K: = 0.06K-' . The settling time r>,,,,, is given by a formula slightly different from those 

above: 

where 

Some of the notation has been changed slightly from that in the original paper. 
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Since the steady-state detector itself has an exponential-decay response to step changes in the measured signal, 
r, should be compared directly with exponential response times rather than the settling times themselves. 
Consequently, if the steady-state detector is to be matched as closely as possible to the response times of the 
plant, the following value should be used 

In view of the observed behaviour of the tuned CAHU, it was deemed reasonable to take 5 close to its upper 
limit 

Applying this value of 5 and the plant specification data to the above formulas, the resulting estimate of rss is 

r,, = max{360s, 454s, 660s) = 12min., (23) 

5.2.2 Threshold values for the steady-state detector 

The threshold values are set in response to two considerations. One is that the minimum threshold €2 
pertaining to the supply-air temperature Ts must take residual high-frequency noise in the signal into account, 

whose standard deviation is denoted here by oTs . In the case of the test data, a minimum standard deviation of 

Ts under stable operating conditions was found to be approximately 0% =O.IK. Secondly, in view of the fact 

that the response of the supply-air temperature to step changes in its set point is approximately exponential, 
some further allowance has to be made for the residual effect of such a step change after the settling time 
r,,,,,, , which is approximately 5% of the original step. The residual amount is denoted by STs, and the 

resulting midification to the threshold E:; is given by 

Given that supply-air set point changes of up to 5K might be expected, the resulting residual disturbance is 

STs = 0.25K, and consequently €2 is estimated at 

To apply the same idea to the outside-air temperature, the standard deviation oToh which would lead to the 

observed minimum standard deviation of the supply-air temperature is estimated. The relevant formula in the 
context of the test-site CAHU is 

where AT is the sampling time of the signal. Thus a value of uTM = 0.49K is estimated. Given that the 

maximum sudden changes observed in the outside-air temperature were of the order of a b o u t . 2 ~  within the 
space of half an hour, the relevant residual response to a step change was estimated at ST- = 0.1K. The resulting 

threshold is given by 

resulting in an estimate ck = 0.50K 

For practical purposes, the following, rounded values were used in processing the test data: 
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6 THRESHOLDS FOR CLASSIFICATION OF QUALITATIVE STATES 
When classifying temperatures and controller outputs 
in terms of qualitative states, the question of 
threshold rolerances must be addressed. For the 
testing of building data described below, a fairly 
pragmatic approach has been used, using values 
derived from the tuning of the steady-state detector. 

Referring to the classification concepts shown in 
Figures 7 & 8, further relevant details pertinent to the 
procedure actually implemented are illustrated in 
Figure 12. The operating points actually encountered 
were all in the upper half-plane of the diagram, in 
which 

as may be reasonably expected under steady-state 
operating conditions. The qualitative states labelled 
"W, "I", "2". "3" & "4" correspond the classification 
in Table 3. State 0 denotes heating coil operation, 

Fi~ure 12 Graphical representation of prediction 
scheme as applied to building data 

State 2 heat-recovery wheel operation, State 4 
cooling coil operation, and State 5 cooling coil 
operation in the economy mode, in which the heat-recovery wheel provides additional cooling. State I, on the 
diagonal boundary in the second quadrant, corresponds to the transition between heating and heat recovery, 
while State 3, on the vertical boundary, corresponds to the transition between heat recovery and cooling. 

The transition to economy mode is no! represented by a separate qualitative state. In this instance, there is a 
hysteresis effect between States 4 and 5, as illustrated by the region of overlap. Whenever the outside-air 
temperature qA is rising, State 4 persists to the right of the main diagonal boundary in the fust quadrant until it 

reaches the second, parallel boundary, before switching to State 5. Conversely, whenever To, is falling, the 
transition from State 5 to State 4 is deferred until themain diagonal boundary is reached. 

6.1 BOUNDARY TOLERANCES FOR THE CLASSIFICATION OF TEMPERATURE 
STATES 

6.1.1 Boundary tolerances for the general classification scheme 

At the vertical and diagonal boundaries corresponding to transitions in the CAHU controller sequence, a 

tolerance E: has been introduced. The temperatures are deemed to be in State 3, whenever 

The temperatures are deemed to be in State 1, whenever 

In the investigations carried out, the steady-state threshold for the supply-air temperature (derived in the 
preceding section) was used directly for the tolerances in both (28) and (29): 

6.1.2 Boundary tolerances for the restricted classification scheme 

In the plant investigated, it was not possible to estimate the slope the heatingkeat-recovery boundary with 
sufficient reliability. Consequently, the restricted classification scheme pertains as shown by the shaded areas in 
Figure 2. In an orthodox application of the restricted qualitative classification scheme (29) is replaced by 
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In practice, however, temperatures were still subjected to a formal classification on the basis of Table 3. 
Discrepancies between predicted and observed values were simply ignored if both the qualitative states involved 
were chosen from among State 0, I & 2. 

6.2 BOUNDARY TOLERANCES FOR THE CONTROLLER OUTPUTS 

Corresponding tolerances for the controller transitions can be derived. The factors K, , KcK' & KC specified 

above in (14), (17) & (19), respectively, describe the steady-state response of the supply-air temperature to 
changes in the controller output to a particular CAHU component. For instance, if the cooling-coil is in 
operation, 

Thus, substituting E: for AT, and €2 for AUc and solving, the appropriate tolerances for the controller are 
obtained: 

For the building data analysed in the following section, the corresponding numerical values are 

€2" = 0.030 ; ~2~ =0.010; ~2~ = 0.015 (36) 

7 TESTS ON BUILDING ENERGY-MANAGEMENT SYSTEM DATA 
For testing purposes, a medium-sized commercial building occupied by the Landis & Gyr Corporation was 
selected in Central Switzerland. Working in collaboration with the staff responsible for operating the building 
energy management system, arrangements were made to monitor relevant building data on a regular basis over 
the course of several months. 

For purposes o f  qualitative fault detection, special consideration had to be given to thefrequency with which the 
data were collected, since the data must be pre-processed to identify quasi-stationary states of the BEMS. 
Normally a large selection of data points was registered every 10 minutes. For qualitative testing, however, the 
relevant temperatures and CAHU controller outputs were recorded every minute during the month of May, 1995. 
The plant investigated was the central air-handling unit serving the Farex ceiling coolers as described above and 
illustrated in Figures 3 & 4. 

The testing programme had two goals: 

to determine approximately how often quasi-stationary states of the system could be expected to occur, and 

to apply the qualitative fault-detection method to the building data, but without knowing in advance whether 
faults might be expected to be present. 

As described in the previous section, having reviewed the plant specifications, the steady-state time constant I , ,  

was set at 12 min. The residual high frequency fluctuations in the supply-air temperature T, were estimated 
using the building data. Giving due consideration to expected step changes in T, and To,, thresholds of O.3K 
and 0.5K respectively were used. The value rS, = 12min. was applied to T,, To,, and T,. The same threshold 
was used for both T, and T, . 
A typical run is illustrated in Figure 13. The upper graph illushates the outdoor, return and supply-air 
temperatures To,, T, and T~~ for a duration of 24 hours on May 8, 1995. The system is operated between the 
hours of 5:30 and 19:30, during which the supply temperature is maintained between the lower and upper set- 
point values of 16'C and 20°C respectively. Outside these times the supply-air temperature was not controlled. 
The second graph illustrates the controller outputs for the same period. It may be noted that the May 8 data 
shows the system operating in economy-mode between about 12:OO and 19:OOh. 

For technical reasons TO,, TR, TS and T? are shown in the graphs ai "Toa". "TI", .'Ts" and "Tr-sp" respectively 
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Ficure 13 Building data test: temperatures, controller outputs, SSD 
& qualitalive FD analysis on day when no fault evident 

Sennweid data: Mon.. 08.05.1995: Toa. Tr. Ts. Ts-SP 
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Bottom Graph: Qualitative temperature & controller states: CAHU fault- 
detection alarm status (only activated between 5:30 and 
19:30 each day). 

The third graph in Figure 13 
illustrates the results of filtering 
the three temperatures with 
steady-state detectors. The top 
curve is the binary (logical 0 or I )  
output of the SSD acting on To,, 
the second curve the same for TR . 
and the third the same for Ts. The 
bottom curve is rhe output 
showing when all three 
temperatures are deemed to be 
simulrmeously quasi-stationary. 

The bottom graph compares the 
qualitative temperature states with 
the qualitative controller states. In 
spite of the fact that the restricted 
faulr-derecrion scheme was being 
applied, both controller states and, 
in particular, the temperature 
states have been classified i n  
terms of the full discrete scale. 
ranging from 0 to 5. In order to 
classify the lower temperature 
states, a formal value of q = 0.25 
has bem used in the expression 
for G'' (Equation (6)). This 
value is in fact based on the 
specifications supplied for the 
heat-recovery whel .  However, in 
the absence of careful calibration, 
it may not be supposed 
sufficiently accurate for reliable 
fault detection around the relevant 
operating points. 

The bottom curve is an alarm 
state, taking the values 0. 0.5 or l 
An alarm was flagged, if 
simultaneously: 

the system was in normal 
operating mode (between the 
hours of 5:3O and 19:30). 

all three temperatures were 
quasi-stationary, and 

a discrepancy between the 
qualitative temperature state 
and the qualitative controller 
state was observed5. 

A full alarm was flagged if the 
qualitative temperature state 
differed from the qualitative 
controller state by more than one 

A discrepancy in the sense of the reslricredscheme requires that one of the states be at least Level 3. since States 0. I & 2 
are lumped together (compare Figures 7 and 8). 
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Fieure 14 Building dala lest: temperatures, conlroller outputs, SSD & 
qualicntive FD analysis o n  &Y when.fault evident 

Sennweid data: Wed.. 10.05.1995: Toa. Tr, Ts. Ts-SP 
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Looking at the results of the 
steady-state analysis, it may be 
noted that for about 50% of the 
operating period 5:30 to 19:30 all 
three temperatures are 
simultaneously quasi-stationary. 
This proponion is certainly 
adequate to ensure that steady- 
state fault detection procedures 
have a fair opponunity to discern 
possible discrepancies. However, 
on this panicular day, although a 
persistent discrepancy between 
the qualitative temperature and 
controller states can be observed 
between about 8:00 and 11:00. 
the associated alarm w a s  very 
brief, because the system was not 
sufficiently stationary. In fact 
during this time. the controller 
had entered its dead zone and the 
supply-air temperature drifted 
between its lower set point and its 
upper set point 

Toa SS? 

Figure 14 illusmates comparable 
data recorded on May 10, during 
which the outside-air temperature 
did not go high enough to cause 
the system to operate in economy 
mode. During the main operating 
period 5:30 to 19:30 the system 
was found to be quasi-stationary 
approximately 80% of the time. 
As can be seen in the top graph. 
the outside-air temperature 
remains above the supply-air 
temperature from about 9:00 to 
19:30. In spite of that the hear- 
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recovery wheel continues to operate as late as about 15:OO. As may be expected, the fault detection analysis 
shows a persistent discrepancy between the qualitative temperature and controller states. In this case, a persistent 
alarm results. 

The observed symptom is compatible with both a cooling coil valve that cannot switch off and an outside-air 
temperature sensor that yields measurements above the true value. In this case, other evidence supports the 
diagnosis that the outside-air temperature sensor yields measured values that are too high. In the May 8 data, for 
instance, the dead zone between the lower and upper supply-air set points shows a difference of about 3K 
between the outside-air and supply-air temperatures, although they ought to be more-or-less equal. 

8 GENERALIZATION AND APPLICABILITY 
Classifying the examples from Fornera er a1 [I ,3.4] i n  terms of transition points of the sequential controller lends 
this class of faults generic character. which facilitates its generalization to other systems. It has been successfully 
generalized to a related system in which the bypass dampers have been replaced by a heat recovery wheel. 

It should be noted, however, that a feature of the system considered is that the transitions occur at the ends of the 
operating range of the bypass dampers, in which the relevant quantirarive models are comparatively simple and 
reliable. In other words. the effects of adjusting the dampers is highly predictable. If one attempts to apply the 
same idea to the VAV boxes, for instance, one comes up against the obstacle that the loads i n  the zones are not 
predictable in practice, which makes determination of the conditions for transition more difficult. 

Even within the central air-handling unit, the controller transition at the lower end of the range can only be 
utilized for fault detection if the system has been calibrated under fault-free conditions. The minimum prescribed 
proportion of outside air leaving the bypass dampers must be maintained as specified. Likewise, the performance 
of a heat recovery-wheel operating at maximum capacity must be known in order to utilize the lower critical 
temperature at which the heating coil may be expected to commence operation. 

A more serious question is the applicability of methods which require steady states to be achieved which may not 
occur in the course of normal operation. In the plant considered, quasi-stationary states were in fact observed to 
occur satisfactorily often during normal operation. If this had not been the case, there would still be possibility of 
active testing (HVAC building tests during night-time, for instance) as opposed to simply monitoring the data. 

9 CONCLUSIONS AND OUTLOOK 
The fault detection strategy considered here detects faults in a central air-handling unit by analysing certain 
steady states of the plant (or a subsystem of the plant) in terms of qualiiarive criteria. In the overall FDD 
strategy, however, at least some quantitative pre-processing of data is required. In particular, the building 
energy-management system data must be filtered to detect quasi-stationary states. Symptoms arising from single 
faults can be detected under suitable temperature and controller conditions. If multiple faults are assumed, the 
expected qualitative symptoms are, in general, not uniquely determined. Diagnosis tables of single faults can be 
compiled from qualitative fault models. However, typical fault symptoms, even when observed in different 
temperature states. do not lead to uniquediagnoses. 

The steady-state detectors were tuned using the practical criteria for time-frame and threshold parameters 
developed by Gmber [10,11]. Analysis of data from six consecutive working days in May, 1995, in which the 
SSD thresholds were chosen to match a residual "noise" level of 0.3K in the supply-air temperature and 0.5K in 
the outside-air temperature, revealed that quasi-stationary states were maintained on average approximately 65% 
of the time during operational hours. A more stringent threshold of 0.1K for the supply air and 0.3K for outside 
air still resulted in an acceptance quota of 209'0 on average. Thus attaining steady state in a reasonably tuned 
plant does not pose a practical barrier to the application of this method. 

The data collected during May proved to be suitable for testing in that the outside-air temperature was frequently 
in a range around the expected transition between heat-recovery-wheel operation and cooling. Moreover, the 
sequential controller has a dead zone in the supply-temperature set point at this transition, thereby increasing the 
chances of detecting faults around this operating point. Previous evidence had indicated that the outside-air 
temperature measurement isoften a few degrees i n  excess of the correct value. Examination of the data indicated 
that during extended periods when the outside-air temperature exceeded the supply-air temperature the system. 
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instead of cooling, was either operating the heat-recovery wheel or was in transition between heat-recovery and 
cooling. Using the more conservative steady-state detection threshold, the qualitative fault detector flagged a 
fault on average 30% of operational time during the six working days tested. 

These results adequately demonstrate that the qualitative fault-detection method can be practically and usefully 
applicd to monitoring central plant performance in real buildings. 

Possible future work includes adapting the above fault-detection method to monitor building energy-management 
system data on-line. This requires programming the method to operating within the BEMS software. In addition 
qualitative techniques described might possibly be applied to additional HVAC systems. Finally, the possibility 
of applying qualitative methods to the analysis of transient khaviour (cf. work by Koch [21]) or to other non- 
steady-state situations needs to be investigated. 
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ABSTRACT 

The pqer dercribes a semiqditafive model-based 
method of fmlf diagnosir that is suitable for generic applica- 
tions over a rmge of dlyerent sizes and h i p  of hating 
ventilming andair-conditioning (HVAC) plant items, such PC 

terminal bmes and b f i n g  coils. The method requires no 
training data from the actual plant and u suitable for real- 
time implementa~ion in packaged digital controllers or in the 
outstations of energy management and control systems. The 
scheme ures re/erence models describing fmlrfree and fmlty 
operation thor are generatedfiom data produced by simulat- 
ing a number ofp lms  of the same type PC t k  p l m  under test. 
The methodofdiagnosis fakes account of the mbiguily intro- 
duced by uringsuch generic re/reme models that can arise i/ 
the symptoms of correct and fmlty opermion, or of diyerent 
f d t s ,  me  similar or certain operafingpoim. The results pre- 
sented demonstrate that the scheme con successfilly detect 
and identtfl f d f s  in the cooling coil subsystem of an oir-han- 
dhng unit. 

INTRODUCTION 

It is difficult to obtain adequate representations of the 
complex, illdefmed, and often highly nonlinear behavior of a 
faulty plant for use in faultdiagnosis schemes (Frank 1992). 
Qualitativemathematical models called fiuzy models have been 
proposed to take account of the uncenainties and imprecision 
associated with describmgthe behavior ofsuch systems (Sugeno 
and Yasukawa 1993). A fiuzy model consists of a set of IF- 
THEN rules that describe the essential features of the behavior 
of a system. A particular model is defmed by the fuey  sets that 
an used to dereribe its inputs andoutputs or by a f uey  relational 
matrix that indicates the extent to which each rule correctly 
desaibes the behavior of the system around a particular operat- 
ing point (Yager and Filev 1994). The rules may be based on 

expen knowledge or may be generated 6om measured data 
taken from the plant. 

In practice, it is unlikely that data ha t  are representative of 
faulty behavior can be collected from the actual planf since it 
would normally be unacceptable to introduce faults in an occu- 
pied building and the physical defecrc that cause some faults are 
difficult to regroduce (for example, water-side fouling). Generic 
fury models, which describe the underlying behavior of a class 
ofplants of a similar design, must be used where it is impossible 
to obtain detailed information about or measurement data fiom 
a specific plant. Either domain howledge or data produced by 
computer simulation of plants of similar design, with and with- 
out the faults, can be used to meate models of this trpe (Benou- 
arets et al. 1995). The development of suitable generic models 
involves a number of issues, such as the appropriate choice and 
normalmion of the input and output variables, the size of the 
class toberepresented, and the modeling accuracy demanded by 
the particular application. Models that are too generic must be 
avoided since they may not allow the faultdiagnosis scheme to 
distinguish between correct and faulty behavior of the plant 
(Dexter and Benouarets 1995). 

FUZZY FAULT DIAGNOSIS 
The fuey-model-based faultdingnosis scheme proposed 

here identifies faults by comparingapartial model that describes 
the current behavior'ofthe system with a set of generic reference 
models. One of the reference models describes the wrrg t  oper- 
ation of the system and each of the other models describes the 
behavior of the system in the presence of a particular fault. The 
partial model is identified on-line 6om the measured data using 
a numerically simple fiuzy identification scheme that requires 
minimal processing power (Xu and Lu 1987). The identification 
scheme, which dws  not involve optimiition and uses f d  
reference sets, estimates values for the elements of a hay rela- 
tional mauix, each element of which specifies the credibility 
with which an associatedrule correctly describesthe behavior of 

Arthur L. Dexter is a univmity lecturer and M o u r a d  Bcnousretr is a research assistant in tke Depment of Engineering Science at ihe 
University of Oxford, Oxford, U.K. 
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the system. The wlues are in the range of 0 to 1, where a value 
of 0 indicates no confidence in the rule and a value of 1 indicates 
wmplete confidence in the rule. An overview of the scheme is 
shown in Figure 1. The data-processing unit consim of a 
moving-average filter (which removes any hi&-+mcy 
noise) and a tmnsient detector (which determines whether the 
system is sufficiently close to steady state if static funy refer- 
ence models arc to be used) (Maruyama et al. 1995). 

System 

Data Processing Unit 

Fuzzy Identification 
( Training Data I k--. 
Expen Knowledge Fuzzy Panial 

J, 
Degrees of Belief 

I 

J, 

Figure I The fault diagnosis scheme. 

Fuzzy Reference 
Models 

Model I 

I Model 2 

I 

The term prrrlial model is used since the model only 
describes the behavior of the system at the current operating 
point and will have a large number of rules whose credibilities 
are zero. Since the reference models describe the behavior of the 
system at all possible operatingpoints, they will havemany more 
rules with nonzero credibility values. The rules of the partial 
fuzzy model are compared to the rules of the furry reference 
models, using a funy matching scheme (Dexter and Benouvets 
19P4).Adegneofsimilarity,S,ofthefunymodelsiscalcuhted 
by considering the modelsthemselves as iuny sets with discrete 
membmhip functions defined by the credibilities of the rules. 
For example, the degree of similarity between the partial model 
(Rp) and one of the reference models (R,) is given by 

where rR,(n) and rR (n) are the credibilities of the nth rule in 
the partial model A d  the ith reference model, respectively, 
and N is the number of rules i? the models. 

In @ce, the symptoms of the behavior described by the 
parlial modelmay be similar to those described by morethan one 
of the reference models. The m e  approach can be used to 
calculate the degree of similarity of the partial model and any 
two or more ofthe reference models. For example, the d e m e  of 
similsity of the partial model md two of the reference models 
(R,) and (R,) is given by 

- 
b- - 

The results ofthe diagnosis will be at least partially ambig- 
uous whenever the generic reference models of faulrtPe and 
faulty operation, or of different faults, exhibit similar symptoms. 
The ambiguity mus~  be Qken 'to accow.t in the diagnosis if it 

' 

is not isasible to install dditional sensors to allow unique symp- 
toms to be observed at all opeming points. A me%sure of the 
level of ambiguity is obtained by calculatingthe similarity of the 
pmiel ~nodelandap~.ticulurefemce~.odelandallofthe 0.h: 

reference models (Dexter 1995). For example, in the case of M 
reference models, die ambiguity assoched with the nth ruk s f  
the partial model and the refereace model Ri and the FA! ru!e of 
all o i  h e  omer refcrmce mod& is given by 

Fuzzy Fault Diagnosis 

F u u y  Marching 

i 
Combination 
of evidence 

. I Similarly,the ambigity associated with the nth rule oftwo 
reference models, Ri and R, and h e  nth rule of all the otlier refer- 
ence models is given by 

The degrees of similzrity and the levels nfrmbiguity are used 
to generate the m g t h  of the evidence (c?.lled a n m d i z e d  
ba ic  u s igaen t )  th:t t!!e systen is in my one of tl?e set of 
possible operating mtes. Fo: exmple, the strength of the evi- 
dence nr((,l,)) th31 the system is in the statedescribed by the . 
reference nodel Ri is given by 

\vke!e the t9tZI axbigity, An., assoched witl~ the reference 
a .. 

rmdel Ri is given by 

In the s a l e  w y ,  the degree to which h e  p t i a l  m&l is 
orily s!mi!xr~ bc!i Ri 2nd R- ir lessd t3 d x t e  the of 1 - 



Figure 2 Fuuyparritiom of the input space. 

Approach 

Figure 3 Fwzypartitiom of the output space. 

evidence that the system is in either the state associated with 
model Ri or the state associated with model R,. Thus, 

m((Ri. R,)) = S(Rp Ri' R,) - A,,, ,, (7) 

where the total ambiguity, A,, ,  , associated with the refer- 
ence models Ri and R, is given by 

The method ofcalculating the stnngths of evidence ensures 
that0 s m(( )) 5 I andXm(( )) < 1. A value of zem indicates that 
them is no evidence and a value of one indicates that there is 
m p l e t e  evidence to supportthe wnclusion. New values forthe 
normalized basicassignnxnts are wmputedeach timethe partial 
funy model is identified. 

If there is a sufficiently long interval between the current 
and last identificaiion of the partial model, the normalized basic 
assignments will be evaluated from data wllected at different 
operating wnditions, and the Dempster rule of wmbination 
W u  and Folger 1988) can be used to combine new evidence 

(m,,) with evidence collected previously (mold). For example, 
if only two reference models, R1 and R2, are used, then 

and 

are the strength of the evidence supporting the conclusion that 
the system could be in either of the states described by refer- 
ence models R1 and R2. 

The degree of belief, Eel, that the system is in a particular 
sate is then calculated ffom the wmbined evidence. Thus, 

and 

B ~ ~ ( ( R I , R ~ ) )  = mOlJ,,,,((RI)) 

+ m 0 1 d . n ~ w ( ( R 2 ) ) + m 0 1 d . n ~ w ( ( R ~ 9  R2)): 
(14) 

The degrees of belief are updated every rime a nen paniai 
model is identified and new evidence is obtained. The most 
recent values of belief are either displayed, so that the plant 
operator can make the tinal diagnosis, or a fault is identified 
and an alarm set when the associated value of belief reaches a 
userdefined thmhold. 

Themethod of diagnosis can be easily extended to deal with 
simuheous fiuks by including additional ref~ences models 
that define the behavior ofthe system in the presence of combi- 
nations of two or more faults at the same time. However, the 
ambiguity levels are likely to be much higher, and the cAputa- 
tional wmplexity of combining evidence will increase signifi- 
cantly if a large number of reference models is used. 



Figure 4 Test &fa with no faults 

APPLICATION O F  THE SCHEME 

Experiments have been performed wing a detailed nonli- 
ear dynamic simulation of a dueumne variableair-volume 
(VAV) airconditioning system (Have 1994). The sizing of the 
plant is bared on a detailed design for an of ice  building in 
London, England. 

Two types of degradation faults are introduced in the cool- 
ing coil subsrjtem: water-side fouling resulting h a buildup 
of scale inside the tubes of the coil and valve leakage caused by 
wear to the plug or seat of the valve conhulling the flow ofwater 
through the coil. Both are faults that are difficult to detect since 
(a) they do not cause sudden changes in the observed behavior 
but result in a gradual deterioration of plant performance over a 
long period, @) the behavior of the system in the presence of 
these faults is similar to that for wnen operation at many oper- 
ating points, and (c)there is always some doubt aboutthe amount 
of fouling and leakage that should be regarded a a fault. 

The generic reference models are identified off-line using 
input-output mining data obtained 6um computer simulations 
of three different designs of cooling coil subsystems. Table 1 
shows the main design parameters for the three designs and for 
the cooling coil subsystem in the VAV system used for the tests. 
Designs 1 and 2 have similar duties and Elce areas but operate at 
different chilled-watersupply temprahlrrs. Design 3 Gratesat  
anairtlow ratethat is roughly doublethat ofdesigns 1 and2. The 
reference models represent thebehavior ofthe &ling coil when 
it is operating correctly (C) and with the fouling (0 and leakage 
{L) faults. Themodels defmingthe symptoms of faulty behavior 
are generated wing data collected fiom computer simulations of 
the plant with 1 mm of fouling and 3% leakage, Rspectively. 

Each model is a qualitative description of the steady-state 
relationship b e e n  the inputs and output All models have the 
same sbucture, and deign parameters are used to normalizethe 
inpm and olnput variables. The inputs are the valve control 
signal, u,; the normalized air mass flow rate, 

TABLE 1 Design Data for  the 
Cooling Coil Subsys tems  

Drrien 

Design Parameters I 2 3 Testplant 

Coil duly Ww) 74.3 63.2 146.6 63.5 

Airflow Kg/s 4.3 4.3 8.6 6.0 

Supply temp. ( T )  7 10 7 7 

water n~ 6 0 )  6.3 7.4 10.0 6.3 

No. of rows 6 6 7 6 

Height of mil (m) 1.44 1.5 2.0 1.44 

Width of wil,(m) 1.36 1.36 1.50 1.36 

No. of cirruiu 45 50 75 45 

Valve capacity (m3/h) 31.0 36.4 49.2 31.0 

Coil mhcc 
(0.00 1 Kgm) 0.30 0.23 0.12 0.522 

(m- mmi,,)/(mm~,- mmi,,); and avariable, W =  (Too - Tdtw)lA, 
that indicates whether the coil is operating dry or wet. TkY is the 
dew-point temperature, and A is a user-selected parameter 
whose value (+5'C) reflects the uncmainties associated with 
this simple method of &mating the wemes of the coil. The 
furry sets describing each of the input variables are shown in 
Figure 2. The outputofthe models is the air-side approach, a = 
(T,- T,Y(T,- T-), where T,and T, are the temperahlres of 
theairentaingandleavingthecoolingcoiland T,, isthedesign 
value of the chilled-water supply temperature. The fuzzy sets 
used to describe the air-side approach are shown in Figure 3. 

Each furry model includes 189 possible rules ofthe follow- 
ing form: 

IF the coil is WET 
(or PARTIALLY WET or DRY) 

AND the valve control signal is ZERO 
(or VERY SMALL or SMALL or LOW or MEDRThl 
or HIGH or VERY HIGH) 

AND the normalized supply airflow rate is LOW 
(or MEDIUM or HIGH) 

THEN the air-side approach is LOW 
(or MEDIUM or HIGH). 

The mining data are obtained by simulating the open-loop 
behavior of each design of coil subsystem while varying the 
boundary conditions so as to follow staircase waveforms cov- 
ering the entire operating space. To ensure that the mining 
data fit the sbucture of the model, the magnitude of the steps is 
chosen so that the values of the normalized input variables 
coincide with the values at the apex of the funy reference 
sets, whei-i this is possible. The steady-state value of the tem- 
p e r a m  of the air leaving the coil is recorded for all wmbia -  
tions of values of the boundary conditions. 

Five sets oftest data are collectedevery 15 seconds through- 
out the occupancy period on a typical summer day, during which 
the system issubjected to a wide range of operating conditions 



and is operating under closed-loop control. Data sets are identify a static model (Maruyama et al. 1995). The system is 
collected when: assumed to be sufficiently close to steady state whenever the 

thesystanisoperatingwrrectly, average activity of all of the signals (within a 10-minute 
window) is less than a threshold value that is based on the m~ is a 0 2 ~ m  of scale inside the tubes of the maximum acceptable prediction mar of the static model (in 

coil, this case, 5%). 'Ibe average values of the measured signals over 
here  is a I-mm buildup of scale inside the tubes ofthe coil, the previous 10 minutes are then used to identify the f u q  
there is 1% leakage through the cooling coil wlve, and partial model. 

there is 3% leakage through the cooling coil valve. Table 2 shows the maximum degrees of belief obtained 

me m-ments ued for the diagnosis are dd to during each of the five tests. The variations of the degrees of 

those available cornad to the energy belief when there has been 02-mm and I-mm buildups of scale 

and syrrem (EMCS). since he meas- inside the tubes of the cooling coil are shown in Figures 9 and 

ment of mixed-air trmperanue can be unreliable and a sensor is lo, r e ~ d v e l y .  

often not installed, the outside air temperature measurement is 
ured as a pmxy for the temperarure of the air entering the coil 
whenever the fresh air dampers are fully open. The damper 
control signal can be used to determine when the dampen are p ::- 

f .-------- - - J  \--- /.-, 

fully open if it is assumed that the mixing box is operating ; 15 a 
, : suwy gr lpm3mrm , 

correctly. A crude estimate of the trmperaturr ofthe air leaving $I 

the coil is obtained fiom the supply-air temperature measure- ,! 
ment by assuming a constant temperarure difference across the 2 4 6 B 10 12 

supply fan. Figure 4 shows the raw test data obtained when the T- (-1 

woling coil subsystem is operating correctly. The raw test data 
after 0.2 mm and 1 nun of scale has built up on the inside of the 
tubes and with 1% and 3% leakage through the valve of the 

' 

woling coil are shown in Figures 5 through 8. The raw data are $0.6. ' 'ivd 

filtered (using a moving-average filter with a rectangular $0.4. 

window of 2.5 minutes) to remove short-term changes caused so.2. , -  . 
'2 L.. 

by unmeasured disnubances or measurement noise and then --! 
preprocessed to remove measurements obtained when the 6esh Oo 2 

4 6 8 10 12 
nm (mm) 

air dampers are not fully open. A nansient detector is then used 
to identify those sections ofthe data when the system is consid- Figure 6 Test dato with I m ~ n  buildr~p of scale inside 
ered to be close enough to steady state for the data to be used to . '  lhe tubes of the cooling coil. 

I' --. . 
I , J vaw-OI 

r-/ 1' *rul 
3 , - - ,  I,-- \_ _ 

4 6 8 10 12 0 2 4 6 8 10 12 
T- (hw) Tme (horn) 

. . -' 

Figure 5 Test data with 0.2 mm buildup of scale inside Figure 7 Test data with 1% leaknge through the cooling 
the tubes of the cooling coil. coil valve. 



TABLE 2 Maxlrnurn Degrees of Belief (X) 

IC. F) IC, LJ IF, L) 
( c )  (F) (L) Cormt or Correct or Fouled or 

Tat Condition Correct Fouled Leaky Fouled Leaky Leaky 

Colrccl opaation 5.3 4.8 

0.2 mm buildup of wale 0.3 8.8 

1 mm buildup of scale 0.0 81.7 

1% lcakagc 5.8 5.8 

3% leakage 3.3 0.1 

. . . .  . . . . .  

Figure 8 Test &fa with 3% leakage through the cool- 
ing coil valve. 

Figure 9 Variations of the degrees of belief 
(0.2mm fouling). 

DISCUSSION OF RESULTS 

The Rsutts presented in Table 2 clearly demotlstrate the 
ambiguous nature of the diagnosis made in all five tern. When 
the system is operating correctly, the unambiguous belief in 
correct o p t i o n  is mall since most of the usable test data are 
obtained at high and medium cooling loads, when the symptoms 
of correct and leaky operation are similar. However, the diagne 
sis does generate a reasonably high belief in either coma or 
leaky opention {C, L) and a low belief in all of the other oper- 
ating states. 

The correct diagnosis is made when faults are intduced 
that have the same magnitude as those used in the generation of 
the reference models. As can be seen in Figure 10, the diagnosis 
generates a high, unambiguous belief in fouling when there is a 
I-mm buildup ofscale, and there is asignificant belief in leakage 
when there is 3% leakage through the valve. Since symptoms are 
similar at certain openting points and there is some mismatch 
between the behaviorof the actual plant and that descrikd by the 
genaic models, ambiguous results are also produced. However, 
it should be noted that, for example, when there is a I-mm 
buildup of scale, the klief in fouled or leaky operation ,F, L) of 
99.8% includes the unambiguous 81.7% belief in fouling (the 
sbmgth of evidence that the system is fouled is 0.817, that it is 
leaky is 0.000, and that it is either fouled or leaky is 0.181). 

Figure 10 Variations of the degrees ofbelief (I mm fouling) 



Even for small amounts of fouling or leaking, the problem 
is still identified correctly to somedegree, althoughthe diagnosis 
is less cmvincing when the size of the fault is smaller than that 
used in the reference models. When there is a 02-mm buildup of 
scale, the mismatch betweem the behavior of the actual plant and 
that d e s c n i  by the generic reference models is clearly grecder 
than the difference btweem fouled and comcf or fouled and 
leaky, operation. As can be sea in Figure 9, some evidence of 
both unrrct or leaky operation (C, L) and fouled or leaky oper- 
ation (F, L) is genera!ed,resulting in a sipi£icaut level of belief 
in both these states. When there is 1% leakage, the uoambiguous 
belief in leaky operation is iw than the unambiguous belief in 
uxrect or fouled operation. The only sipi£icaut belief is in 
corn  or leaky operation (C, L) since there are few usable test 
data at the lower coolig loads, where the symptoms of coma 
and leaky operation are different. 

CONCLUSIONS 

The fearibiity of fault diagnosis b d  on semi qualitative 
generic reference models has been demomhated. Resuhs have 
heen presented that show that a fuay-model-based faut diag- 
nosis scheme, which would require no mining on the adual 
plant, can successfully identify faults in a simulated HVAC 
subsystem ifthe size ofthe faults is sufficiently large. By using 
funy matching, the scheme is able to account for the ambiguity 
that arises 6om fault-& and faulty opention, or different faults 
having similar symptoms at some op~at ing  points, and reduce 
the occumnce of false alarms. The proposed fuay  method of 
fault diagnosis is computationally simple enough f a  itto bused 
on more complex subsystems such as air-handling units, it is 
insensitive to measurement uncertainties, and it is suitable for 
real-time implementation in EMCS outstations or packaged 
digital controllers. 
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ON-LINE DIAGNOSTIC TESTS APPLIED TO FAULT 
DETECTION AND ISOLATION OF AN AIR-HANDLING UNIT 
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Abstract 

On-line diagnostic testing is one choice, when practical fault detection and isolation methods are considered for 
automated processes. Performing a test means exciting a process by means of prescribed input signals, 
supervising the responses and comparing results with a process model. An on-line diagnostic test is repeated 
similarly every time, in similar prccess conditions, making modeling an uncomplicated task. Fault detection is 
a direct consequence of the comparison, but fault isolation is based on elementary consmhts, decomposed from 
the process model. A rough description of a fault can be achieved by heuristic reasoning, which enables 
application of the method in practice. A more specified fault description is accomplished by learning from old 
solutions. The reasoner accumulates information making decisions of the classifier gradually more precise 
through acquired experience. The method is best for successive installations, in which knowledge can be 
cumulated. On-line diagnostic tests are generic in character, but in this paper they are configured for an air 
handling unit of an office building. 



1 INTRODUCTION 

If technical processes and systems of buildings are subjected to effective and robust fault detection and isolation 

(FDI) methods, several benefits will be obtained. These include energy and water savings, reduced maintenance 

costs, lower safety and health risks and increased quality of living. Today, these benefits are only partly attained 

and more efforts in research & development of diagnostic methods and systems are needed. 

Technical prerequisites for constructing diagnostic systems already exist, but there are several obstacles. One is 

the poor robustness of FDI methods. Besides robusmess other aspects of HVAC environment also need to be 

considered when the objective is practical implementation of FDI. The method should be generic, i.e., easy to 

apply to different processes, without disturbing occupants and ordinary operation of the process. The method 

should also be capable of being integrated and embedded in building automation systems. In addition to the 

above, the FDI must meet the requirements of the occupants, and the service and maintenance personnel of the 

building. The last aspect contains several issues concerning a user interface, configunlion of new applications, 

updating diagnostic data and supporting software tools for diagnostic operations [I], 121, [31. These kinds of 

basic issues are seldom presented in FDI publications, although they definitely have an influence on FDI method 

development 

Air handling of a building is a demanding process for fault detection and isolation. Temperaoxe control of the 

supply air may consist of several cascaded conmol circuits. The non-linear character of subprocess make many 

of the known FDI methods difficult to apply. Ragmatic aspects, like minimum extra instrumentation, also set 

limits on available methods and tools. This paper presents a FDI method for an air handling unit (AHIT) of an 

office building, as one possible way of tackling these problems. The method is called the on-line diagnostic test 

(ODT). The subject has been earlier handled by Koch [4], but he focuses on the knowledge-level system 

description. This paper presents a derailed procedure for fault detection and isolation using an ODT. 

On-line diagnostic tests were examined in a real air handling unit. Field tests concentrated largely on the 

preheating process of the AHU, but the results are equally generalized to other subprocesses. Those tests are not 

presented here. But this paper presents conclusions and configuration of the diagnostic test methodology, which 

followed the experiments. 

2 CONCEPT OF THE DIAGNOSTIC TEST 

An on-line diagnostic test (ODT) is a series of conml and monitoring actions applied to a process to U y  to 

reveal possible faults of the process. Performing an on-line diagnostic test means exciting an automated process 



by means of proper input signals, disturbances or loads. causing dynamic changes in the output of the process. 

In this paper only input signal excitation is considered. If abnormal responses are generated, the process is faulty 

(Figure 1). An ODT is focused on one process at a time. When the entire process consists of several 

subprocesses, faults are better isolated by testing each subprocess separately. 

exciting 
signals 

faults 

Figure 1 .  Principle of fault diagnosis using on-line diagnostic tests. 

The abiiity of the diagnostic test to detect and locate faults is based on a comparison between the behaviour of 

faulty and normal processes. An ODT is repeated similarly every time, in similar process conditions. The 

approach is simple and robust because process models are necessary only for responses to specific input signals, 

making modeling an uncomplicated task. On the other hand, one must utilize all  the information generated by 

the test in order to ensure fault detectabiiity and isolabiiity of the ODT. Thus, on-line diagnostic tests share 

mainly model-based diagnosis methods but may also utilize other FDI approaches. 

One diagnostic test comprises of three different parts: identification, fault detection and fault isolation (Figure 

2). Data gathered during the identification period represents characteristic operation of the process in normal 

status. Later, when the process may be faulty, this data is compared with data collected during the fault detection 

period. Fault isolation is a result of reasoning based on comparison of the data of current and earlier periods. 

One test may refer to several possible faults. By combining the results of earlier tests and the tests of other 

subprocesses, redundant fault alternatives are excluded. 

Diagnostic tests are performed on-line, during a normal operating sequence of the process and controlled by .ul 

automation system. However, the execution time of the test are selected so that disturbances, load or 

environmental conditions are similar to those of earlier tests. Achievement of the right process conditions is 

taken care of by an automation system, which has good control over the process. An ODT can be scheduled to 

start at a prescribed time or it can be initiated by an a l m  or by a user. 



Identification Fault detection Fault isolation 

- Process in normal status 1 - Process may be faulty 1 

- Model of the process is 1 - Process behaviour is 
generated compared with the , 

' model 
- The model consists 

of qualitative a d  - Fault is detected when , 
quantitative features several thresholds are 1 

ecxeeded 

- Diagnosis is based on 
heuristic and adapting 
classification 

- Fault patterns are logical 
constrains decomposed 
from the process model 

- The user verifies the 
fault decision 

Figure 2. Decomposirion of on-line diagnostic lests into identification, fault detection and fault 
isolation. 

3 DESCRIPTION OF THE AIR HANDLING UNIT 

Methodology of the ODT w s  examined in a real air handling process. Figure 3 represents a simplied 

schematic of the AHU. The system consists of a heat recovery uniS mixing dampers, and preheating, 

humidifying, cooling and heating processes. The heat recovery unit, dampers, heating and cooling need 

continuous control signals (z,,zd,zp,z,,zJ, but the humidifier is controlled by an on-off signal ( z J .  The dampers 

in the figure are connected to a single control signal. An alternative would be a separate control signal for each 

damper. Supply and return fans can be driven at two different speeds, controlled by signal z ,  In addition, there 

are temperature measurements of the outdoor air (uJ ,  mixed air ( u J ,  supply air (u,),  return air (u,), leaving water 

of the preheating coil (up) and the humidity of the return air (u,). Usually, the set p in t  temperature of the zone 

is maintained using a cascade conml algorithm, but during the tests each subprocess is conaolled separately. A 

preferred time for an ODT is a non-occupation period of the building, because changes in internal heat sources 

are minimal. Disturbances caused by outdoor conditions are made negligible for most subprocesses by setting 

the dampers in recirculating position. 

4 FAULT DETECTION 

4.1 CHOSEN FAULT DETECTION AND ISOLATION METHOD 

On-line diagnostic tests share model-based diagnostic methods but they may also utilize other chancteristic 

information of the process. While modelling the process behaviour, one could reson to mditional quantilative 

methods like parameter estimation, slate estimation or parity equations of the process [S], [6], [7], [8], [9] .  



Figure 3. Simplified schematic of the air handling unit, control signals and measurements. 

Methods must be selected carefully, because some lead to complicated procedures and therefore to robustness 

problems. Signal analysis is one choice [lo], and feahlres of this will be used. Many successful diagnostic tools 

are expen systems, which apply several kinds of information extracted from the process or given by the user. 

Although a knowledge based approach is partly included, the following pages do not concentrate on knowledge- 

level problem solving. In addition to these, during the recent years, qualitative modelling has become a real 

alternative for describing system behaviour [ I l l ,  [12], [13], [14]. Many of these principles are applied in this 

paper. 

4.2 QUALITATIVE APPROACH 

Qualitative modelling and simulation is not always a straightforward technique. There are a number of 

individualized concepts and representations, without any common language [141, which makes a comparison of 

methods and results complicated. Another difficulty is that qualitative differential equations with boundary 

conditions may give extraneous solutions [151, which cause spmious behaviour 1161. 

The FDI method, presented in this paper enables integration of qualitative and quantitative knowledge in the 

same process model. The approach also eliminates the possibility of exhaneous solutions. The basic difference 

between the original qualitative approach and the method of this paper is that the operating procedure of the 

diagnostic test is always the same and the tests are always excited by the same, known signals, producing the 

same envisionment every time, without any abnormal iransitions. Neither is there a need to solve qualitative 

differential equations, but only to learn the quantity spaces, directions and landmarks of the qualitative variables. 



A qualitative model of an HVAC process is created by examining the behaviour of exciting and response signals 

of one ODT (Figure 4). Each signal j represents a functionh, which has a finite set of distinguished time-points: 

and a corresponding, fmite set of landmark values: 

B, = ~11,4 , . . . ,1k~1i<1 ,+1)  . 

which represent some characteristic points of the signals. The landmarks are points, where 

&(a) = 1 1 ,  &(b) = lk 

f ( t  ) = 1 , V & ' t  = 0, t,, €A,; li €Bi . 
J n 

Landmarks defined by equation 4 are maximum and minimum points of the signal. When a signal gets its 

landmark point, the corresponding points of all other signals reach cenain values specified as intervals between 

two adjacent landmarks. Either a landmark or an interval is described as the qualitative magnitude of the 

variable. In addition to the interval, the direction of change of the signal can also be identified. These definitions 

allow the setting of logical constrainrs, which describe signal and process dynamics. Table 1 presents some 

examples of such constraints. Comparison of the mode1 and the real process behaviour, gives symptoms for fault 

detection. 

4.3 QUANTITATIVE APPROACH 

The quantitative pan of the model benefits all availabIe measured signals of process input and output. For one 

signal, j, this means the sampled values: 

where h denores sampling time. and a and b are starting and ending time points. Repeating an ODT a number 

of times reveals that measured points u;  can be described by a stochastic variable&. All the variables &, ie (arb) 

are not utilized in the model. Most important are the points, that correspond to the landmarks of the qualitative 

model. Due to the stochastic character of the process, the actual landmark points of repeated ODTs do not cccur 

at same time instants. Thus, the time points of these landmarks !, also are stochastic variables. For one signal, 

j, all the previous points are defined as 
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Figure 4 .  Qualitative slates of exciting and response signals 

where. and 0" refer to a probability density functions. Notation 6 refers to the landmarks corresponding to 

the set B,, but its elements are chosen from the set G,. A similar definition concerns the set 4. It is assumed that 

arbitrary sample points x,f, i=0,1,2, ... are normally distributed stochastic variables, 3 - N ( k , o A  and !, - 
N(p,,o:), where. unknown parameters p and o are approximated from the data. 

The measured signals, their discrete sampling points and the defined stochastic variables enable the setting of 

many kinds of logical constraints concerning the behaviour of the process. The constraints need not depend only 

on the poinrs of one signal but they can connect several input and output signals in one constraint. By combining 

the qualitative and quantitative constraints, S, an integrated model M is produced: 

where the letter m equals the number of signals. So, the model is a couection of constrains which tie up 

qualirative time-points Aj, the corresponding landmarks B,, quantitative sampled values of the signals G, and the 

points defined by the probability density functions in H,. The model M enables the prediction of the process 

dynamics during an ODT. A fault is detected by comparing predicted and real behaviour of the process. 

The above method provides some benefits compared to the purely qualitative approach. The integrated model 

allows checking gains, delays and skewnesses of the responses, which may help to identify specific faults. All 



the essential information of the model can be presented in compact, numeric and symbolic form. This is a benefit 

if the method is applied to larger entities 

Table I .  Examples of quantitative and qualitative consrrainrs. 

Constraint Description 

Signal values at peak landmark 

points must be within specified limits 

Time-points of peak landmark points 

must be within timing window 

Sum of signal values during conuol 

phase must be within h i t s  

T i e  delays between peak landmark 

values must be within limits 

Number of landmarks for one signal 

is consmt 

Mutual magnitude of landmarks for 

one signal must not change 

Signal must increase monotonically 

Signal must decrease monotonically 

4.4 ADDITIONAL FEATURES 

Any additional qualitative or quantitative feature suitable for the test procedure and giving new symptoms of 

faults can be included in the model above. Tbe new details depend largely on the applied test procedure, 

monitored and exciting signals. For instance, if the quality of temperature control is examined by a step change 

of the set value, the proper characteristic quantities might be settling time, percent overshoots, peak response, 

peak time andlor some performance index, like the integral of the square of the error (ISE). Some other test 

procedures could check the operating time or fuU opening time of the equipment. the difference from a mean 



value of a physical quantity or difference from a summed mean value of a signal, delays. dynamic or static limits 

of monitored variables, signal models etc. 

Before diagnosis. the original set of consmints is decomposed into elementary constraints, which allow creation 

of characteristic fault patterns, i.e., srmchlred residuals [8]. This is a basis for fault isolation. An elemenm 

consmint may tie up one, several or all points of each signal, combine points from several signals, utilize timing 

and functional relationships and quantitative and qualitative information. 

5. FAULT ISOLATION 

5.1 HEURISTIC CLASSIFICATION 

In detecting a fault. a diagnostic test generates a selection of symptoms characteristic of the fault. One choice 

for diagnosis is to match the symptoms and their potential faults with each other. Such a classification is 

characterized as heuristic, because relaions are uncertain, based on empirical, a-priori knowledge of the system 

behaviour. It is tpical of heuristic classification to skip intermediate relations between symptoms and faults. 

These relations may be unobservable or poorly understood [171, [181. A geneml inference structure of heuristic 

classification is illusmted in figure 5. For many problems, solutions are not inferred directly from data but 

through data abstractions. The general structure also includes refinement of the solutions after the heuristic 

match. 

HEURISTIC MATCH 

I Data Abstractions 4 Solution Abstractions 

REFINEMENT 

4 
Solutions 

Figure 5.  Inference structure of heuristic classification [171. 

When a diagnostic test is performe4 symptoms can be directly related to inferred faults without data 

absmctions. This is a domain-specific, non-hierarchical association between symptoms and faults. Results of the 

heuristic match are actually solution absmctions, and refinement is performed otherwise. This is due to 

incomplete knowledge, allowing only a rough interpretation of the fault to be made. But the suaighdorward 



relationship between the faults and their symptoms also means an uncomplicated inference structure of the 

classification. 

Symptoms resulting from the chosen diagnostic tests and referring to a fault should be easily extracted by a- 

priori knowledge of the system behaviour. This is successful if one concentrates only on abrupt and significant 

changes in process behaviour. Thus, an experienced engineer can create a classification relation between test 

results and faults while designing the system. Heuristic classification serves as a fust aid reasoning method, 

giving a usable description of the fault before the system has learned enough to make more accurate decisions. 

Feature vectors, exuacted by diagnostic tests, defiitely contain fault specific information, allowing more precise 

determination of actual faults than the heuristic classification. However, such knowledge is hardly available a- 

priori. Precise categorizing of the faults would require empirical knowledge of the observed process. This is not 

yet available at the time of BEM installation. So, heuristic classification makes the fault isolation, not perfect, 

but applicable, right after BEM installation and commissioning of the HVAC system. 

5.2 ADAPTING CLASSIFICATION 

If diagnostic tests generate relevant feature vectors, fault selectivity can be improved. The idea is based on 

accumulating knowledge, which consists of real, verified faults and their feature vectors. Using this knowledge, 

data from a-new diagnostic test is classified and the most potential fault is chosen. If the name of a fault 

suggested by the system turns out to be erroneous, the user can change it and verify the results as a new 

solution. Collecting data of old solutions and using them as examples is a common learning paradigm. The 

learning procedure accumulates information in a case library, making decisions of the classifier gradually more 

precise through acquired experience. Figure 6 presents the principle of the whole isolation method. 

Adapting 
Symptoms 

of the cation 

I 

Figure 6 .  Principle of the applied reasoning merhod. 



The fault diagnosis of the ODT resembles a pattern recognition system. Sensors transduce measurements of the 

process ,and logical conshaints resulting from the process model, extract specific features from the data. Finally. 

a classifier evaluates the features and makes a decision. However, the leaming principle is not similar to 

supervised leaming, typical of pattern recognition, where the learning data is previously assigned to classes. In 

this case, a new class can always be created if the verified fault does not exist in the case library. Thus, the 

approach described above has elements familiar to case-based reasoning, which adapts old solutions to new 

problems or applies old cases to evaluate or justify new situations [191. 

The learning ability is one way to increase the robusmess of the fault isolation. Although an erroneous 

suggestion of a fault is made once, the probability of making a correct decision regarding the fault increases if 

a similar fault is encountered again. It is incorrect to say that all problems of fault diagnosis are solved by 

classification. But the learning ability makes the method flexible and enlarges its conventional areas of 

application. 

5.3 PARALLEL OPERATION OF CLASSIFIERS 

In a real BEM, heuristic and adapting classificalion can operate in parallel using the same knowledge base and 

remeval technique. The results of both methods are presented to the user (Figure 6). The heuristic classification 

suggests a few possible faults or presenrs a rough explanation of the fault. Similarly, the adapting classification 

may display several faults, highlight the most probable one or place faults in a ranking list. Classification and 

retrieval obey the rules of discrimination or indexing. When the knowledge base is increasing, faults brought up 

by the classifier become more accurate. Parallel operation of both methods makes the system structure 

uncomplicated and clear. Both methods are necessary and support the total reasoning concept. 

The reasoning concept is justified by the diagnostic test procedure, which concenmtes on one subprocess at a 

time. Because the fault is already isolated in the subprocess, a few fault alternatives given by the heuristic 

classifier are enough to discriminate some typical fault cases. The resulting fault descriptions, although rough or 

unspecified, conduct the user or seniceman sufficiently close to the real fault. The learning principle makes the 

system more accurate. A similar concept applied simultaneously to the whole AHU would be more problematic. 

The knowledge of the classifiers can be hansferred to another BEM-system. Transferring means that only faults 

and their logical consnaints are relocated. Numerical parameters, such as probability limits and other 

ch,uacteristic data are defined separately in the new system. One choice of transferring is to copy the rules of 

the heuristic classifier and to change their logical consuaints according to the experience gained from the earlier 

application. Another choice is to relocate the whole case library to the new system and utilize the old system 

directly as a reasoner. However, both approaches can still be considered as heuristic, because the old system 

always differs from the new one and represents a-priori knowledge. After each fault case, the information 

received bom the old databm is checked and corrected in a new database. Gradually, the new data base 

replaces the old one. The transfer becomes more successful, if the structure, operation and insnumentation of 



both the old and new AHU are sufficiently close to each other and the situation is the best if the AHUs are of 

same type, made by one manufacturer. 

5.4 DISCRIMINATION PRINCIPLE 

Discrimination refers to theprocess of deriving classification rules using samples of known fault cases. Usually, 

this approach leads to multivariate statistical representations and requires numerical fault data. If features are 

described both numerically and symbolically. and diagnosis problems are not fuzzy, non-statistical techniques 

may be appropriate for organizing fault cases. These methods are related to case-based reasoning and referred 

to indexing methods [ZO]. However, the indexing methods can be regarded as simplified versions of 

discrimination based on multivariate statistical representation. The following equations illustrate one approach 

of discrimination techniques and give an insight to the problem. Actual implementation will be a reduced version 

of the presentation. 

Verified faults and their data represent known classes. Every new test data is compared with them using the 

following techniques. Let R = lo, ,%, ..., o,) be a finite set of classes. A classifier finds the best category w;. i 

= l2 ,3 ,  ..., c for the data, i.e., the most probable fault, by computing a discriminant funcuon g,(xJ, where x is a 

vector-valued random variable. The classifier assigns the feature vector x to class wi if g,(x)>g,(x), with all j#i. 

If the decision of the fault tums out later to be inaccurate, and no such fault exists, a new class w,,, is created 

and added to the knowledge base. On the other hand, if discrimination and decision is successful, but the feature 

vectors do not match, both of them are assigned to the same fault name. 

It is a known fact that the maximum value of the discrimination function g,(x) corresponds the minimum 

conditional risk [Zl], which is achieved by replacing g,(x) with P(w,lx). Here P(o, lx )  represents a posteriori 

probability, describing the probability of o,, in case x is already occurred. P(w,lx) can be computed by Bayes 

Rule from the a-priori probability P(o, )  and from the probability P(xlo; )  for x, conditioned on oi being the 

class of fault. 

5.5 DISCRIMINATION FUNCTION 

Because components of each feature vector consist of binary and discrete values, some non-paramemc 

discrimination must be applied. Due to the various sources of data, the components of the feature vectors are 

also unnormalized, complicating their comparison. That is why the following discrimination techniques is more 

closely discussed. 

,411 the components of the feature vectors are handled as binary-valued. Each component is assigned either a m e  

(T) or a not m e  (N) value. later also referred to values 1 and 0. This is accomplished by presenting the 

behaviour of the integrated model as elementary, logical constraints, reducible to binary form. This concerns both 

quantitative and qualitative knowledge. WhiIe transforming to binary format, some information is lost. This loss 



of information can be partly replaced by increasing the number of logical constraints. On the other hand, binary 

data is easy to handle and this format makes classification a compact procedure. 

To be more specific, the probability p, of each feature component x, 3 x ,  conditioned on class o, 3 R, is defined 

as 

In order to illustrate the relationships of the g,(x), it is assumed that the components of the feature vector are 

conditionally independent. Then P(xlo , )  can be written as 

which results directly from rules of probability [21]. Using Bayes Rule the discriminant function can be written 

as 

which gets its final form by inserting P(xlo,)  from (9) 

Although it is an approximation of the real situation, the equation I1 describes how the discrimination function 

consists of a linear function of the feature components xi and a constant. The latter one consist of the 

probabilities p, and the a-priori probability P(o3.  The criteria g,(x)>gj(x), with all j#i determine the best choice 

for the fault. In practice decision of the fault class oj must be made using inaccurate values for the probabilities 

p, and without knowing any values of the a-priori probability P ( o J .  Thus, the role of the weighted combination 

of the feature components xi becomes dominant while choosing the right class. 

5.6 BINARY FORMAT FAULT PATTERNS 

Table 2 presents a case, where the test results of a preheating process are converted into binary format. The 

column on the left describes the elementary constraints typically met when a fault is detected. The equations are 

decomposed from the integrated model. The other columns indicate, in binary format, if this requirement is 

satisfied by the specified fault. The collection of all logical states forms a pattern, that is typical for the fault. 

The number of the logical constraints is somewhat arbiuary, but correlates the number of faults. Increasing the 

number of fault cases would allow addition of more consuaints, but the robustness of each new constraint must 

also be considered. 



Table 2 .  Fault patterns of the process in binary format. The columns in 

the left presents elementary constraints decomposed from the process 

model. Other columns illustrate how these requirements are satisfied in 

each fadl  case. 

Most of the columns on the right are denoted as T or N and correspond to high @,,A) or low @,GO) 

probabilities of p,. Some elements, denoted as T/N. indicate that both choices may be possible and thus their p, 

may be closer to 0.5. This means that the corresponding feature component is more a less indifferent. The table 

presents a case, where each fault is verikd and classir~ed only once. If  they were detected many times, there 

would be a disnibution of probabilities p,. It is obvious that part of the detected faults, primarily abrupt and 

distinct changes in the process, satisfy some of the logical constraints in a similar way almost every time, leaving 

their probabilities p, close to one or close to zero. 

5.7 CLASSIFICATION OF FAULTS 

Heuristic classification means that part of the information of mble 2 is introduced as a-priori dam. The designer 

of the system can set some constraints typical of one fault or a group of faults. They are particular features, 

clearly seen in response to the test and repeated similarly in every occurrence of the fault For a great part of the 

features, such a conclusion is not possible and they are regarded as indifferent skates. denoted as T/N. Thus, the 

diagnostic test procedure, concentrating on one subprocess at a time and on abrupt and distinct faults, enables 

partial submission of the information needed in the probability P(zlo,) of equation 10, which is essential for 

fault isolation. The a-priori information, given by designer, does not allow the observed fault to be named 

exaclly, but does make it possible to categorize a group of possible faults or suggest, which part of the process 

is faulty. 
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Figure 7 .  An example of classification. An observed fault is classified using heuristic and 
verified fault patterns. 

Figure 7 presents a classification example, in which the heuristic approach is combined in a pattern recognition 

procedure. The panern of the observed fault is compared with heuristic fault panerns and previously verified 

fault patterns, if such exist. Because only a few consbaints of the heuristic patterns are f ~ e d ,  a heuristic choice, 

matching the observed fault apparently will be found. When compared to fault panerns of the case library, there 

may be a fault matching exactly with the observed fault pattern, or which is closely related to the observed fault. 

While reporting the test results, the system may output the heuristic choice and possible other choices, 

highlighting the most probable fault, as shown in the figure. 

If the user verifies that the observed fault is the same as the suggested one and the patterns of the both faults 

still differ, the system can replace or add the new features to the knowledge base. Combining old and new fault 

patterns will change the probabilities p,  or turn some logical state indifferent, depending on the approach. 

However, pattern recognition and classification of the fault is more sh'aightfonvard the next time. 

When the most probable fault is selected, an exact match is not always found. Thus, one must choose the closest 

pattern, where the difference between the patterns is minimum. Equation 11 represents one alternative for 

calculating an approximate solution for the problem. Another alternative is to apply the notation of the table 2 

and figure 7 and neglect the probabilities p , .  This easily leads to nearest neighbor indexing and associative 

retrieval, which allows specification of match and mismatch weights to the features. Further simplification is also 

possible. A basic approach is template retrieval, which is only a variation of conventional databare reuieval. 



6 SUMMARY 

One of the original ideas was to create a practical FDI method. This means that the method should be robus1 and 

consistent with the pragmatic aspects set by the process and its environment. Conclusions after the development 

and field tests are confirming that the ODT has features, conceivable for a robust and realistic diagnostic method. 

The applied process model is uncomplicated but at prescribed points it still represents a moderate replica of the 

process dynamics. It is evident that robust diagnosis cannot be resulted from a poor model. Distinct and abrupt 

changes in process behaviour usually causes exceeding of several thresholds during one ODT. Thus, fault 

detection is not based on crossing one limit. The ODT method allows user intervention, which provides the 

possibility of naming new faults and correct misclassifications. Reasoning utilizes heuristic and adapting 

classification of the same compact knowledge base, which is easy to implement as an embedded knowledge base 

system. The learning ability enlarges the areas of application and permits inheritance of system knowledge to 

similar HVAC systems. 
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ABSTRACT 

This repon introduces some cases of fault detection and diagnosis of a HVAC system with a thermal storage 

tank using the simulation program HVACSIM ' . From simulation results, and the influence of different kinds 
of fault at each sub-system level on the temperature pmfdes of the thermal storage tank are shown 

1 INTRODUCTION 

HVACSM ' is a simulation tool that can be used to genirate normal and fault data for HVAC systems [1][2]. 

In order to generate the required and reriable fault data for a BOFD study, the authors have added several new 

TYPES of subroutine and tried to simulate dynamic behavior for various system alternatives. So far it has been 

possible to simulate the HVAC system with a thermal storage rank. The HVAC system with a thermal storage 

tank is one of the most popular and useful system in J a p q  for the purpose of reducing erecllic demand and 

taking advantage of offpeak energy charge. 

As shown in Figure 1, the storage system can be regarded as an interface which combines the HVAC sub- 

system with the heating or cooling PLANT sub-system Therefore, it will be affected by the condition of both 

of them 

Figure 2 is a diagram of the influence of sub-systems which contain some kind of faults on the storage system. 

Since ~JIY fault of a sub-system is likely to affect the storage system, most of the faults may be detected by 

monitoring the temperalure profdes of the storage tank. 

TIE aim of this study is to show some cases of fault simulation ofthe HVAC total system with a storage tank 
and to confirm the influence of faults which rake place at each subsystem level on the storage system. 
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Figure 2 Muerne of Fa* Sub-system for the Storage System 

2 DESCRIPTION OF HVAC SYSTEM WITH THERMAL STORAGE 

2.1 SYSTEM AND BUILDING DESCRIPTION 

Figure 3 shows the diagram of the HVAC system with thermal storage. The 3-mom VAV HVAC system is 

designed for simulation. A set of multi-comected complete mixing storage tanks and a chiller are combined 

with t k  HVAC system In this study, the outlet water temperam of the cooling tower is fixed at a constant 

value. Table 1 shows the design parameters for each piece of equipment in this system. The hot water boiler is 

installed to supply hot water to the reheater and heating coil. But the heating coil is not used in this study, 

because the simulation is only for a peak day in the summer. 

Figure 4 shows the plan of the moms and the main structure of the building simulated in this study. 

The internal heat gain in these moms are assumed as shown in Table 2 in accordance with the schedule as 

shown in Figure 5. Figure 6 shows the outdoor air temperature and horizontal solar radiation for the simulated 

day in the summer. 



Table 1 Design Parameters of Equipments for W A C  Total System with thermal -- Storage Tank 

CHILLER Type of compressor :Piston 
Cooling capacity : 13 KW 
Compressor power : 3.7KW 
Design evaporator outlet water temperature : 7 9) 

Design condenser outlet water temperature : 24 9) 

Design evaporator water mass flow rate : 0.6Kg/s 
Design condenser water mass flow rate : 0.9Kg/s 

STORAGE TANK Type : Multi-connected complete mixing type - .. 
water volume : 2.51~' X 20 tanks 

AIR HANDLING UNIT Fan : Design air flow rate : 2.7Kg/s 
Cooling coil : Coolong capacity : 4 2  KW 

Design water flow rate : 2.0KgIs 
VAV UNIT Design air flow rate : 0.9Kds - - 

Miimun damper opening : 0.4 

I Multi-connected complete @king 6 .... . ~ QilledW.,R, ' :-- 
STORAGE TANK 

I I 

CHILLER 

Figure 3 Diagram of a HVAC Total System with thermal Storage Tank 



Table 2 Building Heat Gain and Thamal PeIfommce 

Figure 4 Building Model for S i a t i o n  

--------. jJ -....-..- I ,  !a q ,  
8 10 12 14 16 18 20 

lime (o'clock) 

Figure 5 Indoor Heat load pmfde 

Figure 6 Outside air temperam 
and Total Horizontal Solar Radiation 

2.2 CONTROL STRATEGIES 

The pwpose of the contml strategies in the summer mode for this system is to conml the air temperatures in 

the three zones within the range 22 ' C- 25.5 ' C. The control strategies for conml of the HVAC system 

during the summer are briefly described as follows, 

I) The suppiy fan is contmlled to keep the supply air gauge pressure at 0.249kPa(after main supply duft), and 

the return fan is modulated to pmvide air flowrate 0.44kds less than that of supply fan 

2)The cooling coil is conmlled to keep supply air temperature at the setpoint. The setpoint is reset higher with 

in the range 16- 20 ' C when the maximum opening of VAV dampers is lower than 80% and lower when the 

maximum VAV damper opening is higher than 90%. The reset speed of the reseter is 0.0005 ' Us. This value 

was selected in order to prevent hunting of the room air temperature. 

3)The VAV damper opening changes within the range of 40-100% linearly when the indoor temperature is in 

the range of 21.9-25.2 ' C as shown in Figure 7. 

4)The reheater is modulated by PID conmller to prevent the zone air temperature fmm falling below 22 ' C. 

The supply hot water temperature Thw is reset linearly when outside air temperature Text is between -1.1 and 

12.8 " C. When Text <-1.1, 'Ihw is set at 45 ' C, and when Tex~12.8 '  C, Thw is set 35 C. 

5)The minimum outside air(0A) flowrate is controlled by the OA damper at 40% of the total air flow rate 

when OA temperature is higher than 22.2 ' C. 



6)As shown in Figure 8 two kind of operation schedule for chiller is assumed for the ON-PEAK day. 

Schedule A which takes into account the peak demand window(13:OO - 16:OO). Schedule B requires the 

chiller to operate continuously for 24 hours. 

7)The inlet 3-way valve is controlled IO keep Chiller outlet water temperature at set point 7 " C. The chiller 

input is kept at a constant value.(l3KW for schedule A,I IKW for schedule B) 

8)The outlet water temperature of cooling tower is assumed fixed at 24 ' C. 

Reheater Valve P-control 

21.9'C 22.4 'C 
. .. . - 

Figure 7 Control of VAV Damper and Reheater Valve 

A - SHEDULE 

Charge Storage ~ i i e c t  Cooling 

B - SHEDULE 
ON Peak 

I 
I r I I 

OFF Peak ,: Discharge I I 
I t Stofage - 

cooling Load prAfifile 

Charge Storage  ire; Cooling 

Figure 8 Schedule of Chiller Operation 



2.3 NEWLY ADDED MODELS FOR TOTAL SYSTEM SIMULATION 

Some new component types were added by the authors to simulate a HVAC system with thermal storge. 

Table 3 is the list of newly developed TYPES. The multisonnected complete mixing storage tank is same as 

the model wich was intoroduced in a separate paper[3] 

Table 3 Newly Developed List 

TYPE 43 Flowate and pressure balance calculation 

TYPE 31 PID conboller(set point kick preventing) 
TYPE 37 Pressure difference sensor 
TYPE 3 8  Flowate difference sensor 
TYPE 42 Damper or Valve with motoriued actuator 

TYPE 44-46 Signal resetter 

3 PROPOSED FAULTS FOR HVAC TOTAL SYSTEM 

The proposed faults considered in this paper are of four kind of typical faults in the subsystems. They are 

described below. 

1) PLANT Fault (a fault which takes place at plant system level) 

Set point error of the outlet water temperature of the chiller. 

The set point is kept higher at 12 * C. 

2) HVAC Fault (a fault which takes place at HVAC system level) 

Set point error of supply air temperature 

Set point is kept at a constant 14 * C. Therefore the coil outlet water temperature will be lower and 

water mass flowrate will be higher than in normal case. 

3) STORAGE Fault (a fault which takes place at storage system level) 

Lack for water volume in the storage tanks. 

Because of leakage of water in the storage tanks, the effective water volume of each tank decreases to 

1.5 d 

4) ROOM Fault (a fault which takes place at mom level) 

Excessive internal heat generation 

The internal heat gain in the Room3 is excessively high(5.5KW) 



4 SIMULATION RESULTS 

4.1 BEHAVIOR OF W A C  SYSTEM 

Figure 9 and Figure 10 show the simulation results of five cases for schedule A and B, respectively. 

The difference between shecdule A and B is not so significant, that the description below is appliable to both 

of them. The fine cases are discussed below. 

4.1.1 NORMAL Case 

Each of design parameters and the contml parameters are properly adjusted for the normal case. The mom air 

temperature is almost maintained inside the contml band between 22 and 25.5 ' C. The inlet water temperature 

to the cooling coil, that is to say outlet temperature of the storage system increses slightly to about 8 ' C from 

7 "C, while the outlet water temperature changes from about 12 to 16 " C according to changes in the cooling 

load . The outlet tempertaure of the chiller is kept at steadily at about 7 " C by the inlet three way valve of the 

chiller. The supply air temperature changes from 16 ' C to 20 " C by the reset schedule as described in 2.2. 

4.1.2 Case of PLANT fault 

Because the set point of outlet water temperature of the chiler is kept higher at 12 ' C, the outlet water tempe- 

rature of the chiller goes out of conml and increses to about 10 ' C. As the result, the inlet water temperature 

of the cooling coil is higher than in the normal case, but its effecte on the mom air temperature is not serious 

for this day. However, as shown in Figure 11, the water temperature of the lower parts of tanks are so high 

that the effect will be carreied over the mom air temperature on the next day. 

4.1.3 Case of HVAC fault 

In this case the supply air temperature set point is kept at 14 " C. Therefore, during occupied period the VAV 

damper opening for mom3 is kept its minimum and the air temperature of mom3 becomes lower than 22 ' C 

between 17 and 19 o'clock. The outlet water tempetature of the cooling coil is lower than in the normal case 

and the water flow rate thmugh the cooling coil increases almost to its maximum As a result of the increase 

in water flow rate, the difference between inlet and outlet water temperature of cooling coil decreases to about 

3 ' C in the afternoon 

4.1.4 Case of STORAGE fault and ROOM fault 

These case show similar behavior. In the case of the storage fault, because of a lack for storage capacity, the 

water temperature of lower tempetature sections of tanks and the inlet water temperature of cooling coil in- 

crease in the afternoon In the case of the ROOM fault, the mom air temperature of mom3 exceeds the upper 

limit of the control band. In both of these cases, the efect on the mom air temperature is not so serious on this 

day. However in case of the ROOM fault shown in Figure I I, the temperature of the storage tank at 8 o'clock 

is so high that it has a signif~cant infuluence on the system behavior the next day. 

Fmm these results it is confirmed that the simulation pmgram HVACSIM ' is capable of simulating fault). 

condition of a HVAC system with thermal storage, and to give reasonable results. 



T 6  - T 7  T S  

30 
Room Air Temperature("C) 

n 
16 

24 

22 

w 
I1 

I 6  
6 8 10 12 I 4  I 6  It W 22 U 

- F I I  F 2 I  

I 6  
Chiller inlet/outln Water Te 

I4  
12 
10 
I 
6 
4 

1 
0 

6 S 10 11 I4  I 6  IS  W 22 2d 

I0 
Cooling LoadKW) 

43 
40 
33 
30 
ll 
DO 
I J  
10 
J 
0 

6 1 10 12 14 I 6  I S '  DD 22 24 

time 
Normal Case 

Room Air Temperature( "C) 
30 

2s 
16 

U 
22 

m 
I t  

I 6  
6 S 10 12 I 4  I 6  It W 22 24 

- F 11 - F 21 

Water Mass Flow Rate(Kg/s) 
2.5 

1 

1.5 

I 

0.5 

0 
6 S 10 I1 I 4  16 1% DO 22 2d 

- T 19 - T DO 

m 
Coil inlehutlet Water ~.&erature("C) 

IS 
16 
I4 
t i  
10 
t 
6 
4 
2 
0 

6 1 I 0  I 2  14 I 6  IS DD 22 24 

16 
Chiller inlehutlct Water Tempmture("C) 

14 

11 
0 
s 
6 
4 

1 
0 

6 S 10 I1 I 4  16 I 8  DO 22 24 

- . . . . . . . . . . . . . . .  ..... .. . . .  

- p 1 9  - P 33 

10 
Cooling h d ( K W )  

IJ 
I4 
I I  
10 
LI 
w 
15 
0 
I 
0 

6 S 10 12 14 16 IS DO 22 U 

time- 
PLANT Fault Case 

- T 6  - T 7  T I  

30 
Room Air Temperatwe(T!) 

m 
16 

21 

22 

w 
It 

I 6  
6 1 10 12 14 16 IS W 22 U -- . 

Coil inldoutln Air Tempcraturc("C) 
Y) 

I 21 

4 DD 

3 I J  

2 10 

I I 

3 0 
6 1 10 1 1  I4  I 6  It W 22 24 

2.5 
Water M a s  Flow Rate(Kg/s) 

2 

1.1 

I 

> J 

0 

- P 19 - P 33 

o Cooling Load(KW) 
I 
0 
I 
0 
I 
0 
I 
0 
5 
0 

6 S 10 12 14 16 11 W 22 2 4 .  

time 
HVAC Fault Case 

Figure 9 Simulation Results for Schedule A 

282 



Room Air Temperature(S)) :- 

Coil inletloutlet Air Temperature("C) 
6 30 

5 25 

4 20 

1 I5 

2 10 

I 5 

0 0 

- F I I  - F 21 

1.1 
Water Mas Flow Rate(Kg/r) 

1 

1.5 

I 

0.5 

0 
6 1 I0 I1 14 16 18 DD U 24 

Coil inlnloutlet Water TemoeraIurdDC~ 

-T18 - T PO 

Chiller inlnloutlel WaterTemperature(T) 
16 
I4 
12 
10 
a 
6 
1 

2 
0 

6 6 10 11 14 I6 I1 Z U 24 

-p19 - P 33 

50 
Cooling LoadWW) 

45 
40 
I 5  
24 
21 
lo 
I5 
ID 
5 
0 

6 8 10 12 14 16 18 DD 22, l4 

STORAGE Fault Case 

Room Air TemperaNre(T) 

: 1-1 

F 1  - T 3  - T 5 

Coil inletloutlet Air Temperature("C 
5 30 

5 U 

I 10 

I I5  

2 10 

I 5 

3 0 
6 8 10 12 14 16 18 Z U 24 

- T 19 - T lo 

Coil inldoutlet Water Temperamre(T) 
20 
18 
16 
I4 
I2 
10 
1 
6 
1 
2 
0 

6 8 10 I2 11 16 I8 z 22 14 

-p19 - P 33 

Cooling Load(KW) 
io 
I5 
w 
5 
10 
L( 
m 
5 
0 
5 
0 

6 1 I0 I2 14 16 11 DD 22 2 

ROOM Fault Case 





Room Air Temperamre(T) 
30 

28 

26 

24 

ll 

w 
18 

16 
6 1 I 0  I 2  1 4  16 11 W 22 U 

. --- . . . - . . - -. . 
~ .... ~ 

F 4 - T 3  - T 5 

Coil inletloutlet Air Temperature(cC) 
6 3 

5 2 

4 E 

3 I 

2 I 

I 5 

0 0 
6 I 10 11 14 16 11 W P 24 

F I I  - F 21 

L5 
Water M a s  Flow RateO<g/s) 

2 

1.5 

I 

0 5  

0 
6 6 10 11 14 16 11 20 ll 24 

~ 

T I 9  - T W 

Coil inldoutlet Water Tern~eraturdc) 

- T U 1  - T W 

,, Chiller inldoutlet Water Temperaiure(T) 
I ,  
I 2  
10 
8 
6 

4 
1 
0 

6 I ID I2 I4 16 18 W 22 U 

- ? I 9  - P 33 

HI 
45 
UI 
35 
10 
25 
Zn 
I5 
I0 
5 
0 

6 8 10 I 2  11 16 18 B ll U 

- time 

STORAGE Fault Case 

Room Air Tempuature("C) 
YI 

n 
26 

U 
ll 

00 

I1 

I6 
6 6 I 0  I2 14 16 11 B ll l4 

. 

F 4 - T I  - T 5 

Coil inletloutlet Air Temperature(T) 
6 30 

J 25 

1 w 
3 I5 

2 I0 

I J 

0 0 
6 8 10 12 11 16 18 W ll U 

w Coil inletloutlet Water Temperature('C) 
I 8  I I I I I I I I  
16 

I 6  
Chiller inletloutlet Water Temperature(T) 

I, 
I 2  
10 
8 
6 

a 
0 

6 6 10 11 14 16 I W 22 U 

-- 

6 8 10 12 14 I 6  I 8  B 22 21 

time 
ROOM Fault Case 



4.2 TEMPERATURE PROFILES IN THE STORAGE TANK 

Figure 11 shows the water temperature pmfdes in the thermal storage tank at each three hours. The horizontal 

axis is the number of tanks. As shown in this figure, it is confimed that a different characteristic of the 

t e m p m ~  pmfiles exist for each fault case. The principal difference between these profdes is as follows, 

1)In NORMAL Cases the pmfdes is smoothly sIoped and are nearly parallel at any time increment Water 

temperature of both ends of tanks is maintained at about 7 ' C and 14 ' C all daylong, since the storage tank 

is designed optimally at the condition of the n o d  peak cooling load. 

2)In the case of the PLANT fault the pmfiles wave and cross each other at the lower temperature sections. 

At 8 o'clock the temperature difference between both ends of tanks is smaller than in the normal cases. 

3)In the case of the HVAC fault the pmfiles wave and cmss each other at the higher temperature sections. 

However, because of the normal charging operation the pmfde has recovered by 8 o'clok on the next day. 

4)In the case of the STORAGE fault, because of a lack for storage capacity the water temperature of the 

storage tanks rapidly increases. As the result, the temperature of storage tanks are uniformly high at about 14 

C at the end of occupied period. 

5)In the cases of the ROOM fault, the panern of the temperature pmfdes is similar to cases of the storage fault 

However the maximurn temperature of the storage tanks is a little lower than in the case of the storage fault. 

The most significant difference is that the pmfiIe at 8 o'clock on the next day is much higher than pmfde at 8 

o'clock on this day. 

From these results it is clear that for the kind of faults studied in this paper all have some effect on the 
temperature pmfiles of the storage tanks. h e  kinds of faults were further studied using pattern recognition 

methods and reponedin a separate paper[4]. 

5 CONCLUSION 

This repon only shows several cases of fault simulation of a HVAC system with thermal storage tank. The 

results demonsmate tlre influence that faults at the sub-system level have on the thermal storage system The 

method of fault detection by monitoring temperature profiles of the storage tank shows considerable promise 

and should be studied funher in real systems 
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ABSTRACT 
Fuzzy abduction is a procedure for deriving fuzzy sets of hypotheses 
which explain a given fuzzy set of events using a set of rules with a 
truth value. The derived fuzzy sets of hypotheses are called fuzzy 
explanations. This paper starts with discussion about diagnosis using 
conventional expert systems and that using fuzzy relational equations. 
Then, it proposes a new approach using a fuzzy abduction, and 
applies the technique to fault detection of a thermal storage system. 

1 INTRODUCTION 

Diagnosis using expert systems has long been a major topic of research. However, the 
difficulty of knowledge acquisition has not yet been overcome, though various 
approaches have been intensively studied in the area of artificial intelligence. 

Limiting the problem to diagnosis, one reason for the difficulty of knowledge 
acquisition is the "directionality" of production rules 111. Most expert knowledge takes 
the form: "if some cause happens then certain symptoms will arise," while conventional 
expert systems use the opposite directionality: "if <symptoms> then <cause>." This 
means that constructing a knowledge base is almost equivalent to creating knowledge to 
solve inverse problems in a general manner. 

To avoid this difficulty, another approach, called abduction 11-51, has been 
proposed. It is a type of reasoning that derives a set of hypotheses (causes) which 
explain a given set of events (symptoms) using some knowledge (causal relations). 
Adoption of this approach prevents us from having to solve the inverse problems, and 
enables us to create a knowledge base more easily. 

Another problem in conventional expert systems is the treatment of "intensities", or 
degrees of symptoms. One way to deal with the problem is to assign different symbols 
to different degrees of a symptom, as if they were different symptoms. For example, 
you may assign three different symbols, "extremely-too-high", "very-too-high", and 
"too-high to a symptom for water temperature depending on the degree, when it is too 
high. This approach, however, produces a large number of combinations of "pseudo 
symptoms" for a cause, and eventually forces us to construct a vast number of rules. 
To cope with the problem, fuzzy logic, which introduces a value between 0 and 1 to 
treat a degree of truth or membership, could be used to express the intensities of 
symptoms. 

In this paper, we try to apply fuzzy abduction 14,51 to fault detection of a thermal 
storage system. Fuzzy abduction, as you imagine from the discussion above, can avoid 
the above two problems, directionality and intensity. It employs rules as knowlege to 
express causal relations between causes and symptoms. Those rules have a truth value 



between 0 and 1 that gives a degree of causal intensity. Then, fuzzy abduction is 
defined as the procedure for deriving fuzzy sets of hypotheses (causes) which explain a 
given fuzzy set of events (symptoms) under the causal relations. The derived fuzzy sets 
of hypotheses are called fuzzy explanations. 

2 FUZZY RELATIONAL EQUATIONS 

Before we go into the details of fuzzy abduction, we should mention a conventional 
approach using fuzzy relational equations 16-101, because it apparently solves the above 
two problems. This approach expresses causes, symptoms and their causalities as a 
fuzzy set P on possible causes P = {Pi] (i=l, ..., n), a fuzzy set Q on possible 
symptoms Q = {Qj] (i=l, ..., m), and a fuzzy relation R on P x Q, respectively. Then, 
the fuzzy relational equation is given in the following Max-Min composition: 

q j  = v ( p i  ~ r ~ ~ ) ,  (2.1) 
1 

where pi, qj and rij are memberships of Pi in P, Qj in Q and <Pi, Qj> in R, 
respectively. 

Then, the inverse problem of fuzzy relational equations-which is a problem to derive 
pi given qj and rij-could,be considered as a kind of abductive reasoning. Furthermore, 
the memberships pi, qj and rij seem to be interpreted as intensities of causes, symptoms 
and causal relations, respectively. 

However, this interpretation raises a question about the relation between pi and qj. ,In 
diagnosis, the more (less) the intensity of a cause is, the more (less) those o its 
symptoms tend to be. Considering an "in in eq. (2.1), however, the value of qj can not 
be greater than that of rij, even if pi is large. Such characteristics of the equation might 
not be adequate for expressing intensities of causes and symptoms. 

Based on possibility theory 111,121, the fuzzy relational equations should be 
considered as dealing with possibilities rather than intensities of occurrences. If ri, is 
regarded as a conditional possibility r(Q. I Pi), pi A rij is a combinational possibility of 
"Pi" and "Qj when Pi is present" l l u .  d e n ,  the obtamed qj should be considered as 
the possibility that Qj arises, not as the intensity of occurrence of Qj. 

However, again, the interpretation of membership is also strange, when they are 
directly used in diagnosis. Because, in fuzzy set Q, memberships should clearly be 
interpreted as intensities of symptoms, not possibilities, because those symptoms are 
actually observed, and the possibilities must he 1.0. In studies such as 16,71, 
memberships of Q are understood as intensities, while those in the obtained fuzzy set P 
as possibilities or certainties. In this interpretation, as you easily notice, possibilities 
and intensities are cofisingly mixed. 

In addition, the inverse problem of fuzzy relational equations has cases for which 
there are no solutions. To cope with the cases, there have been proposed several 
methods to get approximate solutions 18-101. However, those methods share a common 
problem from the practical point of view; they include iterative calculation wh=re the 
number of iterations is unknown before the hid. 

Fuzzy abduction has also cases where there are no solutions (fuzzy explanations). In 
this approach, however, we can easily obtain approximate fuzzy explanations, as 
shown later. 

3 FUZZY ABDUCTION 

3.1 Strong Fuzzy Abduction 141 



In this section, we briefly describe strong fuzzy abduction. We suppose that there are 
three sets, P = {Pi) (i=l, ..., n), Q = {Qj) o= l ,  ..., m) and R = {Rij), where P n Q = 
0 and Rij is a rule given as: 

Pi. Qj and Rij have truth values pi, qj and rij between 0 and 1, respectively. Then, the 
strong fuzzy abduction is defined as follows: 

Definition 1 
Strong fuzzy abduction is the procedure for deriving fuzzy sets P on P that explain a 
given fuzzy set Q on Q under a given set of rules R. 

In the above, memberships of Pi in P and Q. in Q are equivalent to tmth values pi and 
q., respectively. The derived fuzzy sets - b are called strong fuzzy explanations. 
F'urthermore, "P explains Q under R" is true, if the next equation holds: 

= max (pi + rij - I), (3.2) 
i, pi+rij21 

where qij* is called the CIV (Causal Truth Value) and is given as follows; 

r.. - 1, if pi + rij 2.1, U 
otherwise . 

The CTV given in eq. (3.3) is the smallest tmth value that is consistent with modus 
ponens in Lukasiewicz Infinite-valued logic (LALEPH-I). This means that CTV is the 
smallest tmth value supported by pi and rij. 0 means that there is no value that is 
consistent with pi and rii according to the definitions of implication "Pi -> Qi" in 
LALEPH-I. 

Then, the necessary and sufficient conditions of existence of strong fuzzy 
explanations are given below. 

When the above conditions are satisfied, it is guaranteed that in general there is only 
one largest strong fuzzy explanation (SLFE) and multiple minimal strong fuzzy 
explanations (SMFEs). Fuzzy sets between the SLFE and a SMFE are also strong 
fuzzy explanations. The SLFE is given as follows: 

Pmax = 0 (pijA I Pi), - (3.5) 
i j 

Pij 3 if Pij* # 0, 
= 1.0, otherwise. 



where pij* is the ITV (Inverted Causal Truth Value) calculated from rij and qj by the 
next equation: 

i f r i j 2 q j ,  
Pij = otherwise. 

ITV is the largest truth value that is consistent with modus tolens in L A ~ ~ P H - l .  This 
means that ITV is the largest truth value supported by qj and ri,. Then, 0 is an operator 
defined as; 

a / A + b l B ,  i fA#B,  
a l A O b l B =  

min (a, b) 1 A, if A = B. 

Furthermore, fuzzy sets given in eq. (3.9) are SMFEs, if and only if they are included 
in the SLFE and do not include other hmin - (k'#k). 

where $ti) means a set of "i" such that pij*@ (ri, - q, 2 0) for the given j, and Ai is an 
operator to pick a term among those with different "i". 

For the case where eq. (3.4) is not satisfied, a method to obtain approximate strong 
fuzzy explanations without iterative calculations has been proposed 141. 

3.2 Fuzzy Abduction for Diagnosis 151 

The strong fuzzy abduction shown above can be used to reason causes P of observed 
symptoms Q using knowledge of causal relations R. However, this fuzzy abduction is 
too strict to use in real-world diagnoses, because they require that the observed 
symptoms Q must be equal to what causes P derives under the causal relations R. In the 
real world, it is risky to assume that operators can find all of the symptoms caused by 
P. Therefore, another fuzzy abduction customized for diagnostic problems was - 
proposed 151. 

Now, let us express the fuzzy set on Q given by eq. (3.2) as Ee, R). The strong 
fuzzy abduction defined in Definition 1 is the procedure to derive causes P that 
satisfy Ee, R) = Q for given symptoms Q. The new definition of fuzzy abduction is 
given below using the concept of "covering" 111. 

Definition 2 
Fuzzy abduction is the procedure for deriving fuzzy sets P on P that "cover" a given 
fuzzy set Q on Q under a given set of mles R. 

The only difference between Defdtion 1 and 2 is that between the words, "explain" 
and "cover". "P covers Q under R" is defined in the next equation: 

In this paper, the term fuuy  explanation is taken to mean fuzzy sets E satisfying eq. 
(3.10). Fuzzy explanations that are not strong are termed "weak fuzzy explanations". 

The necessary and sufficient conditions of existence of weak fuzzy explanations are 
given below: 



The conditions in eq. (3.11) are always satisfied, if those in eq. (3.4) are.'If these 
conditions are satisfied, there is also only one largest fuzzy explanation (LFE) and 
multiple minimal fuzzy explanations (MEEs). In this case, the LFE is equivalent to the 
universe of discourse P. MEEs are all &ml" (given by eq. (3.9)) which do not include 
other kmin (k'gk). That is, only hmin - included in tma are SMFFis; other &mi" - are 
weak m s  (WMFEs). 

4 DIAGNOSIS OF THERMAL STORAGE SYSTEM 

We employed the fuzzy abduction for a prototype expert system that diagnoses an 
imaginary thermal storage system. The knowledge of causal relations was created 
referring to a collaboration by the Thermal Storage System W.G. of Japan 
BEMSlBOFD Committee 1131. A part of the knowledge is shown in Table 4.1. The 
causal intensities were determined intuitively based on our experience. 

The algorithm used in the system is as follows: 

Step 1: First, the system checks the conditions of eq. (3.1 1). If they are not satisfied 
for one or more "j", the system looks for the "i" where qj - rij is the smallest, 
and modifies rij to be ri, = q, for all "i" at current "j". 

Step 2: The system checks the conditions of eq. (3.4). If they are satisfied, SMFEs 
are derived from eq. (3.9), and the system shows them as the candidates of 
causes. 

Step 3: If the conditions of eq. (3.4) are not satisfied, WMFEs are derived and the 
system shows them as the candidates of causes. 

The above algorithm adopts only minimal fuzzy explanations (SMFFis and WMFEs) 
as the candidates of causes. This is because many causes rarely happen at the same 
time. From the point of diagnosis, the largest fuzzy explanation is understood as the 
worst case that happens only in an imaginary world. 

Then, some results of the diagnosis are shown below. The cases are all imaginary 
ones devised carefully to demonstrate the potential capability of the algorithm. The 
intensities of observed symptoms are assumed to be given directly by the user, or 
through a word expressing a degree of intensity. It could be also possible to calculate 
intensities of some symptoms using membership functions, if they are measurable 
symptoms. 

(1) Case 1 

This is a very simple case. Suppose that the operator found the following three 
symptoms: 

Q1 : Abnormal change of temp. in tank during off operation hours 
at intensity level ql  = 0.4 

4 6  : Heat loss at intensity level q6 = 0.8 
47 : Condensation on slab at intensity level q7 =1.0 



First, we check whether eq. (3.1 1) is satisfied or not. In this case, it is not satisfied at 
j=6 and there are no fuzzy explanations. So, we modify r2,6 from 0.7 to 0.8 according 
to the algorithm shown above. As the result, the modified problem satisfies not only 
eq. (3.1 1) but also eq. (3.4). Therefore, there are strong fuzzy explanations, and in this 
case, only a SMFE is obtained as follows: 

1) SMFE : p;? = 1.0, other pi are 0.0. 

In words, the cause is "Damage of insulation". Degree of 1.0 is the intensity of the 
cause. 

Table 4.1 Example of causes of faults - faults knowledge base 
for thermal storage tank in cooling process 

Causes 
PI : Temp. sensor in tank malfunction 
PZ : Damage of insulation 
P3 : Water level sensor malfunction 
P4 : Water supply unit malfunction 
P5 : Damage in water proof 
P6 : Scale on heat pump evaporator 
P7 : Scale in heat pump inlet 3-way valve 
P8 : Scale in primary and secondary water 

heat exchanger 
P9 : Scale in piping and foot valve 
PI0 : Tank volume is too small 
p l l  : Connection pipe size between tanks is 

too big 

Symptom 
QI : Abnormal change of temp. in tank during off 

operation horn 
QZ : Temp. in coolest side of tank is too high 

Q3 : Room temp. and humidity are too high 

Q4 : Inlet water temp. of heat pump is too high 
Q5 : Heat storage efficiency is insufficient 
Q6 : Heat loss 
Q7 : Condensation on slab 
Q8 : Increase of overflow 
Q9 : Increase of water supply 
QlO : Temp. in tank is too high 
Q11 : Deterioration in water quality 
QIZ : Heal pump COP falls 
Q13 : Heat pump inlet 3-way valve malfunction 
Q14 : Heat exchanger efficiency is insufficient 
Q15 : Water leakage in piping 
Q16 : Abnormal water level 
Q17 : Flow rate of primary pump is too small 
Q18 : Water evacuation 



(2) Case 2 

Suppose that the operator found the following symptoms: 

Qg : Increase of overflow at intensity level qg = 0.8 
Qg : Increase of water supply at intensity level qg = 0.5 
Q10 : Temp. in tank is too high at intensity level q10 = 0.3 

This case satisfies the conditions of eq. (3.1 1). but not of eq. (3.4). We can derive 
approximate strong fuzzy explanations using the approach proposed in 141. However, 
in this paper, we obtain weak fuzzy explanations assuming that the operator has failed 
to find all of symptoms. 

In this case, there are three causes, P3, Pq, and P5 which might cause the observed 
symptoms. However, P5 is excluded, because it cannot cause Qg at intensity of 0.8 and 
Qg at 0.5. Actually, eq. (3.9) gives us the following two weak MFEs: 

1) WMFE 1: p3 = 0.9, other pi are 0.0. 
2) WMFE 2: p4 = 0.9, other pi are 0.0. 

Therefore, the diagnosis could be as follows: "Water level sensor malfunction" (MFE1) 
or "Water supply unit malfunction" (MFE2). From Table 4.1, we can easily see that the 
symptoms the operator found are just part of the totality of symptoms that must exist, 
whichever the m e  cause is. This proves that the proposed approach can cope with the 
operator's failures to find some symptoms. 

(3) Case 3 

Suppose that the operator found the following two symptoms: 

Q10 : Temp. in tank is too high at intensity level q10 = 0.6 
Q11 : Deterioration in water quality at intensity level qll = 0.4 

In this case, conditions of eq. (3.11) is not satisfied at j=10. So, in order to obtain 
fuzzy explanations, we modify r3,10, r3,11, and r3,!2 from 0.4 to 0.6. However, the 
modified problem still does not satisfy the condit~on of eq. (3.4). because there is 
neither Pi nor combination of Pi that causes only Qlo and Q11. So, using eq. (3.9), we 
obtain WMFEs that causes other symptoms as well as Qloand Q11. 

1) WMFE 1: p5 = 1 .O, other pi are 0.0. 
2) WMFE 2: p3 = 1.0, p6 = 0.7, other pi are 0.0. 
3) WMFE 3: p3 = 1.0, p7 = 0.7, other pi are 0.0. 
4) WMFE 4: p3 = 1.0, pg = 0.7, other pi are 0.0. 
5) WMFE 5: p3 = 1.0, pg = 0.7, other pi are 0.0. 
6) WMFE 6: p4 = 1.0, p6 = 0.7, other pi are 0.0. 
7) WMFE 7: p4 = 1.0, p7 = 0.7, other pi are 0.0. 
8) WMFE 8: p4 = 1.0, pg = 0.7, other pi are 0.0. 
9) WMFE 9: p4 = 1.0, pg = 0.7, other pi are 0.0. 

In this example, if the cause is just one, it must be "Damage in water proof'. 
Otherwise, two causes are arising at least. One is "Water level sensor malfunction" or 
"Water supply unit malfunction". The other is one of "Scale on heat pump evaporator", 
"Scale in heat pump inlet 3-way valve", "Scale in primary and secondary water heat 
exchanger", and "Scale in piping and foot valve". 



5 CONCLUSIONS 

A new approach of diagnosis using fuzzy abduction was proposed and applied to 
diagnosis of a thermal storage system. Diagnosis is a field that attracts much interest 
among researchers in many areas, and has been studied intensively for long time. 
However, conventional approaches both from knowledge enginering and fuzzy theory 
have problems dealing with causal relations with intensities of causes and symptoms, 
while the treatment of intensities is essential in some diagnoses dealing with numerical 
andlor sensual values such as temperature, level, quality, etc. The diagnosis of a 
thermal storage system is one of such examples. 

In the paper, we discussed the problem in detail, and showed that fuzzy abduction is 
effective to deal with it. Then, our prototype system demonstrated that the approach 
could apply to the diagnosis of a thermal storage system successfully. 
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Abstract 

The paper describes the application of black-box models for fault detection and diagnosis (FDD) in HVAC 
systems. In this study, Multiple Input- Single Output (MISO) ARX models and Artificial Neural Network models 
are used. 
The ARX models are examined for different processes and subprocesses and compared with each other. Two 
types of models are established, called system models and component models. In case of system models, the 
HVAC system as a whole is regarded a black box, instead of a collection of component models. With the 
component model type, the components of the HVAC system are regarded as separate black boxes. 

Keywords: Fault detection, Fault diagnosis, HVAC systems, System Identification Methods 

1 INTRODUCTION 

The purpose of system identification techniques is to describe the behaviour between the inputs and outputs of 

a process mathematically. There are numerous techniques available to describe a dynamical process with a 

mathematical model. A special category of models is the black box models such as ARX models and artificial 

Neural Nehuorh. 

This paper presents the results of the work done in the context of the LEA-ANNEX 25 Workgroup (Kohonen 

and Hyvirinen 1991). The considered processes are ( I )  a laboratory chiller and (2) a simulated VAV system. 

The theory of black-box modelling is briefly explained. A learning data set is analyzed data, collected from a 

laboratory chiller. Deviations of faulty data can be detected by the models because the models are mined under 

healthy conditions. This is illustrated by an example of a Chiller system and a Variable Air Volume (VAV) 

system. Detection of faults can be achieved by comparison of the process (measured) value with the estimated 

value. 

ARX models and Artificial Neural Networks (ANN) give the user a good opponunity to detect faults and 

deviations of several processes. 

The use of Artificial Neural Networks (ANNs) for fault detection is still in an experimental phase. The major 

results come from Dexter and Hepwonh (1993), who compared fuzzy and neural methods. Kreider et al. (1992), 

Cuniss et al. (1993) Seem and Braun (1991) demonstrated how ANN controllers can be used for the same 



purpose as proportional, integral, and derivative (PD) algorithms. Previous results (Duyvenvoorde 1993) showed 

that expert systems enhanced with neural networks appear to be panicularly promising for efficient and semi- 

automatic supervision of HVAC systems for commercial buildings. ANNs models represent a new methodology 

in HVAC system prediction. There are no smct rules regarding the amount of hidden layers and neurons. There 

are some guidelines (Fogel 1991) available. 

2 SYSTEM IDENTIFICATION 

The purpose of system identification (Ljung 1987) is to describe the behaviour between the input., and outputs 

of a process mathematically. ARX models and ANN models can be categorized as black box models because 

they require less physical knowledge of the process. The process is considered as a black box with the 

relationship between the inputs and the output., described by a mathematical formula. The mathematical model 

is derived as accurately as possible with the available input and output data of the considered process. 

The procedure to determine a proper black box model from observed inputdutput data involves three basic 

elements: 

1. Measurement of inputdutput data 

2. Selection of model structure and estimation of parameters 

3. Validation of selected model 

Input and output values of the process are collected in a dataset. This dataset can consist of design data or 

measured data obtained under "healthy" conditions. Such measured datasets require sufficient dynamical 

conditions of the examined process. 

Final selection of the model is the most significant as well as the most difficult step to make. The selection is 

influenced by proper insight and a prior knowledge of a process. 

The accuracy of a model is tested by comparison of the forecasted value with the measured values. This means 

that the measured input variables are presented to the derived model whereafter the computed (forecasted) values 

are compared with the measured values. Also some statistical properties are examined to validate the obtained 

models such as reliability, average error, standard deviation of residuals, auto-correlation and cross validation. 

2.1 PARAMETER IDENTIFICATION FOR ARX MODELS 

The parameters of a model can be estimated by employing a system identification method. In this study, one of 

the two types of model used was the Multiple Input- Single Output (MISO) Auto Regressive with exogenous 

inputs (ARX) model. 

Consider a process with an input signal u(t) and output signal y(t). Probably the most simple input-output 

relationship is obtained by describing it by a linear equation: 



Since the white-noise term e(t) here enters as a direct error in the difference equation, the model is often called 

an equation error model (structure). The white-noise is assumed to be constant and is captured in the signal y(t). 

ARX models deal well with white noise and are therefore used for construction of the models. Other models 

gave no improved results. 

2.2 ADDITION OF EXTRA INPUTS FOR THE MODEL 

The equation (1) for the ARX model indicates that ARX models describe a process by a linear equation. Real 

processes seldom have a direct linear relation between in- and output of the process. Certain capacities and 

delays also give the process time dependencies. 

The smcture of the ARX model takes account of the probable existence of time dependencies by offering the 

possibility of using the previous values of the inputs and output(s) in the calculation. However, the relation 

between these previous values and the output still is linear. 

In reality the relationship between the inpus and the output of a process is much more complex. Due to the 

assumption of linearity, the model has become less complex and the initialisation (fitting) of the model has 

become easier, but the performance of the model is poorer because of this assumption. To achieve an improved 

ARX model,.exaa inputs are added to the model. An example with three physical inputs and six artificial inputs 

is presented in Figure 1. The extra inputs are squares andlor multiplications of the input values. 

Figure 1 Artificially added inputs to the ARX model. 

Another possibility is to use historical measured model inpus (t-l, t-2, ..) and predicted historical outputs as new 

model inputs. Using historical outpus as new model inputs will cause the model to be less sensitive to spikes 

in the input signals. The new predicted output is taken into account with the history of the process; it acts like 

a filter. 

Also, the relations between in- and outputs are no longer linear but of a second degree. 



2.3 REMOVAL OF THE AVERAGE VALUE 

The performance of the model can also be improved by subtracting the mean values from the input and output 

signals. Note that the constants to be subtracted from the signals have only to be determined during the training 

(fitting) of the model. One of the aims of the Fault-Diagnosis-System is to detect trends in signals (slow shifts 

in the mean), so that faults, which develop gradually in the system, can be detected. 

3 MODEL STRUCTURES 

3.1 THE STRUCTURE OF THE ARX MODEL 

For instance, consider an ARX model not fitted with one input signal but nine. An example (van Galen 1993, 

Peitsman 1994) of the smcture of the input signal u(t) of AFZ model could be: 

u(t)=[ul u2 u3 ul' u2' u3' ul*u2 u2*u3 ul*u3] 

The example model has three physical inputs but the total number of inputs are artificially upgraded to nine. So, 

the process value y(t) is polynomial equation with 19 arguments and 19 polynomial values. 

The equation for the forecasted process variable y(t) is: 

y(t) = o,y(t-l)*b,u(t)+bp(t-1) (2) 

Where y(t) is the predicted process value, u(t) is the vector of input signals and b, the corresponding parameter 

vector. The structure of bi is described as: 

bi=[bi,, biz, bi,, bi,, bi,, bi,, bis, bi,, big, bi,], i= 1.2. 

The number of orders of historical-terms of u(t) and y(t) can be varied. In this example, the number of historical- 

terms gives the best results for u(t) is 2 and y(t) is 1. This means a mathematical model smcture according 

equation (2). 

The complete smcture of the example AFZ model is given by: 

3.2 THE STRUCTURE OF THE ARTIFICIAL NEURAL NETWORK (ANN) 

A neural network model is usually built up out of three layers, the input layer, the hidden layer and the output 

layer (Nelson and Illingworth 1991). The three layen are connected in a non-linear way (see Figure 2). 



Figure 2 'The neural network StIuCNIC and the log-sigrnoid function 

In this study the back propagation algorithm is used to train multi-layered feed-forward network with a Log- 

Sigmoid transfer function (equation 4). 



3.3 THE EXAMINED CHILLER 

The examined refrigerant system is a reciprocating chiller. It is a laboratory chiller plant 

(van Galen 1993, Peitsman 1994) equipped with the following measurement insmments: 

1. Temperature sensors. 

2. Pressure transducers. 

3. Water flow metering devices for measurement of the incoming cooling water flow. 

4. Heatmeters for measurement of heat flows and for interpreting the quantity of the water flow. 

5 .  Power consumption metering device for measurement of the elecmcal input to the motor of the 

compressor. 

6. Adjustment of signal from the extant mass flow transminer which measures the refrigerant mass flow. 

The Rocess Insmunentation Diagram of the chiller plant is presented in Figure 3. 

Laboratory Compressor 

Heat exchanger Evaporator Esqnndon valve Condenser 
Figure 3 PID of chiller plant 

3.4 BLACK BOX MODELS OF THE CHILLER 

Two types of models are created with the measured learning data: 

I. System models; the chiller is considered as a black box where three independent inputs estimate the 

outputs. 

2. Component models; major components of the chiller are considered as a black box. 

The datasets were collected with a data acquisition unit. After analysing and removing trend measurement faults 

from the data, a dataset is available to train the models. This means that the model is fined using healthy dam. 



3.5 SYSTEM MODELS 

Independent variables are necessary to generate a system model. The condenser and evaporator supply 

temperatures are limited by external conditions, respectively the outside air temperature and the internal load of 

a building. The instantaneous power of the compressor is a measure of the internal load of the chiller. The model 

parameters are determined for every process variable with mentioned inputs, as shown in Figure 4. 

Process 

CHILLER variable 

PROCESS I=- 
Figure 4 Model scheme 

Observation data was collected from a data-logger every 10 seconds. This sample-time determines the time step 

of the models. The sensor readings that are used as inputs for the ARX- and ANN system models are: 

- T10 : condenser supply water temperature 

- n : evaporator supply glycol temperature 

- PWI : instantaneous power of compressor 

- F4 : flow cooling water condenser (ANN only) 

These magnitudes were selected because their universal availability in Building Automation Systems (BAS). 

The 14 estimated process output varables of the system models are: 

: Suction refrigerant gas temperature 

: Discharge refrigerant gas temperature 

: Leaving refrigerant liquid temperature condenser 

: Entering refrigerant liquid temperature expansion valve 

: Entering refrigerant liquidhapour temperature evaporator 

: Leaving refrigerant vapour temperature evaporator 

: Outlet chilled glycol temperature 

: Leaving cooling water temperature condenser (inlet heat exchanger) 

: Refrigerant mass flow 

: Suction refrigerant pressure 

: Discharge refrigerant pressure 

: Refrigerant pressure before expansion valve 

: Refrigerant pressure after expansion valve 

: Refrigerant pressure after evaporator 



3.6 THE ARX SYSTEM NETWORK CONFIGURATION 

The total amount of inputs used for deriving the system model of the chiller system is 9. The model has three 

physical inputs but, by combining the physical inputs, the total number of model inputs is artificially increased 

to nine. So, the process value y(t) is given by a polynomial equation with 19 arguments and 19 coefficients. 

The derived inputs are: 

T I P 2  T10*T7 TlO'PWI 

T7"2 T7'PWI 

PW 1 A2 

The historical inputs are : 

Inputs: the values from the previous time step (t-I) of all the 9 inputs are used. 

Outputs: the predicted value from the previous time step (t-I) of the output is used as input. 

Each process output variable has its own model. This means that fourteen output models are needed for the 

defined fourteen process variables. For FDD applications a selection of models can be used. 

3.7 THE NEURAL NETWORK CONFIGURATION 

The ANN model with 10 neurons gave very poor results, and so 15 neurons were used for the component models 

and 20 neurons for the system models. 

The same observation data was used as for the ARX models (time step 10 seconds). 

The total number of inputs used for deriving the system model of the chiller system is 8. 

The measured inputs are: 

T I0  T7 F4 PWI 

The historical inputs are : 

Inputs: the values of all 4 inputs from the previous time step. 

Outputs: the predicted values for the output from the two previous time steps. 

The Network predicts all system model outputs in one run. This is possible because the same inputs are used 

for all outputs. 



3.8 COMPONENT MODELS 

The configuration of the component models is achieved after studying the structure of refrigerant systems. This 

makes the model a little bit "grey"(some physical knowledge) instead of black (with no physical knowledge). 

The laboratory chiller consists of a compressor, condenser, evaporator, expansion valve and a subcooler. The 

filter-drier is not considered in the model. Every component has its own inputs and outputs based on the physical 

inputs and outputs of the selected components in the chiller system. The configuration of the refrigerant 

components of the chiller is shown in Figure 5 ,  

Figure 5 Configuration of the refrigerant components 

Table 1. The selected inputs and outputs of the component models 

1-1 &.- I cmkmm I E- I E m  d.lr I l- II 

Selected inputs and outputs of the component models are present in table 1. 

The structures of the ARX- and ANN inputs of the component models are the same as described for the system 

models. For each component, different Network models were used because each component has different physical 
. . 

inputs. 



4 MODEL VALIDATION 

4.1 RELIABILITY COEFFICIENT 

Determination coefficient (?) is a measure for reliability of the obtained resulting black box model. The 

coefficient has a value between 0 and 1. If 3 is equal to 0 then the model is fitted inadequately. 

The mathematical description is: 

where SS, is the sum of the squares of the differences between the measured and the estimated output Y. 

SSc = Uyi - gJ2 (6) 
i.1 

SS, is the sum of the squares of the differences between the measured and average output value Y. 

SSy = uy; - 3' (7) 
;.I 

If 3 is equal to 1 then the model fits the measured output perfectly. 

4.2 STANDARD DEVIATION AND AVERAGE ERROR OF RESIDUALS 

For a the sample estimation a is used, based on the deviations x, = - X-, of the sample observations from 

the sample mean. 

The average error is defined as: 

The outcome of the average emor gives an indication of the accuracy of the model by comparing the model 

output with the measured output. 

4.3 AUTO-CORRELATION OF RESIDUALS 

The auto comelation coefficient is a measure of the closeness of relationship between a time series and the same 

time series one timelag back. For large time series the denominator becomes Cx2(t). 



4.4 CROSS VALIDATION 

To check wheather the selected model is correct, a separate 

dataset is set apart to test the model. This dataset is used to 

calculate the residual by simulation of the selected model. 

The cross validation error can be defined as the sum ? 
squared error of the residual of the test data. Generally if 

validation error will be minimized as well. This holds until Figure Errormime Relation 

a certain point, where the sum squared error on the learning 

data set still can be further minimized, at the cost of an increasing cross validation error. The learning daraset 

will become over-fitted and the model will lose its generalizing ability. 

Because general applicability of the model is desired. the best point to stop the training of a model is the point 

where the cmss validation error has found its minimum. 

@ - e n a u o r a w m ~ n E n o .  

the sum squared error of a model is minimized during the 

4.5 VISUAL OBSERVATION OF THE RESIDUE 

Sum Squared E m  

A good method to see if the model is proper is a visual observation of the residue. A proper model gives a 

residue which is uncorrelated with the used inputs. This means the model has used all the information that was 

present. An inproper residual implies that the model found a local minimum, or some important inputs lacked. 

Other starting values of the learning weights or even other inputs should result in a better model. With ANN'S 

this still is a matter of hial and error. 

The residual is defined by: 

Y, = Ylbr - Y 

with y@, as the predicted and y as the measured (real) value. 

learning procedure with the learning dataset, the cmss \ wr.7 rm 

Figure 7 Model validation with residual test 



A proper model is a model where residual values as a function of time are uncorrelated with the inputs, refer 

to figure 7a. An improper model has an oblique shape of residual plots, the deviation depends on the magnitude 

of the real value, refer to figure 7b. This implies that certain factors are not considered in the fitted model. Exna 

input parameters have to be added or the model structure has to be changed. 

4.6 VALIDATION RESULTS OF THE CHILLER MODELS 

A total of 14 system models and 16 component models were fitted. An example of the discharge pressure P2 

black-box models (ARX+ANN) is presented in Figure 8a and 8b. The residual test for the discharge pressure 

P2 is presented in Figure 8c and 8d. An example of fault detection using discharge pressure P2 when there is 

air in the system is presented in Figure 8e and Figure 8f. 

Table 2: Model Validation of system- and component models 

Outputs of Neural Neworks and ARX System Mod& 

The results of the model validation of three models are presented in Table 2. 

Roperry 

PI 

P2 

Ropcrry 

TI 1 

Outputs olNeural Nelwotiu and ARX System Mod& 

R O W Y  

PI 

P2 

Roperry 

TI 1 

Reliability 
ARX 
(%) 

88 

99 

ARX 
(5) 

99 

Reliability 

ANN 
(%) 

98.5 

99.5 

ANN 
(W 

99.4 

Std-residuals 

ARX 
(70) 

100 

99 

ARX 
(%) 

99 

ARX 
*Pa) 

8.0 

13.0 

ARX 
(K) 

0.56 
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Figure 8 ARX and ANN learning model results 
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The threshold limits in Figure 8 are determined by using statistical mefhods. A 3-sigma limit (3 standard 

deviations) is used as a threshold value [Ljung, 19871. 

The reliability of fhe ARX and ANN models (equation to forecast fhe outputs) is good, approximately 97 percent. 



One condition for the generation of a reliable model is a healthy and dynamical dataset which is measured under 

optimal or good operation conditions of the chiller over a large working range. A second condition for system 

identification is the availability of a dataset with a fixed time step, because the regression models use values of 

previous time steps of the inputs and outputs to predict the actual value. Whenever a dataset meets these two 

conditions, black box modelling techniques can be applied. 

The fault detection examples in figure 8 show how faults may be detected. 

With black box models, it is possible to describe a process variable without a lot of physical knowledge about 

the considered process. However, fitted models are only valid for examined reference systems so each system 

must be identified anew. The results of the cross validations appear to be reasonable because the standard 

deviation and the average error of the residuals are comparable with the results of the models. 

The quality of the available dataset is of vital importance for a reliable model. Black box modelling is a proper 

process method to predict the process variables of a chiller. Two types of black box modelling have been applied 

to the reciprocating chiller; ARX modelling and ANN modelling. 

Black box models do not require a lot of physical knowledge to operate, although some physical knowledge of 

the process is necessary to obtain the best inputs and delays for the fitted model. 

4.7 COMPARISON OF NEURAL NETWORKS WITH ARX MODELS 

The use of ANNs in fault detection showed that ANNs can be very promising for modelling whole chillers. 

ANNs gives a slightly better result on system models and component models than the ARX models. The 

performance of the ANN components models would be pwrer if the output at t-1 and t-2 were not be used as 

inputs for the model. 

An advantage of ANNs is that, because of their nonlinear nature, they are more capable of predicting process 

variables in a nonlinear process. 

Important for the training of ANNs is the choice of the initial state, the point where the ANNs start to learn. 

Wrong initial weight factors and offsets of a Neural Network often results in a impropriate learned network, 

though a proper set of input-output pairs is used. Crucial is to find the global minimum of the residue that is the 

smallest sum of squared errors. Often a wrong initial state causes the ANN to find a local minimum. In this case 

the ANN models required a longer time to learn than ARX models. 

The auto-correlations of the residuals (table 2) of ANN models are bener than the auto-correlations of the 

residuals of the ARX models. The higher auto-correlation of the ARX model indicates the presence of an 

independent process variable in the residue, whereas the best residuals consist of white noise.e.g. no dependence 

of the residue on process variables (figure 8). The non-linearity of the refrigerant system makes it difficult to 

fit an ARX model. 



5 THE VARIABLE AIR VOLUME SYSTEM (VAV) 

The VAV exercise is based on ARX models. A schematic description of the regarded VAV system is given in 

figure 9. 
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Figure 9 A simple PI-diagram of the AHU 

The next models can be defined: 

ABCD = System model AHU of the VAV system. 

AEDF = Component model Mixing box. 

GHFl = Component model Cooling coil. 

HJIK = Component model Heating coil. 

JLKC = Component model Supply fan. 

EBGL = Component model Return fan. 

The total number of inputs used for deriving the system model of the AHU is 24. 

The 6 measured inputs are: 

- T1 Fresh air temperature 

- T32 Air temperature before return fan 

- MI Fresh air mass flow rate 

- M9 Return air mass flow rate 

- C36 Heating coil demand (0-1) 

- C37 Cooling coil demand (0-1) 



The 18 derived inputs are: 

T lA2  TI*Ml Tl*T32 Tl*M9 Tl*C36 Tl*C37 

MlA2 Ml*T3 2M1 *M9 M1 *C36 Ml*C37 

T32A2 T32*M9 T32*C36 T32*C37 

MgA2 C3bA2 C37A2 

The h i to r id  inputs are the values of the 24 inputs from the four previous time steps (t-1, t-2, t-3, t-4). To 

check the working condition of the AHU system the following outputs are predicted: 

model 1: T5 Outlet air temperature after the supply fan. 

model 2: M2 Supply air mass flow rate. 
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Figure 10a The results of training the ARX model of the supply air temperature T5 

A healty data set is used to train the models. The training results of model 1 are presented in figure 10a. It shows 

that the model fits the system well. A faulty data set is used for fault detection. Figure lob  presents the results 

with the faulty data set. It shows that the forecasted temperature is much lower than the "measured" temperature. 

This indicates a malfuntion. 

To discover the possible malfunctioning of a specific component, new models need to be made on the component 

level. The system model of the AHU can be divided into seperate component models. These component models 

are the Mixing box, Cooling coil, Heating coil, Supply fan and Return fan. 

An example of a component model is presented for the cooling coil. The following procedure can be followed 

to make a good choice in selecting a system model or a component model: 



System model Used dataset with known fault 
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Figure lob Comparison of the predicted supply air temperarure with that measured in the presence of a fault 

5.1 USE OF A SYSTEM MODEL 

In normal circumstances this model will check the performance of the whole AHU system. If a deviation occurs 

between the forecasted and measured output as calculated by the system model, the system must be functioning 

incorrectly. 

When the possibility of a malfuntion is raised, the next step is to use a component model to localize this 

malfuntion. 

5.2 USE OF A COMPONENT MODEL 

A component model will be used after the system model has detected a malfuntion. The reason for using 

component models is that a component model can pinpoint the cause of the malfuntion with greater accuracy 

than the system model. When the system model could not identify to a specific area of the malfuntion, then each 

component model must be used to find the cause of the malfunction. 

5.3 COOLING COIL MODEL 

The structure of the black-box model is dependent of which measured values are available. In the case of the 

cooling coil, two different types of models are possible to predict the air and water outlet temperatures T3 and 

T48. The Model of the cooling coil is presented in figure 11. 
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Figure 11 Cooling Coil model 

The total number of inputs used for deriving the cooling coil model is 12. 

The measured values used to derive the inputs for the second model of the cooling coil are: 

- TI Fresh air temperature 

- M2 Air mass flow rate through the cooling coil 

- T2 Air temperature before the cooling coil 

- C37 Cooling coil demand (0-1) 

The 8 derived inputs are: 

TlA2 M2Y TZA2 C37Y 

C37*T1 C37*T2 C37*M2 T2*M2 

The historical inputs are : 

The values of the 12 inputs from the five previous 6me steps (t-1, t-2, t-3, 14, t-5) 

The outputs predicted by the cooling coil are: 

model 1: T3 Outlet air temperature of Cooling coil 

model 2: T48 Outlet water temperature of cooling coil 

The training results in figure 12 show that the model fits the cooling coil well. 
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Figure 12 Training results of the component model 
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T o  detect a fault in the VAV system, the predicted output of the model must be compared to the measured output 

of the system. If the value of the measured output is not within the bounds of the predicted output, there can 

be an error in the system, or an incorrect model has been used. If the predicted output of the model in the 

training period is quite similar to the measured output of the VAV system it can then be concluded that the 

model fits the process well. 

5.5 RESULTS OF THE VAV SYSTEM MODELS 

Figure 10 presents the system model forecasting results and the predicted and "measured air temperature after 

the supply fan T5. It shows that the predicted temperature is much lower than the measured value. There is 

though a connection between those two values. The connection is that the predicted temperature has the same 

trend as the measured temperature but the prediction reacts much more strongly, which causes a lower output 



temperature. This difference in temperature indicates a fault in the cooling coil section 

This symptom can be explained by three possibilities. 

Situation 1: No water m a s  flow through cooling coil. 

This situation can take place when the coil is blocked while the valve is opened to the maximum. With this 

given valve position the model will forecast a lower output temperature because of the expected larger water 

mass flow rate. 

Situation 2: High chilled water temwrature. 

The temperature of the supply cooling water is already near the temperature of the outside air before it even 

enters the coil. This is due to a defect in the cooling water circuit. 

The difference between cooling coil supply water temperature and inlet air temperature is not large enough 

to cool the air sufficiently. 

Situation 3: A fouled cooling coil. 

In this situation the cooling capacity of the coil will decrease because the heat exchange between the water 

and the air decreases. To compensate for this decreaed cooling capacity, the actuator signal will be increased, 

dependent on the fouled level of the coil and the valve will be opened funher, thus increasing flow of chilled 

water. The model was trained using the m a s  flow rate through the coil. Taking into account the new valve 

position, the model will forecast a larger temperature drop than really occurs. 

5.6 RESULTS OF THE VAV COMPONENT MODELS 

Figure 12 present the results of the cooling coil component model. Figure 12a and 12b presents the h i n i n g  

results of T3 and T48. The models fit the cooling coil well. Figure 12c and 12d presents the forecasted results 

of T3 and T48. The predicted supply air temperature T3 is much lower than the measured value. The predicted 

output water temperature T48 is higher then the measured value. This shows a decrease of transported heat to 

the cooling coil. This pmves that the malfunction takes place in the cooling coil section. The most relevant 

diagnosis is a fouled cooling coil, as described for situation three. 

A black box model for the AHU of the VAV system was used. The system model was used to predict the supply 

air temperature (T5 )  and the supply air mass flow rate (M2). 

The predicted output was compared with the "measured" output. The diagnoses of the predicted results with the 

faulty dataset pointed to a malfuntion in the cooling coil section. 

To pinpoint the causes of the fault, a component model of the cooling coil section was used. 'Iixcompanent 

model of the cooling coil section pinpointed the fault. 



This example is based on a simulation exercise of a VAV system. A lot of sensors are available. For practical 

applications sensors should be used that are standard available in a BAS. Depending on the faults to be detected, 

additional sensors could be required on component level. 

The exercises are based on models of healthy operation. No models were used for faulty operation. 

6 CONCLUSIONS 

The presented examples illustrate the possibilities of black-box models for fault detection. The use of system 

models makes it possible to detect faulty behaviour of a system, whereafter component models can be used to 

locate the defective component. 

For non-linear systems. ANN models fit better than AFS models. This is also illustrated by the auto-correlations 

of the residuals (table 2), which are better for ANN models than for AFS models. 

AFS and ANN can be used as black-box identification techniques if a dataset is available that meets the two 

following conditions: 

1) The dataset must be healthy and dynamical, as well as measured under optimal or good operation conditions 

of the chiller in a large working range. 

2) The dataset has got to have a fued time step 

The goal of system identification by using black-box models is to enable fault detection in HVAC systems. 

Further development of the black-box modelling techniques is necessary to realize reliable models that can be 

used in practical applications. Since the design of models for fault detection in this stadium is a dynamic research 

proces, causing repeated adjustment of the models, it is difficult to present up to date results; therefore, the 

results of the models as presented in this paper might already be improved. 

Apart from fault detection, fault diagnosis is also a point of research. Black-box models can be used in model- 

based reasoning systems (Davis and Hamscher 1987, van Soest 1993), which are capable of precise localization 

of defective components. Combination of black-box fault detection with reasoning systems will increase the 

reliability of FDD. 
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Figure 1 Configuration of AHU reference +em used 
for quesriomire. 

as the wmmon rcfenncesynwn aoiong participants hm more 
h 1 2  countries. 

Sincethere an many different faults r e l d  to AHU systems, 
it is not wstcffective to fmd all possible faulrs. Before a FDD 
system can bc developed. knowledge about typical or imponant 
faults is necessary. Therefore, a survey was conducted by the 
authors. A questionnaire was prepared to collect information on a 
range of faults, from design faulrs to user-level faults (such as a 
thermostat blocked by furniture), using the reference system 
diagram. 'Ihe consquencesof a fault were classified into four 
~ascs: those relating to p r  environment. cnagy consumption, 
reference. or design value, and physical damage. Prominent 
expcns from thne professional fields-daign engir;m, fabri- 
cating engineen, and maintenance engincas--were asked to bc 
the rrspondents. 

Table 1 shows the data that were collected for 10 imponant 
faulrs ranked by all exputs. Many of them an faults at thestage of 
design and fabrication. Inbtha words, most wmmon faultscan bc 
eliminated by carcful design andcommissioning.?heref%using 

Figure 2 Reasons given for fault imporlance. 

an FDDsystemat ihe wmmissioningmge is prefmble. Since the 
importance of a fault differs slightly among professions, it is 
important to establish for whom an FDD system is provided. 
Funhermare, it should bc understood that p u n  mmhanical faults 

o r  sophisticated operational faults can bc hidden bchind thesehiv- 
ial faults. 

In thc questionnaire, the grounds forjudging a panicularfault 
to bc important were investigated by selecting one of several 
predefined reasons: (1) degradation of environment. (2) energy 
wnwrvation. (3) relation to damage. (4) frequency of a fault. (5) 
difficulty ofdetection, (6) difficulty in recovering, and (7) expen- 
diture required to fix. ?he results drc shown as percentages in 
Figure 2. fivironmentaldegradation and energy conservation 
w m  s e l d  as the mon imponant grounds. In developing an 
FDD system, one should refer to the results to eliminate less 
important faults from the List of those to bc dea ted .  

Toinvestigate the natureof the pure hardware faults in more 
detail, 1 0  imponant faults for the each of the seven reasons 
mentioned were selected, and then only thehardware mdfunc- 
tions were listed in Table 2 with rank.A simple maintenance 

TABLE 1 Ten Important Faults Selected By All Professions 

Races Variable . . 

Rank. Point Subsystem Denation Component Component Defect Stage 

1 '39 rwm poor air qualiry occupants smoking U 
2 38 piping water leakage piping wndcnsation due to improper F 

thermal insulation 
3 37 mom m m  air eqaame &vialion occupants excessive infernal heat generation U 
4 35 mom mmai rkqaanm&viar ion  air diffuser inadequate air-flow rate FC 
S 31 VAV unit too much or less air volume VAV unit damper failure in adjustment FM,C 
6 29 AHU excessive pmsure defermoc a m s s  air filter k ing stuffed M 

an air filter 
7 27 air duct abnormal noise or vibration duct-work insufficient noirc wnuol D.F 
7 27 rwm rwmairtemperaturedeviation air,diffuscr inadquatc positions of diffusers D.F 
7 27 local DDC false opening signal to a VAV unit rwm air thermostat improper location D,F 

wnMl 
10 23 piping rwm air rcmperature . piping insufficient flow rate due to F.C 



TABLE 2 Ust of Hardware Faults 
(Rank means the rank in 10 fautts sekcted for each ream) 

Reason Why e 
Fault k Important Rank 6 a r d w a ~  Fault 

1 ) E m i r o n m n t a l ~ a  8 4rfilmhDlfbng 
and acupant amplaints 9 -humidifinmalfunction 

2) l n x a r e d e ~ g y  ansumption 1 --air film splamg 
2 -fouling on moling mil fins 
4 4Adampamalfunction 
10 -incoiltdrs 
I0 --air leakage Uuuugh duaworlr 

3) Saiour wcondary damage 2 --no alarm due to complm mahnuiqn 
3 -wdteIledragc 
4 --fdscabrm 
7 - a m m i o n  of dust insickducnvork 
7 -malfunction of fan motor 

4) Frequent occurrrnce 1 4rfilrcrstuffmg 

A fault may develop slowly or suddenly: cooling 
coil clogging and control device malfunctioning are 
examples of each category. In the former, a fault can 
be detected by checking whcther a change in compo- 
nent or system pnformana has or has not ocnured. 
In the latter. a fault can be detected by checking at 
rtgularintewals whnherava lueexds  afixed l i t  
or not or whether the dynamic characteristics of a 
component or a subsystem change or nor In some 
cares, a fault may already exist at the time of comple- 
tion of building consauction. Contradictory motion of 
air d a m p  uscd for an amnomircr cycle is an exam- 
ple. This results h n  faulty installation that was not 
detected during commissioning. For detecting this 
kind of fault, the r e f m c e  performance must be 
hown. This indicam that we must choose an apprc- 
priate m D  mcthod by considering the nature of the 
faults, especially when they occur and how they 

5) Diffialt dewxion 2 --noalarm due to mmputer ntdfunction develop. 
6 -&dental fire damper off In this paper, the authors concentrate on the 

7 4 A d a m p a ~ ~ o n  detection of a sudden fault. The eaiiest detection 
7 -wdteImaimrmfig mnhod is to m e a m a n  appropriate state variable and 
9 -mularion of dust inside ductwork check whether it e x a d s  a higher or lower limit. 
9 --scaling in coil tubes Room air temperatures and supply air temperatures 

6) Lcn@hy repair time 8 +mh!~ction of fan motor are often checked this way. However. afault cannot be 
g --accumul&on ofdurlim.de durn& deteckd by this simple method when the state vari- 

7) Coslly repair ables slay within the limits even when the fault is 8 --accumulation of dust insick ductwork 
pmenr Furthermore. there is no objective way of 

fault, the blocked air filter, is most common; however, mechan- 
icalfaults (suchascoil anddamperma1function)arem widely. 
Judging by the number of faults, the most imponant are those 
associated with energy loss, secondary damage, and difficulty in 
detection. It is significant that the number of faults in category 5, 
which are difficult to detect, is larger than that of the othws.This 
may suggest that an FDD system should tackle these types of 
faults. 

According to the results of our survey, the authors conclude 
that the aims of anFDD system should be (a) to predict the possi- 
ble deterioration of materials orcomponents as quickly aspossi- 
ble. @) to detect inefficient operation in terns of energy loss, and 
(c) to find the fault that cannot te detected even by an expert (for 
example, a fault in computer control software), faulty operation 
that resulll in energy loss, mechanical faults that have no imme- 
di* effect on mom environmental condition, etc. 

DETECTION OF SUDDEN FAULTS 

determining the values of the limits. 
Todctsta sudden fault, more sophisticated methods can be 

uscd. One of them is b a d  on the dynamic performance, that is. 
a fault is dnccred by checking the differcna t e m n  the 
meaurcd slate variables and those obtained from a dynamic 
model Fgu re  3). This method is well developed and many 
research studies have t u n  rcpcmd (W~llsky 1916; Isermann 
1984); however, relatively little work is reported in the field of 
air-conditioning engineering. Usolo et al. (1985) deal with the 
detection of an abrupt fault (achange in the bias on the output of 
a tempuatlln sensor) using an extended Kalman filter method- 
ology. The parameters of the model are assumed to te known 
even though in many components installed in real buildings they 
arc not known. In this study. therefore. two model- autore- 
grcssive and exogenous (ARX) model and an extended Kalman 

. reporling , 
modeling - Many kinds of generic methodologies for m D  are avail- 

able, but thcre is a wide variety of approaches, aims, and perfor- 
mances: some arc qualitative and some are quantitative, some 
are bared on a physical model and some on a black-box model, 

system etc. (IEA 1995). However, since faulll in HVAC systems include 
dl sorts of the kinds as described above, we cannot arbitrarily threshold 
select one D D  method as the tes t .  

Figure 3 Fault derecrion using a model. 



film model in which pramems are estimatcd--are urcd to 
dcrcct faults in a VAV unit and an AHU cooling coil subsystem. 

Thc effectiveness of the methods is examined using simu- 
lation. whcrc the state variables of the reference s y m  arc 
genaatcd by the computer codc HVACSIM+ (Clark and May 
1985; Clark 1985). WACSIM+ wasdeveloptd by a US. orga- 
nization ~IKI somemodifications weremade toallow faultsto be 
simulated and to stabilize the numerical computation. 

THE ARX MODEL APPROACH 
TO FAULT DETECTION 
' 

l l i c  following fault was implementd a VAV unit has a 
malfunction thaf cauws the opening ratio to remain at the value 
just before the fault 'Ihe dynamic performance of a VAV unit 
includingthe controllerismodeled by an ARX model as follows: 

where 
y = air mass flow rate rhrough the VAV unit, 
z = room air temperature signal from the temperature 

sensor, 

v = random variables (normally distributed), 

a = autoregressive parameters (order p), and 
b = exogenous parameters (order q). 

'Ihe variables y and z must both be measured in acolal situ- 
ations. A disadvantage of the prscnt method is that it is news- 
sary to measure y using an anemomern. If the air-conditioning 
load of a room can be measured, it can be used instcad of y but 
this is more diicult to measure. However, since rrccnt VAV 
units arc ohen quipped with an anemometer, this assumption 
can be acceptable. 

Only faults in the pan of the plant between the input and 
output of the model can be detected (for example, if the control 
signal is used as the output instcad of themass airflow rate, faults 
in the damper actuator cannot be detected). 

Thc model relating output and input or extra (exogenous) 
variables is linear. In a strict sense, the performance of a VAV 
unit is nonlinear; however, the approximation can be used fmthe 
present purpose. namely. fault detstion. 'Ihe sbucture of the 
model is defined. but the parameters (a and b) and the orda of 
the model @and q) are unknown. These have to be identified 
using simulated variables; y. z. and the recursive least-squares 
algorithm can be applied for the identification. The model order 
@and q) can bedetermind by minimizing AIC (an information 
criterion). which is detincd as follows (ETIZJ 1993; Akaike 
19n): 

where 

6 

F = estimated y based on the model and 

N = data window length urcd for model identification. 

Befm paforming the on-line identification, the value of N 
must be empirically dete;mined and the model order @ and q) 
must be selected as the optimum values by trial and crror using 
test dam scts. Dming the opaation of the W A C  system, the 
paramems are identified and updated at every sample time. Ifa 
fault ~~~mabrupUy,thediffmncebe~ecn the predicted output 
and themeaslad output becomes very large; then. by evaluating 
thevalueS (defined by Equation 4) using the lamtdata obtained. . 
the M l m n c e  of a fault can be statistically mted because the 
value follows a X2 distribution. 

where L is the data window length for fault detection. It 
should be understood that the estimated parameters will grad- . 
ually adapt to the fault condition and detection will no longer 
be possible. 

The simulation was performed as follows: 

The simulation is carried out under cooling operations. 

The intcmal cooling load decreases during lunch. 

The time atwhich the fault occurs is set at 10:00 and 14:00. 

Time typical days with different weather conditions are 
simulated: clear. half-cloudy, and cloudy days that repre- 
sent high, medium, and low cooling loads are used for the 
simulation to check the performance of the fault detection 
system under diicrcnt operating conditions. 

In Figure 4 the simulation results (sensor output of room 
tempcrafurrs, air mass flow rate. VAV opening rite, zone 
temperature controller output) arc shown for the case when the 
fault occurs at 10:00. It will be seen that the fault cannot be 
detected by alimit-checkermethod bccausetheroomairtemper- 
aturevariations are very lialefor a long timeifkr the faultoccur- 
renq. This is also observed in the caw of a fault at 1400 (not 
shown). 

The model order was ARX@ = 3. q = 7). The selacted 
sampling intaval was 2 5  minu&,andthe values of the window 
IcngLh were N = 72 and L = 8. The optimal values were fou'nd 
using test data sets. In Figure 5 the effectiveness of the fault 
detstion scheme is shown for rhreedays with different weather 
conditions: clear, half-cloudy,and cloudy. which represent high. 
medium, and low cooling loads. 'Ihe dotted lines are the 99.5% 
and 95.046 confidence thresholds used in the statistical test. 
(Faulty behavior seems to OCCUT before fault occurrences. The 
reason is that the time to evaluate S is detined by the h e  of the 
first datum, n, not by the last dmm,  n - L + 1, in Equation 4; 
therefore, faulty behavior occurs aftcr the fault occurrences.) It 
is concluded that the method performs well if the cooling load is 
not too small. This is because the VAV unit is not active enough 
to detect the fault under the small load conditions. 



THE EXTENDED KALMAN FILTER 
APPROACH TO FAULT DETECTION 

The air-handling unit of the reference system supplies air at 
acomtant temperature unda conml of aPI  controller. The main 
components of the subsystem that make up the conml loop are 
a cooling coil, a water control valve, a PI conmller, and a 
tempcrahlrc sensor (Figure 6). Ln the prescnt study the aim is to 
d e r  a malfunction in this control loop. The variables are the 
signals from the temperame sensor and the control signal to the 
valve (valve opening). Both are easy to monitor. 

By ngarding each component as a linear system, the entire 
control loop can be considad to be linear. Ln Figure 7, the char- 
actuistics of each component arc shown as Laplace bansfom 
hansfer functions. The govcrmng quatiom are written as 
follows: 

Figure 4 Simulated state variables with fault occur- 
rence at 10:OO. 

where 

$ = defined by che firsccquation of Equation 4. 

Es = 0,- e,,. 
€0 = e, - e,,,, 
Ei = ei - Oscls 
dew = Ow,, - e,,i, 

ei = inlet air temperature, 

00 = outlet air tempcrame. 

8s = air temperature measure by the sensor, 
esa = set tempnaauc of supply air, 

B,,, ew,, = inlet and outlet water temperature, 

CW = specific heat of water, 

KO = thermal capacity of coil. 

Kc = integral coefficient of PI controller, 

KP = proponional cocfficient of PI controller, 

K v  = proponional coefficient relating water mass flow 
rate to the control signal. 

= air mass flow rate. 
= water mass flow rate at 50% valve opening. 

= integral time of PI controller, 

= time constant of tcmperature sensor 

Figure 5 Performonce of rhe fault detector for rhe 
six cues.. 



PI controller 

- 
ai; volume controller 

Figure 6 System diagram. 

by defming state variables (x), input (u), observed variables 
(y), and parameter vector (a) as follows: 

The parameters can be determined from the component 
performance; however, in actual situations it is difficult toobtain 
values forthem. In addition, since they tend to change with time, 
they shouldbe taken as unknown parameten. By defming anew 
vector z, the state space equation can be written as follows: 

where 

z = combined new state variable, 

w, v = white noise vectors, 

Y = vector of the measured data, the valve control 
signal of opening c and ES, namely, 

T T T 
Y = 6 j . y 2 )  = (c. tS) = (Kp(cx+ 4),tS) . 

This equation mustbe funher convened into adiscrete-time 
form to utilize the simulation results. The fmal eauarions are 
nonlinear, however,they can be solved by applyingthe extended 
Kalman filter algorithm. Fault detection is performed using the 
same method as that used forthe ARX model. Funher details of 
Equation 7 and the process used to solve the equations are 
reponed in Yoshida et al. (1995). 

Figure 7 Block diagram of the cooling coil conrrol loop. 

Two fypes of fault were implemented: 

f i e  a c k t o r  of the control valve of the AHU becomes out 
of order at I1 :45 and the current valve position is then held 
constant throughout the remainder ofthe test. 

The temperature sensor becomes out of order at 11:45 and 
the signal to the controller is held constant at the same value 
rhroughout the remainder of the test. 
Two e e s  were tested. In the fvst case, the sampling inter- 

valis2.5minutesandtheevaluation interval is 15minures. Inthe 
other they are 5 and 30 minutes, respectively. The results are 
shown in Figure 8. The shorter sampling time is better for fault 
detection. The fault can be detected in 30 minutes in the f k t  
case, but it cannot be detected in the second case. This is because 
no significant change in state variables takes place even if the 
temperature sensor is damaged. When the control signal changes 
to a considerable extent due to the integral action of the control- 
ler, the detection is possible, but thiscan happen just by chance. 
This is a disadvantage of the present method. 

DISCUSSION 

Even though the aim of AHU systems is to provide human 
comfoq some faults that result in discomfon are dificult to 
define as true faults. It is easy to eliminate them fiom the list of 
faults to be detected but ifthis is done, some imponant aspects 
ofthe problem may disappear. As defining.typical faults is the 
w i n g p o i n t  fordevelopingafault detectionsystem and we tend 
to afbitrarily choose a fault to test the performance of the FDD 
method, we must always consider what faults are most common 
and imponant. 

Although itwas mentionedthat rapid fault detection is more 
important than constructing a highly reliable system in the case 
of AHU systems,prompt detection of a malfunction is not easy, 
even for experts in the maintenance of HVAC systems, for 
several reasons. 

1. Modem systems are so sophisticated that a malfunction 
may not necessarily cause an easily detectable defect. For 
example, in an air-conditioning system. with VAV units 
and a constant supply air temperature controller, the mal- 
function of the controller may not affect the room air tem- 
perature directly. The reason is that VAV units can 
compensate for the inadequate supply air temperature by 
controlling the air volume. 



2. 'Ihe installation of direct digital control (DDC) systems 
and computer control system has k a m e  m o n ,  and 
most components are electronic p d u N  involving inte- 
grated circuit technologies. Ar a r t s u l ~  the system tends to 
k a m e  a black box. Under these situations it is d S ~ u l t  for 
normal maintenance engineers to d e w t  and diagnose a 
malfunction. 

3. Since the number of components of an W A C  s y s m  has 
incrcavd along with the recent rapid expansion of the 
building size, engineers cannot devote attention to each 
component. In other words, careful mainteoancc cannot be 
achieved any more. 

4. Sophisticated control strategies based on computer soft- 
ware are now commonly used as well as standard control 
algorithms such as PID. 'lhis can cause malfunctions to 
occur in the software itself that cannot be detected by engi- 
neers utilizing their experience or know-how. 

Recognition of these issues emphasizes the necessity for 
developing automated and real-time FDD systems. Futurc 
work must assess the cost-effectiveness, and field tests are 
rcquired. 

In the present study, two methods of detecting abrupt faults 
have been investigated. The fust method, which uses a black- 
box model, canbe applied toany system if inputand output data 
are available. However, sincc the parametm have no physical 
meaning. the method is restricted to fault detection only and it 
q u i r e .  the optimization of the model order, which is a d' icult  
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(A) lime step is 2.5 minutes and fault-checking interval is 
15 minutes 

(B)Tme step is 5 minutes and fault-checking interval is 
30 minutes. 

Figure 8 Performance of the exended Kalmrmfilter method 

p- toautomate. These are thedisadvantages of thc method. 
'Ihe model used in the second method is based on the physical 
srmcarrc of the plant and therefore fault diagnosis is possible. 

Therc arc many weak points associated with our methods. 
For example, an anemomctm is required for the VAV f a u l ~  and 
the effectiveness of detecting a fault using the extended Kalman 
filmapproach depends on the type of fault. These issues will be 
addmsed in a future work by the authors. 

CONCLUSIONS 

.In the prescnt study. the rcsults of a survey about typical 
faults that arc commonly encounured in AHU system were 
summarized and Wo methds of finding a b ~ p t  faults were 
tested. 

In most HVAC systems, highly reliable operation or a low 
probability of malfunction are not important issues. However, 
since faulty operation of HVAC system is detrimental to energy 
cowrvation and because maintenance expens are no longer 
able to detst  faullc (mainly because the AHU systems have 
become m sophisticated or too computerized), automated fault 
detection and diagnosis (FDD) is now important. 

According tothe results of the survey, many faullc originate 
at the design and commissioning stage and most of them are very 
simple. such as the clogging of filters. Important faults can be 
obscured; thcrcfofc, classification of faullc is necessary in order 
to find the important faults to develop an efftcient FDD system. 
The survey conducted by the authors should provide a good 
reference. 

Two methods to detect a sudden fault have been proposed 
and the effectiveness of the methods has been tested. Both are 
based on a mathematical model of system dynamics. The first 

one is an autorcgressive exogenous (ARX) model, and the 
second is based on an extended K h a n  filter. Using computer 
simulation by HVACSIM+,it ha knshownthatfaultsthat are 
difficult todetect by asimple limit checker can be dnccted using 
both methods. Funher study or field testingis required to ensure 
the methods arc feasible in practice. 

The authors would like to express Our appreciation to the 
Japanese maintenance expens for their conmbution in answer- 
ing our questionnaires, members of Annex 25 of the hterna- 
tional Energy Agency W), members of the Japanese BEMS 
committee for their many suggestions and comments on our 
studies at their meetings, and to Dr. G. Kelly and Dr. C. Park of 
the National Institute of Standards and Technology. Gaithers- 
burg. Md. for giving us the opportunity to use the simulation 
code WACSIMc, a powerful twl  without which our work 
could not have bcen accomplished. 



REFERENCES 

Akaike. H., et al. 1972. Stotisticol m l y s u  ond conml of 
dynamic system (in Japancsc). New Yo*: Science Pub- 
lishing Co. 

Clark, DR. 1985. HVACSIM+ building sys tem and equip- 
ment simuhion progrom--R$erence manual. NBSIR 
85-2996. Gaithersburg, Md.: National Institute of Stan- 
dards and Technology. 

Clark, D.R, and W.B. May. 1985. HVACSIM+ building sys- 
t e m  and equipment simulation pmgr&ser's guide. 
NBSIR 85-3243. Gaithersburg, Md.: National Institute 
of Standards and T ~ h o l o g y .  

EITIJ. 1993. Digital s i g ~ l  proccrsing M o o k  (in Japa- 
nese). Tokyo: OHM Publishing Co. 

Hyvarinen. J., ed. 1995. IEA ANNM 25, Building optimizo- 
tion and foul: diagnosis source b w k  (1st draft). Paris: 
International Energy Agency. 

Iscrmann. R. 1984. Rocess fault detection based on model- 
ing and estimation. Automarico 20(4): 387404. 

OS'IEC. 1990. Repon of maintenance system with artificial 
intelligence for intelligent buildings (in Japanese). 
Osaka: Osaka Science and Technology and Engineering 
Center. 

Usolo, P.B., et al. 1985. An innovation-based methodology 
for HVAC system fault detection. I. of D y m i c  Sys- 
tems, Measurement, and Comrol, li&uoctiom of ASME 
107: 284-289. 

W~llsky, A.S. 1976. A survey of design methods for failure 
detection dynamic systems. Automarico 12: 601-61 1. 

Yoshida, H.,'ct al. 1995. Fault detection of HVAC sysums 
by an extended Kalman filter. Tsinghua-WAC-'95,2nd 
International Symposium on Heating. Ventilation and 
Air Conditioning. Beijing: .National Natural Science 
Foundation of China. 



An application of fault detection observers 

Peter Sprecher, Landis & Gyr Building Conuol, Switzerland 

Abstract 

A design method is considered that aims for observers being robust against disturbances but sensitive to faults. 
This method is applied to a simulated boiler. One step of the design procedure, the choice of two weighting 
matrices, is seen to be quite diff~cuk The resulting optimal observers perform weU as long as the design 
assumptions are met. Significant performance deteriorations occur in case of certain deviations from design 
assumptions as e.g. parameter estimation errors neglected in the design. 

1 Introduction 

Fault detection observers (FDOs) are based on a mathematical plant model driven by the same inputs as the 
plant. The simplest form of a FM) uses directly the difference between the plant output and the model output 
as fault indicating signal, called residual. This residual will deviate from zero in case of faults and should be 
closed to zero otherwise. For a s w e y  on observer based fault detection methods see e.g. Frank [I]. 

A serious problem of observer based fault detection is that the residual deviates from zero not only in case of 
faults but also in case of model inaccuracies and disturbances. A design goal is therefore to make the residual 
insensitive to model inaccuracies and disturbances but sensitive to faults. A design method with that goal was 
developed by Frank and Wunnenberg [3] and is briefly described in sect. 2. This design method is applied to 
the example inuoduced in sect. 3. Simulation results are reported and discussed in sect. 4. 

2 Optimal fault detection observers 

Consider the system structure in fig. 1 

plant 

observer 

Fig. 1 Principle of observer based fault detection 

Assume that the plant can be described by 

u : known input vector 
y : measurement vector 
d : unknown input vector: 

external disturbances and modeling errors 
1 : unknown fault vector 
r : residual vector 

where x is the state vector and all matrices are known and of appropriate dimensions. To generate a residual 
that is insensitive to the disturbances d but sensitive to the faults 1 Frank and Wunnenberg [3] have developed 
so called optimal fault detection observers (OFWs). Their approach is based on the generalized observer 
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Observing (1) and leaving out effects of initial conditions the residual r can be decomposed as 

where rd and rf represent the residuals caused by the disturbances d and the faults f respectively. Assuming a 
scalar residual for simplicity and random variables d and f the design goal can be formulated as minimization 
of the performance index (Pl) 

lnstead of minimizing P its inverse, Pi = 1/P, will be mimized  and used as PI here. 
Pi is found to be 

p. = w T m , c , ~ : v T w  
' w T m 2 c d ~ ; v T w  * 

where: 

V is a basis for the so-called parity space, the left nullspace of Q = P 1. 
p is the observer order, 

D is the differentiation operator, 

d" and7 are the disturbances and faults low-pass filtered by l/N(s), 

N(s) = a. + als + .. + a p l P 1  + SP is the characteristic polynomial of the observer, 

w has to be found such that Pi is maximal. 

Pi is maximized by solving the generalized eigenvalue-eigenvector problem 



and taking as wop, the eigenvector corresponding to the largest eigenvalue &,. The observer manices are 
then designed as: 

L, = -[0, .. 0.11, p-dimensional 

where 

The design procedure is summarized to: 
1) Choose the observer order p. 

Suggestion based on Frank and Wiinnenkrg [3]: p=n-m+l (n=dim(x), m=dim@)) 
2) Choose the observer polynomial N(s). 
3) Choose V such that VQ=O. 
4) Estimate the weighting mamces Cd and Cf. 
5) Maximize Pi by solving (10). 
6) Setup the observer according to (11)-(17). 

Wiinnenkrg [4] extends his approach to the class of nonlinear systems described by 

where 



3 Application example: boiler model 

The control system in fig. 2 is considered 

known or measured: 
ub: burner control signal (011) 
T,,: supply water temperature 
Twb: boiler water temperature 
Twbs: boiler water temperature setpoint 
T :  flue gas temperature 

unknown: 
mw: water mass flow 
T,: heating room temperature 

Fig. 2 Boiler control system 

The boiler model is taken from Gass and Hopkirk [5] and represented in fig. 3. It was developed at the 
university of Liege, Belgium. 

Fig. 3 Boiler model 
Q :  burner power (burner on) 

Ggw: conductance for heat transfer 'gas - water' 

Ghp: conductance for heat transfer khimney inlet - plant m m '  
Ge: conductance for heat transfer 'boiler water - plant room' 
Gfg: conductance for flue gas and ventilation losses 
(1-xdCb: thermal capacity of the refractory wall 
xbCb: thermal capacity of the boiler (water and metal, without reftactory wall) 
c,: specific thermal capacity of water 

The conductances Ggw and Gfg swiuh their values with ub. All other parameters and m, are assumed 
constant. In the original model all resistances depend on ub. m e  numerical values for the parameters are 
chosen as follows (most of them taken from Gass and Hopkirk [5]): 



The fault hee and undisturbed system can be brought into the following form: 

where: 

m, and T, are assumed constant at m,=4000 kg% and Th=25 "C and treated as parameters. To enable the 
implementation of an observer estimates for all parameters are assumed available. Some of these estimates 
may be erroneous. The influence of such errors on the residual will be modeled by disturbance signals d. 

The implementation of an observer would be eased by a change to a discrete time system description. 
However, to design the observer robust with respect to some selected parameter estimation e m ,  the 
continuous time description is advantagcous (see [6]). 

The following modeling errors, external disturbances, and faults will be considered: 
- modeling errors: 

parameter estimation errors in 
water flow m, 
conductances for flue gas and ventilation losses Gf,, and Gfgl 

capacity ratio xb 
- external disturbances: 

measured errors in 
boiler temperature TWb 
flue gas temperature Tfg 

- faults: 
growing deviation of the conductances Ggd and Ggwl from their initial values due to soot 

The residuals of the OFDOs will be compared with the ones of two Luenberger-like observers (LLOs) of the 
form 

where the index 'O'denotes nominal parameter values, and the feedback gains h,,,:! are chosen to have the poles 
at pol=-1/120sec and pO2=-lD0sec. This choice gives acceptable settling times for the residuals. 



4 Simulation experiments 

The simulation experiments reported here are executed using the parameter values from sect. 3 apart from 
specific parameter changes specified for individual experiments. Additional settings are: 
- burner controller switching difference: 10K 
- supply water temperature: T,,=50 OC 
- boiler water temperature setpoinc T,,,=65 OC 

The experiments are summarized in tables 1 and 2, sect. 4.5. 

4.1 Experiment group 1: Correlated parameter estimation errors 

Let 

The last index 'O' always denotes nominal parameter values assumed for observer design and 'A' a deviation of 
the m e  parameter value. Nominal values are the ones defined in sect. 3. Bringing the system description into 
form (18) leads to 

where: 

Follow now the design procedure in sect. 2: 
1) Observer order: p= 1. 

2) Observer polynomial: N(s) =ao + s, ao=lL36sec. 

3) Basis for parity space: 

4) Weighting matrices: 
Simplifying assumptions: 
.regular boiler operation with medium load 



- 
. f ( t )=-  AGw (75K +50Ksin(o,t +cp))= AE,(a, + b, sin(obt +cp)) 

C1-~b)cb 

o b = 2 z / 1 2 m i n  
- - 

Am,, AGk. AG,, and cp are r.v. with: 

E[AIiI,]=O, ,/-=0.1 mwo 

E[A?&]=O, , / ~ = 0 . l G k O = O . l  (Gkm+Gklo ) /2 .  

E [ A ~ I = O .  , / ~ = 0 . 0 5 ~ , ~ = 0 . 0 5 ( G , ~ + G ~ ~ ~ ) / 2  

cp - U(0,2rr), independent of Am,, AGk, and A% 

Filtering dl([), d2(t), and f(t) by l/N(s) leads to 

and corresponding expressions for d, and ? , where 

Cd and Cf now follow as 

At this point by mirtake 

was assumed, i.e. observing (40) and (41) full positive correlation of AIiI, and AEk. Although his 
assumption is generally not met, this experiment group is reported here, because the resulting OFDO shows 
an interesting sensitivity pmpeny. 

5) Marimize the performance index Pi (see (10)): 
P*, is found to be Pim,,=1150, what means very good amplification of the faults and suppression of the 
disturbances. 

6) Observer matrices according to (1 1)-(15): 
(shown in munded form. implemented in double precision) 



This completes the design of the OFDO. 

Exp. 1.1: Disturbances and faults exactly as assumed for design 

In (36)-(38) set 

&w=-O.l  mwo 

AE4 = -0.1 Ek0 
- - 

AG, = -0.05 GPO 

q = o ,  

and apply the resulting disturbance and fault signals to the nominal plant. 

The following figures with simulation resulu always show the 3 cases 

(1) no disturbances, no faulu (full line), 

(2) disturbances, no faults (dashed line), and 

(3) no disturbances, faults (dotted line). 

Fig. 4 and 5 show the boiler water temperature and the flue gas temperature. Note that the course of these 
temperatures ~atisfies well the assumptions (36) - (39) concerning mean. amplitude, and frequency of the 
relevant temperature differences. As expected the disturbance signal dl corresponding to a decrease of m, 
causes a faster rise and a slower drop of !he boiler water temperature. The rise and the steady state of the flue 
gas temperatwe are little sensitive to the disturbance and fault signals. However, its drop is slower with the 
fault f signal corresponding to a decrease of A-6, due to less cooling by the boiler water. 

Fig. 4 Boiler water temperature Fig. 5 Flue gas temperature 

Fig. 6 and 7 show the residuals generated by the OFDO and the two LLOs (27). Clearly h e  OFDO is the best 
one. It fulfils what the design promised in that the measured performance index P, deviates by less than 
0.01% from the expected value. The LLO for the boiler water temperature is obviously not suitable in the 
current situation and will not be considered further. 



Fig. 6 Residuals of optimal fault detection observer ( O W )  (Pim=l 150) 

Fig. 7 Residuals of Luenberger-lie 0bServerS GLOs) 
a) for the flue gas lemperature (Ph=7.3) b) for the boiler waler temperature (Pi,,<l) 

Exp. 12: ~ i t u r t $ n c e s  and faults realized by constant parameter errors 

Instead of the exlemal signals dl([), %(t), and f(t) implement in the plant the parameter emrs  

Fig. 8 and 9 show the residuals of the OFDO and the LLO for Tf The OFDO is still betm. but iLs PI has 
become about 4 rimes lower than in exp. 1.1, while the LLO could sfightly improve its PI. 



Fig. 8 Residuals of the OFDO (Ph=255) Fig. 9 Residuals of the LLO for Tf, (Ph=lO) 

Exp. 1.3: Parameter estimation error h,, with opposite sign 

Parameter emrs  as in exp. 1.2, but Ah. = +0.1 m,,. 

Fig. 10 and 11 show a signficant deterioration of the OFDO performance w.r.t. exp. 1.2, while the LLO for 
Tfg is insensitive to the sign switch in A i l w .  The sign of Arh, enters the OFDO design only in the correlation 
with AE4. In the design Arhw and A E ~  were assumed to have zero means and full positive correlation. Then 
the event, that Ahw and AE4 have different signs, is highly unlikely. It would be even impossible, if the full 

correlation.would be caused by Am, being a linear function of A$ satisfying (40) and (41). But the design 
assumptions are not necessarily met, and thus the selected event may occur vey well. Therefore it is 
concluded, that in the current situation the PI is highly sensitive to deviations from the assumed correlation. 
This correlation will be dropped in the next experiment group. 

Fig. 10 Residuals of the OFDO (Ph=3.2) Fig. 1 Residuals of the LLO for Tfg (Ph=8.7) 

4.2 Experiment group 2: Uncorrelated parameter estimation errors 

Consider the same parameter estimation errors Ahw, AG4,-,, and AGpo,, as in exp. group 1, but assume 
Arhw uncorrelated with AGko, and AG&. 

OFDO design: 



1) - 3) Exactly as in exp. group 1. 

4) Weighting matrices: 
As in exp. group 1, but let now Am, and A C ~  be uncorrelated. Then all nondiagonal elemenrs of C, and 

Cf vanish. 

5) Maximize Pi (see (10)): 
Pi,,, is found to be P,,=7.4 and is about 160 times lower than in exp. group 1, what means a significant 
deterioration. 

6) Observer matrices according to (1 1)-(15): 
(shown in rounded form, implemented in double precision) 

Exp. 2.1: Constant parameter errors as assumed for design 

Parameter errors as in exp. 1.2. 

The resulting OFDO residual in fig. 12 shows the expected modest performance and is similar to the LLO 
residual in fig. 9. At least the deviations from design conditions due to m e  parameter errors didn't cause a 
lower P1 than promised by the design. 

Exp. 2.2: Parameter estimation error A& with opposite sign 

Parameter errors as in exp. 1.2, but hW = +0.1 m,,. 

Comparing fig.12 and fig.13 shows lhar the ORX) residual is now little sensitive to the sign of Am,. Further 
experiments show that it is also little sensitive to the size of Am,. 

Fig. 12 ~esiduals'of the OFDO (Ph,=13) Fig. 13 Residuals of the OFDO (Pim=7.3) 
parameter e r m  as assumed for design Am, with opposite sign 



Exp. 23: Input dependent parameter estimation error AGrg 

Parameter errors as in exp. 1.2, but AGk refined to input ub dependent values: 

AGko=-O.lGko i fub=O 
AGk = AGk(ub) = 

AGkI = -0.1 Gg, ifu, = 1 

The OFDO shows similar performance as in exp. 2.2 (Pi,=8.6). 

Exp. 2.4: Parameter estimation errors AGrg,,, with doubled magnitude 

Conditions as in exp. 2.3, but AGko,, with doubled magnitude. 

The residuals in fig.14 and 15 show bad performance for both the OFDO and the LLO. It is no longer possible 
to distinguish the assumed disturbances and faults. In the selected event ~c~~ is 4 times higher than expected 

in the design. Correcting the expectation and redesigning the OFDO for 4-fold v ~ I - [ A ~ ~ ~ ]  gives Ph,,=1.9, 

i.e. the same value that the original OFDO has reached already. Therefore it is concluded that, given observer 
order p=l, one can't do much better. Observing (31a) and the small value of y (0.02), the bad performance is 
not surprising. Obviously it must be djfficult to separate the effects of dz(t) and f(t), because mainly their sum 
acts on the system. 

Fig. 14 Residuals of the OFDO (P,=1.9) Fig. 15 Residuals of the LLO (Ph=1.7) 

Exp. 25: Input dependent parameter deviation AG, 

Parameter'emrs as in exp. 1.2, but AGp refined to input ub dependent values: 

AG,, =-0.05 GPm2 /Gplo if ub = O  
AG, = AG,(ub) = 

AG,, = -0.05 Gplo2 I G , ~ ~  if ub = 1 

The sizes of AG,, and AG,, are based on the assumption that the resistance of the soot film on the 
combustion chamber wall has increased by 5%. 

Both, the OFDO and the LLO perform well in this case. The PIS are 30 for the OFDO and 23 for the LLO. The 
improvement with respect to exp. 2.1 is due to the increase of AG, in case ub=l. 



Exp. 2.6: Unconsidered parameter estimation errors 

Parameter errors as in exp. 1.2, and in addition an estimation error in the capacity ratio xb. i.e. 

Note that this error was not considered in the OFDO design. 

Fig. 16 and 17 show that both, the OFDO and the LLO residuals are rather sensitive to the error Ax,. 
However, the PIS are not that bad because in case of disturbances large residuals appear only for short periods. 

Fig. 16 Residuals of the O m  @',=7.7) Fig. 17 Residuals of the LLO pim=6.2) 

It is likely that all estimated parameters deviate more or less from the m e  values. However, to consider all 
these possible errors in the OFDO design would complicate the design too much and probably lead to an 
OFDO that is insenshe also to faults. A difficulty is herefore to find those parameters that have significant 
influence on the residual and h e  estimates of which are most uncertain. 

4.3 Experiment group 3: 2nd order observer 

As the perfoman& of the 1st order observer in exp. 4.2 is rather modest, an improvement is now attempted by 
increasing the observer order. The same parameter estimation errors are assumed as in exp. group 1. 

OFDO design: 
1) Observer order: p=2. 

2) Observer polynomial: N(s) = (s-pd2 = a,, + a,s + s2, pO=-1f36sec. 
3) Basis for parity space: 

4) Weighting mamces: 

Proceeding with h e  same simplifying assumptions as in exp. group 1 leads to the filtered signals 
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and corresponding expressions for 2, and ? (see eqs. (37) and (38)). where 

The submatrices Cd(l:4,1:4) and Cd1:2,1:2) can be laken from exp. group 1 (see eqs. (46) and (47)) with 
i,-, and 6,, as defined in (61) and nondiagonal elements cleared because of assuming uncorrelated 
parameter estimation errors. It turns out here that all other elemenrs of Cd and Cf do not enter the 
performance index and therefore may be set to 0. 

5) Maximizing Pi (see (10)): 
Pim, is found to be P-,=13, what means a modest improvement by a factor 1.8 compared to the 1st order 
observer under the same premises (see design in exp. group 2). 

6) Observer matrices according to (1 1)-(15): 
(shown in rounded form, implemented in double precision) 

Exp. 3.1: Constant parameter estimation errors as assumed for design 

Parameter m n  as in exp. 1.2. 

The resulting OFDO residual in fig. 18 shows only a slightly better performance than the one of the 1st order 
observer in exp. 2.1, fig. 12. Its magnitude in case of faults is 0.35 K only and is about 8 times smaller than in 
exp. 2.1. Therefore, observing (2b) and the values of L, and L2 in (62). it is obvious that measurement m r s  
would significantly corrupt this small residual. 

Exp. 32: Input dependent parameter estimation error.AG,, 

Parameter errors as in exp. 1.2, but AG,, refined according to (58). 

Fig. 19 shows a significant performance deterioration w.r.L exp. 3.1. The absolute and relative decrease of the 
PI due to refmement of AGk is larger than in case of the f m  order observer (see exp. 2.1 and 2.3). 



Fig. 18 Residuals of the OFW (Pim=16) Fig. 19 Residuals of the OFDO (Pim=2.6) 
parameter errors as assumed for design Input dependent estimation error AG5 

Exp. 33. Unconsidered parameter estimation errors 

Parameter errors as in exp. 1.2, and in addition an estimation error in the capacity ratio xb according to (60). 

The PI drops horn 16 in exp. 3.1 lo 1.5. So its decrease due to the error Axb is again larger than in case of the 
1st order observer (see exp. 2.1 and 2.6). 

4.4 Experiment group 4: Stochastic measurement errors 

The small residuals in exp. 3.1-3 would get cormpted significantly in case of measurement errors. To avoid 
this risk measurement errors are now considered in the observer design. As the OFW residuals in exp. group 
2 and 3 are little sensitive to Am,, this estimation error is now dropped to simplify the OFDO design. 

As in exp. group 1 let 

In addition intrcduce the stochastic measurement errors ewb and efg for the boiler water temperature and the 
flue gas temperature. Bringing the system description into a form close to (18) leads to 

where: 



Note that form (18) cannot be reached exactly, because no matrix N, exists such that 

0 1 0  
x=N.y and N.[ 0 0 1  1-0. 
To still use the OFDO design of Wiinnenberg [4] assume-the term Bo(u,x) in (63a) replaced by Bo(u,y). This 
will lead to a suboptimal fault detection observer (SOFDO). 

To generate the measurement errors ewb(t) and e&) use in both cases a discrere 2nd order butterwonh filter, 
driven by a white gaussian noise sequence and followed by a ZOH. The following parameters are used 
(nominal values): 

- sampling time: T,=lsec 

- filter cutoff frequency: oC=1130sec 

- means and standard deviations: 

OFDO design: 

1) - 3) See exp. group 3. 

4) Weighting mamces: 

For dl(t) and f(t) the same simplifying assumptions as in exp. group 1 are used. Keeping the index numbers 
from exp. p u p  I this leads to 

.- 
d , ( t ) = ~ C ~ ( : ,  + b2sin(obt +@)) and 

i( t )  =AC, (% + L3sin(obt +@)). 

where S2,-,. LZ,-,, and @"defined in (61). 

dl([) .. d3(t) are assumed to be uncorrelated in pairs. Then Cd can be constructed 
matrices 

from the I 

C d  = E ii . D ~ ~ . D Y ~ J [ ~ ~ .  D;, .D2hi]], i = 1.A [I 
by simply insening these elements in the correct places in Cd: 

cd((j-1)3+i, (k-1)3+i)=cdj(j,k),  i,j,k=l..3. 

Elements of Cd not set in (75) vanish. Cd,foUows as 

demenrs of the 3 



The same with A?& replaced by A, holds for Cf. 

Cd2 and Cd, are eshated experimentally using the system shown in fig. 20: 

- generate series v&) and w&) of length 10'000 

- determine k2 =t+v(k)] and S. = tar[[w(k) iw(k) iTs  A 2 w ( k ) / T ~ ~ ] .  

where 'A' denotes empirical estimates 

z m  mean white 
gaurrian noise 

Fig. 20 System to simulate mmurement errors filtered by l/N(s) 

5) Maximizing Pi (see (10)): 
P,,, is found ro be P-=8.6. what means again a rather modest performance. 

6) Observer matrices according to (1 1)-(15): 
(shown in rounded form, implemented in double precision) 

Exp. 4.1: Constant parameter estimation errors as assumed for design 

As in exp. 1.2 implement the parameter errors 

- 
AGb(ub =0) = AGg(ub =1) = AGg =-0.1 Eb0 and 

AGw(ub = 0) = AG,(ub = 1) = AE, =-0.05 EPO 



Exp. 4.1: Constant parameter estimation errors as assumed for design 

As in exp. 1.2 implement the parameter errors 

To generate the measurement errors use the nominal parameters v,, o,, udl..J as assumed for design. 

As measurement errors are small compared to the ranges of the temperature measurements, they show almost 
no visible effects in plots as shown in fig. 4 and 5. However, the residuals in fig. 21 and 22 are rather sensitive 
to these errors. Note in fig. 21 that by considering measurement errors in the design, the residual has a far 
larger magnitude than in exp. 3.1 (compare to fig. 18). So the design pmedure has reacted to possible 
measurement ermn in the desired way. The PI is as expected rather modest and similar to the one of the LU) 
for Tfg in fig. 22. 

Fig. 21 Residuals of the SOFDO (&=7.6) Fig. 22 Residuals of the LLO (Pim=5.4) 

Exp. 42: Input dependent parameter estimation error AGg 

Parameter errors as in exp. 4.1, but AGk refined according to (58). 

As shown in fig. 23 the residual shows little change compared to exp. 4.1 

Doubling the errors AGko and AGkl decreases the PI to 1.8. i.e. a rather bad performance.However. 
redesigning the observer assuming doubled A E ~  gives a PI of 3.3 only. Therefore with doubled AGk0,, one 
can't do much better than what the original observer has reached. 

Exp. 43: Changing parameters of the measurement errors 

Parameter e m  as in exp. 4.2, and in addition different deviations of the hue parameters o,, kg and qg from 
their nominal values. 

There is little change in the performance of the SOFDO. if o, is halfed (+ P,=6.2), if o, is doubled (+ Ph= 
4.8), or if qg is doubled (+ Ph=5.2). A considerable deterioration occurs if hg is doubled, as shown in fig. 
24. This deterioration is pmbably due mainly to the error introduced by replacing in the observer the term 
B(uA by B(u.y). 



Fig. 23 Residuals of h e  S O W  (Ph=5.5) Fig. 24 Residuals of h e  S O W  (Pi,=3.3) 

input dependent parameter error AGg . doubled bias in Tfg 

4.5 Summary of the experiments 

Tables 1 and 2 summarize h e  experiments. The first mw of each experiment group summarizes the design 
assumptions. 

....,.,.,...,... possible 

-.05 2c.fd 30 good 
=,lo 

-.05 G,,o - -.050-xtd -.05 G,, 7.7 modest 

2.4 

Table 1 Experiments wih 1st order observers 

-.1 k o  
-2 Gk10 
-2 Gkm 

-2 G ~ I O  

- 
-.05 G,, 1.9 very bad according lo redesign for 

doubled C(AG%) no 



Table 2a Experimenu with 2nd order observers, without measurement m r s  

exp. 
no. 

3 

3.1 

3.2 

3.3 

Table 2b Experimenu with 2nd order observers, with measurement m r s  

exp. 
no. 

4 

4.1 

4 . ~ 3  

In exp. group 1 gwd performance is achieved. However, it turns out that this is possible only due to the full 
correlation between Amw and A E g ,  which was assumed by rnismke. The residual is highly sensitive to 

violations of this design assumption. 

Assuming A h w  and AEg to be uncorrelated in exp. group 2, the performance decreases significantly, but is 
now more robust to deviations from the design assumptions. The bad performance in exp. 2.4 is due to the fact 
that the effecu of AE* and AE, are hard to separate. 

disturbances 

Stepping to a 2nd order observer in exp. group 3 gives modest improvement as long as the design assumptions 
are met In case of faulu the residual is too small and obviously would get cormpted by measurement errors. 
The sensitivity to deviations from design assumptions is higher than for the 1st order observers in exp. group 2. 
The size of the residual in case of faults is significantly increased in exp. group 4 by taking measurement 
m r s  into account The sensitivity to deviations from the design assumptions concerning the measurement 
emrs is rather low. The performance stays modest because the effects of AEg and A, are hard to separate. 

fault 

AE, 
external 
sine wave - 
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5 Discussion of the design method 
The fault detection method introduced by Frank and Wunnenberg [3] and Wunnenberg [4] is a sound approach 
to the robustness problem in observer based fault detection. The method leads to a fault detection observer that 
is optimal with respect to the defined performance index. The following points may impede its application in 
practice: 

- A paramemc process model must be set up and its parameters must be identified. 

- Among the nonlinear systems only a resmicted class can be handled. 

- The computations involved in the design are heavy and may not suitable for on-line execution. Therefore 
adaptation of the observer to a changing operating point is oftennot possible. 

- An analytical determination of the weighting matrices is difficult because it requests signal models for the 
disturbance and fault signals. To get such models many assumptions and gross simplifications are often 
necessary. Frank [2] suggested determining the weighting mamices experimentally by simulation. This 
suggestion is followed in exp. group 4 when determining the weigthing mamix enmes stemming from the 
measurement errors. To experimentally determine here also the enmes stemming form a parameter 
estimation error, say hb,, one could proceed as follows: 

Assume a disuibution f(Amw). 

. Assume that hb, changes slowly with time. (Note that no on-line parameter estimation isassumed.) 

. Choose a large representative sample of f ( A i ~ , ) .  l e t  N be ist size. 

For each observation A&(i), i-1..N, do a simulation to get a sample function 

(see eq. (32)). Note that dli(t) is a sample function of a mn-ergodic stochastic process (d,(t.o)], where o is 
an elementary event, to which a random variable hw(o)  is assigned. o + hbw(o). Therefore the desired 
correlations cannot simply be determined by time averaging. 

Filter each dli(t) by l/N(s), to get dl,([) and its derivatives up to order p. 

Determine the empirical correlations of &, . .DP~~ by averaging over time and over all N sample functions. 

In case of correlated parameter estimation errors a multidimensional dismibution would have to be assumed. 
Smictly spealung, the signals dl(t) and dz(t) as defined in (32) and (33) are correlated through the state vector 
x, even if the corresponding parameter estimation errors A& and AGk are uncorrelated, because the states 
depend on the parameter errors. 

- The performance of the resulting observer may be sensitive to deviations from design assumptions, as e.g. 
deviations in mean and variance of a parameter estimation error, an unexpected parameter estimation error 
not considered in the design, or unmodeled process features. The robustness to such deviations should 
therefore be checked by simulations. This may lead tb a large testing work. 

6 Conclusions 
The design method of Frank and Wunnenberg leads to optimal fault detection observers, whose residuals are 
maximal robusmess against disturbances and maximal sensitive to faults. As the method requires a heavy 
design effort, one may often prefer simpler fault detection methods. In such cases the optimal fault detection 
observers can provide useful benchmarks. 
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Abst rac t  

A method of fault detection in thermal storage tank and results of applying to  real thermal storage 

systems are presented. In the fault detection, a physical model is used for a water thermal storage tank of 

multi-connected complete mixing type, and unknown parameters of the physical model are identified from 

measured data. In this report, simulation study was conducted in which several faults in storage tank 

were tried to detect. Furthermore, some primitive operation faults were discussed, and analysis results of 

identified parameters of the model are presented for measured data in real buildings. The identified model 

parameters varied widely because of modeling accuracy and measuring error, so statistical methods were 

applied in order to detect fault conditions. 

1 INTRODUCTION 

Thermal storage systems are being widely used in Japan, the U. S. and other countries. They contribute 

to the effective use of energy; peak shift of electrical demand, heat recovery, solar energy utilization and 

seasonal storage. Water, ice and other phase change materials are used as the thermal storage media. 

Water thermal storage has a long history in Japan and mast of the large scale applications have used 

water[]] [2][3]. 

A method of fault detection in thermal storage tank and results of applying to  real thermal storage 

systems are presented in this report. In the fault detection, a physicalmodel is used for a water thermal 

storage tank of multtconnected complete mixing type, and unknown parameters of the physical model are 

identified from measured data. Faults can be detected by comparing d u e  of identified parameters with 

value of the identified parameters under normal condition. In this report, simulation study was conducted 

in which some faults in storage tank such as insulation damage of tank wall or abnormal water level in 

tank were tried to detect. Furthermore, some primitive operation faults appearing just after compIetion 

of building were discussed, and analysis results of identified parameters of the model for measured data 

in real buildings are presented. 



Fig. 1 Thermal storage tank consisting of divided tanks connected in series 

Heat gain from tank wall in the physical model for parameter identification is divided into two parts 

as cyclic and constant heat gain for shorter simulation time of parameter identification, while unsteady 

onedimensional heat conduction in concrete tank wall and ambient soil was applied in a physical model 

generating fault data for simulation study. 

2 FAULT DETECTION METHOD 

2.1 PHYSICAL MODEL OF THERMAL STORAGE TANK 

Type of water storage tank is roughly classified into tvm type; the multi-connected complete mixing tank 

and the temperature-stratified tank. The former type is more popular in Japan because it was the first 

that was developed in Japan, though storage performance is below the latter type. Many buildings in 

Japan have space under the basement floor which is divided by high tie beams for protection against 

earthquakes. The dibided space has been used for water thermal storage of the multi-connected complete 

mixing tqpe. So, the physical model for the multi-connected complete mixing type is used in this study. 

Assumption in modeling is as follows. 

0 In each divided tank, one part is useful t o  thermal storage (effective tank volume) and the other 

part is useless (dead zone), and the effective volume ratio, P, is defined as the ratio of effective tank 

volume to  tank volume in each divided tank. . Water mixed completely in the effective tank volume enters into the next divided tank. 

Water density and specific heat are constant regardless of water temperature. 

Heat gain from tank wall is divided into two parts as cyclic and constant heat gain. 

Under this assumption, water temperature in the i th  divided tank of thermal storage tank is calculated 

with the following equation (Fig. 1). 

where 

and i is tank number, p water densitr; $ water specific heat, P, effective volume ratio of ith divided 

tank, V,  volume of ith divided tank, 8; water temperature in ith divided tank, 1 time, Q flow rate, Bomb.; 

ambient temperature of i th  divided tank, U; over-all coefficient of heat transfer of ith divided tank wall, 

A, surface area of i th divided tank wall, q, constant heat gain from wall in ith divided tank, A' number of 

divided tanks, V volume of the whole tank system, Bin water temperature entering the end divided tank 

This model equation is non-linear due to miable  flow rate (Q). 



In this mixing model, cyclic heat gain is assumed to be proportional to diierence between ambient 

temperature and water temperature in each divided tank. The cyclic heat gain is related to charging 

and discharging of heat into concrete tank wall due to cyclic change of water temperature. Ambient 

temperature, b'mmb,ir is assumed to be equal to daily average of measured water temperature in each 

divided tank. Constant heat gain, i.e. the last term of Equation (I), is related to  heat gain from ceiling of 

tank and heat gain difference between daily average uater temperature and actual ambient temperature. 

Three parameters, P,, UiAi and qiA,, of the model have to be identified for fault detmtion. 

2.2 PAMMETER IDEKTIFICATION OF PHYSICAL MODEL 

In this study, Pi, UiAi and qiAi are assumed to have the same value in all divided tanks to realize 

identification only with measured water temperature in several divided tanks as follous. 

Then, P ,  U A  and qA which realize the closest temperature profile to the measured profile are obtained 

by using the modified Powell method[4][5]. 

ldentiiication procedure is as follous. 

1. lnitial water temperature in each divided tank is interpolated from water temperature of several 

measured divided tanks. 

2. lnitial value of model parameters is set. In this study, P = 1.0 and U A  = qA = 0.0. 

3. Water temperature in each divided tank at each measuring time scan is calculated using the physical 

model of storage tank under measured input temperature and flow rate data. 

4. Temperature errors in measured divided tanks are calculated and summed up as: 

Error = x x (Measured temperature - Calculated temperature)' 
Measured Scan 

tanks times 

5. New value of P ,  U A  and qA is set with the modified Powell method 

6. Above procedure is repeated until minimum error is achieved. 

3 SIMULATION STUDY 

3.1 SYSTEM AND OPERATION CONDITION 

The thermal storage system for simulation study is assumed to  be composed of a water thermal storage 

tank of the multi-connected complete mixing t p e ,  a chiller and an air handling unit (AHU). The storage 

tank is divided into 26 subtanks connmted in series and its total volume is 400 m3. The thermal storage 

system is shown in Fig. 2 schematically. 

In the storage tank, the ceiling, bottom and outer wall are insulated, but partition walls between dikided 

tanks have no insulation. Water to the chiller is pumped up from the lower and higher temperature end 

tanks, and chilled water is put into the lower temperature end tank. Water to  the AHU is pumped up 

from the lower temperature end tank and returns to the higher temperature end tank. 

Assumption in system simulation is as follows. 



Air handling unit 

I t 1 . . . .  
Higher temperature Lower temperature Thermal storage tank of a rnulti- end tank end tank connected complete mixing type 

Fig. 2 Thermal storage system for simulation study 

Input/output temperature difference of chiller is alwals 5 O C  regardless of the chiller COP. . Input temperature of chiller is normally controlled to  11 OC: and output temperature of chiller is 6 

'C normally. 

Input/output temperature difference of AHU is always 7 "C regardless of the cooling coil character- 

istics, and output temperature of AHU is calculated from the input/output temperature difference. 

Water temperature in each divided tank for no operation time also changes due to heat gain from 

tank wall. 

3.2 DATA GENERATION FOR SIMULATION STUDY 

Assumption in modeling of storage tank for data generation is the same as modeling for fault detection 

except of heat gain From tank wall following as: 

Heat gain From tank wall is unsteady heat transfer, and onedimensional heat conduction in concrete 

tank wall and ambient soil is applied in each divided tank. 

Heat capacity of insulation material and air is neglected, and thermal resistance between water and 

surface of tank wall is neglected. 

Under this assumption, water temperature in the ith divided tank of thermal storage tank is calculated 

with the following equation. 

where j is wall number in each divided tank, q;, heat gain from jth wall of i th  divided tank, A,, surface 

area of jth wall of ith divided tank. 

Temperature in concrete tank wall and ambient soil is assumed to be governed by the unsteady o n e  

dimensional heat conduction equation. Temperature in concrete and soil was calculated with the finite 

difference method for each wall of each divided tank under constant soil temperature at 1 m distance from 

concrete wall. 



20 
Charging or no operation mode 

.---.-.----. Discharging mode 

a 

Position in tank system [tank number] 

Fig. 3 Temperature profile in storage tank under normal condition 

Generated data  to apply fault detection is the 8th day data of the simulation started with 11 'C uniform 

temperature in the whole storage tank. In this thermal storage system, the chiller is operated in 21 hours 

from 0:00 to 13:OO and from 16:OO to 24:00, and the AHU is operated in daytime from 8:00 to 18:OO. Fig. 

3 shows the change of temperature profile in the storage tank under normal condition. 

Generated data  are assumed to be available only a t  measuring scan time of every one hour. So, input 

conditions between the measuring scans are interpolated linearly in the simulation for parameter identifi- 

cation. The divided tanks measuring water temperature are assumed to be the 1st; 4th, 7th, l l t h ,  15th, 

17th, 21st and 26th divided tanks in this simulation study. 

3.3 PARAMETER IDENTIFICATION UNDER FAULT CONDITION 

The result of parameter identification under normal condition is the reference for fault detection, which 

is compared with identification results under fault conditions. If the system has any faults, the identified 

value of model parameters will change. 

Variation of fault conditions in this simulation study is as follows. 

Damage of aU insulation in the 10th divided tank 

Ceiling insulation damage in all divided tanks 

Damage of all insulation in all divided tanks 

Abnormally low water level (P = 0.80) . Abnormal measured temperature in the l l t h  divided tank due to sensor damage (the measured 

temperature is correct temperature + 3'C) 

Results of parameter identification are listed in Table 1. Daily average water temperature in the whole 

tank sptem, B,,,, is also shown in this table. The result of insulation damage only in the 10th tank is not 

so different kom that of normal condition, and it is difficult to detect insulation damage in one divided 

tank. In case of ceiling insulation damage in all divided tanks, the constant heat gain, qA, increases 

remarkably. The cyclic heat gain, U A ,  in damage of all insulation in all tanks is larger than that in 

only ceiling insulation damage, but the damage effect of side wall and bottom insulation is not so much 



Table 1 Parameter identification results 

Condition P U A  " qA " 
Normal condition 0.953 505 66 10.5 - ~ ~~ - ~~~ - - 

Damage of all insulation in 10th tank 0.953 512 75 10.5 
'Ceiling insulation damage in all tanks 0.952 530 282 10.7 
Damage of all insulation in all tanks 0.965 683 266 10.8 
Abnormal water level(P = 0.80) 0.802 437 62 10.5 
Abnormal measured temperature in 11th tank*".912 818 171 10.6 
No heat gain 0.933 317 33 10.4 
m1 : bcal/h°C] +2 : [kcal/h] t 3  : ["C] *4 : correct temperature + 3'C 

because only outer side wall has insulation and partition wall between divided tanks has no insulation. 

Abnormal water level is detected easily because water level is related to the effective volume ratio, P, 
only. Abnormal measured temperature in one divided tank due to sensor damage has similar effect to 

increase of heat gain from tank wall due to insulation damage: butsensor damage can be distinguished by 

checking water temperature in each divided tank. In case of no heat gain, it is expected that P = 0.95: 

U A  = 0 and qA = 0 ,  and their differences are the result of identification error. Identification error may 

be attributed to modeling of heat gain, convergence error, interpolated initial temperature profile: and 

non-linear characteristics of the model equation. 

When this FDD method is applied to real thermal storage systems, the value of identified parameters 

varies widely in general because of measuring error, so statistical judgment will be effective to detect fault 

conditions. 

4 APPLICATION TO REAL THERMAL STORAGE SYSTEMS 

Measured data in real thermal storage systems were used to test the performance of FDD method. Analysis 

results of identified parameters of the physical model are presented for an office building and a hospital 

building in this study. 

4.1 OFF1 CE BUILDING 

4.1.1 HVAC system 

The data used in this study are a part of data recorded in an existing office building constructed in 1988. 

Outline of the building and HVAC system are listed in Table 2. The thermal storage system is composed 
of a water thermal storage tank of the multLconnected complete mixing type, t h r k  heat pumps and three 

air-conditioning systems. 

Output temperature of two heat pumps is controlled to be constant with two twwway valves, and output 

temperature of chiller is controlled with a twwway valve (Variable water volume control, VWV). Control 

of AHU circuit is also VWV control, and the flow rate is controlled with a twwway valve according to 

supply air temperature or room air temperature. Additional heat pump operation is determined according 

to temperature in the lower temperature end tank. The tank is divided into 26 subtanks connected in 

series and its total volume is 400 m3. 

Measured data for every fifteen minutes are input/output temperature and flow rate for each heat pump 

and each air handling unit, and water temperature in 8 divided tanks among 26 tanks. Data calculated 



Main building use ( Office 
Heat pump I Air source heat pump (heat recovery type), 80 h.p. 

Table 2 Outline of the office building and HVAC system 

Air source heat pump, 80 h.p. 
Air source chiller for cooling, 80 h.p. 

Air conditioner 1 Single duct VAV systems for ordinary rooms 

Site 
Structure 
Building area 
Total floor area 
Number of stories 

/ Single duct + fancoil unit system for computer room 
- 

Storage tank for / 34ulti-connected complete mixing type 

Tokyo, Japan 
Steel and reinforced concrete 
2404 mZ 
9784 mZ 
4 floors and 1 basement floor 

from the measured data are input temperature of the end tank, and total flow rate to heat pumps and 

air handling units. 

Since flow rate and input temperature are available only for every fifteen minutes; these input conditions 

between the measuring scans are interpolated linearly. 

Operation condition in 1 August 1989 is shown in Fig. 4. The cooling load consists of daytime load for 

ordinary rooms and 24 hours load for computer room. Heat pump operation in nighttime has priority 

over daytime operation because of cheaper night electric cost. Additional operation of heat pump started 

a t  15:OO in this case because of temperature rise in the lower temperature end tank. This is the standard 

operation condition under full cooling load for the thermal storage system of this office building. 

chilled water 

4.1.2 Some primitive operation faults 

26 divided tanks 
400 m3 

Operation conditions in 21 June 1989 are shown in Fig. 5 as an example of some primitive operation 

faults. These faulty conditions appeared because the thermal storage system was insufficiently controlled 

just after completion of the building, and the system was controlled successfully from July 1989. 

Primitive operation faults which can be found in this operating condition are as follows. 

High input temperature from heat pumps at the start of heat pumps 

Excessive stored chilled water under low cooling load condition 

Frequent daytime operation of heat pumps and insufficient nighttime operation 

lnput temperature from heat pump should be adequately low during charging mode. In this system, the 

thermal storage tank was settled under the basement floor, and the heat pumps %,ere installed on the 

roof. So, input temperature from the heat pumps is kept high at the start of heat pumps because of heat 

capacity of long pipes. It is difficult to improve this fault, but, if heat pumps don't repeat a start and 

stop action so often, the effect of this fault on temperature of stored chilled water can be neglected. 

Chilled water was stored too much in the tank, and only a little stored water was used for cooling. 

Excessive stored chilled water causes unnecessary energy loss through tank wall. 

The heat pumps were operated frequently in daytime in spite of full charge, and nighttime operation is 

insufficient in spite of cheaper electric cost. Set point of temperature for additional operation of heat 

pumps may be too low. 
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Fig. 4 Operation condition under full cooling load (1 Aug., 1989) 
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These primitive operation faults may be detected easily by checking input temperature from heat pump, 

stored heat in the tank and ratio of nighttime stored heat to total stored heat. 

I I 

4.1.3 Analysis of identified parameters 

_ I I 

Model parameters were identified using the measured data of 92 days from 1 July to 30 September in 

1989. Fig. 6 shorn temperature change in each measured divided tank with identified parameters in 1 

August 1989. This figure shows comparison of measured temperature change with calculated temperature 

change under identified parameters. 

The distribution curve of the identified parameter was assumed to be a normal distribution with the mean 

and variance obtained from identification results. Histograms of each identified parameter are shown in 

Fig. 7, in which the value of parameters on the outside of both 1 % are excluded. The excluded parameter 

3 6 9 12 18 21 
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Fig. 5 Operation condition before adjustment (21 Jun.. 1989) 

values are listed in Table 3. Ewrq. identified parameters of these abnormal days have extreme value, and 

especially, qA has extreme value. These extreme values were found to be attributed t o  abnormal measured 

data of temperature in tank and inlet except an unknown day. 

Histograms of each identified parameter separated in SundayJholiday and weekday are shown in Fig. 8. 

It  is found that the identified parameters in SundayJholiday have different d u e  from that in weekday. 

So, t test was tried t o  judge whether this is true or not. The t test is a statistical tool for judging whether 

the two normal distributions have the same mean value or not in this case. Result of the t test is shown 

in Table 4, and it is found that there is a significant difference between the two mean balues, that is, P in 

Sunday and holiday is smaller than that in weekday and qA in Sunday and holiday is larger than that in 

weekday. 

Cooling load is generally low in Sunday and holiday, and correlation analysis was tried to examine the 

effect of some operation conditions on the value of P and qA. These results are shown in Fig. 9. These 
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Fig. 6 Temperature change in each measured divided tank with identified parameters (1 Aug.. 1989) 

Fig. 7 Histograms of identified P. U A  and qA in ofFice building 

Table 3 List of extreme parameter values 

Date P U A  qA Cause 
14 Jul. 1.205 305 -1082 Abnormal measured data 
31 Jul. 0.800 498 1273 Unknown (false alarm) 
14 Sep. 1.185 191 -1352 Abnormal measured data 
15 Sep. 1.233 397 -1137 Abnormal measured data 

correlation coefficients have comparatively high \due, and it is found that Pis smaller in caseof low cooling 

load and large difference of storage temperature, and qA is larger in case of low storage temperature. The 

small P can be attributed to the lower mixing level in each dibided tank because of strong buoyancy 

caused by low flow rate and large temperature difference. The large qA can be attributed to larger heat 

gain from tank wall because of large temperature difference. 
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Fig. 8 Histograms of identified P, U A  and qA in Sunday/holiday and weekday 

Table 4 Result o f t  test for Sunday/holiday and weekday 

Parameter Mean t value Significance 
Sunday/holiday Weekday level 

P 0.932 1.010 8.09 I 70 

Coollng day load ~ l u n  Storage temperature 
difference ("0 

Average Storage 
temperature (4 

Fig. 9 Relationship between some operation conditions and identified parameters 

4.1.4 Fault detection of insulation damage 

Fault data of insulation damage or abnormal water level were una~ailable from the recorded data in this 

office building. In this study, fault data of insulation damage were generated from the measured data. 

Generally, insulation damage causes temperature rise in each divided tank, so temperature in each divided 

tank is assumed as follows. 

%( =%?+O.l ["CI (4) 

where B{ is temperature in i th  divided tank under insulation damage condition, and @" is measured 

temperature. This temperature rise corresponds t o  the ceiling insulation damage in all divided tanks as 

shown in Table 1. 
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Fig. 10 Change of qA identified under normal condition and insulation damage condition 

Fig. 11 Change of the significance level o f t  test for identified qA 

Fig. 10 shows the change of identified qA in which the data in July are kept normal and the data in August 
are assumed to  be under insulation damage condition. Identified qA in August under normal condition is 

also shown in this figure. The difference between qA under normal condition and that  under insulation 

damage condition is smaller than the day change of qA. So, it is difficult t o  detect the insulation damage 

by checking the value of qA itself. 

Statistical approach is useful in this case. The data  of identified qA were divided into two groups before 

and after a specific boundary day, and whether the two groups have the same mean value or not was 

judged using t test. The significance l e d  o f t  test bas calculated from the identified qA data divided at 

the boundary day of two groups. The change of the significance level is shown in Fig. 11 according t o  the 

boundary day. The significance level has the peak value in I August when insulation damage happened. 



- I AH6 + reheater for operating rooms 
Storage tank for I Multi-connected complete miximg type 

Table 5 Outline of the hospital building and HVAC system 

chilled water 20 divided tanks 1 780 m3 

Site 
Structure 
Total floor area 
Number of stories 
Main building use 
Chiller 
Air conditioner 

4.2 HOSPITAL BUILDING 

Tokyo, Japan 
Steel and reinforced concrete 
17,000 m2 
6 floors and 2 basement floor 
Hospital (200 beds) 
Turbo chiller (300 USRT) X 2 
AHU + FCU for sickrooms 
AHU of intake outside air + terminal AHU 

for consultins rooms 

4.2.1 HVAC system 

The data used in this study are recorded in an existing hospital building constructed in 1979. Outline 

of the building and HVAC system of the hospital are listed in Table 5. The thermal storage system is 

composed of a water thermal storage tank of the multi-connected complete mixing type, two chillers and 

various ajr-handling systems and fan-coil units (FCU). 
Output temperature of two chillers is controlled to be constant with a three-way valve. Control of AHU 

and FCU circuit is VWV control. The flow rate is controlled with a twc-way valve according to supply air 

temperature or room air temperature, and supply water temperature to FCU is controlled to be constant 

with a three-way valve. The thermal storage tank is divided into 20 subtanks connected in series and its 

total volume is 780 m3. 

The data used in this study were measured from 1 May to 20 August 1995, though the data from 19 June 

to 5 July were excluded because the data collection system was broken down. 

Measured data for every ten minutes are input/output temperature and flow rate for each chiller and the 

secondary circuit, and water temperature in 14 divided tanks among 20 tanks. Data calculated from the 

measured data are input temperature of the end tank and total flow rate to chillers, AHU and FCU. 

The sensor mounting fault for input temperature of the end tank from two chillers and secondary circuits 

was found through inspection of the measured temperature. The sensor mounting fault was recovered 

at 22 July except for one chiller. The sensor of input temperature from this chiller is kept under fault 

condition. So, the input temperature for the simulation of parameter identification was assumed to  be 

equal to the input temperature from the another chiller. 

Operation condition in 31 July 1995 is shorn in Fig 12. The cooling load consists of daytime load and 24 

hours load, and chiller operation in nighttime has priority over daytime operation. Additional operation of 

chiller started at 9:00 and 15:OO in this case because of stored heat shortage in tank. This is the standard 

operation condition under full cooling load for the thermal storage system of this hospital building. 

4.2.2 Analysis of identified parameters 

Model parameters were identified using the measured data of 95 days from 1 May to  20 August in 1995. 

Fig. 13 shows temperature change in several measured divided tanks with identified parameters in 31 July 



Time [h] 

a. Heat pump output and cooling load 

--I Charging or no operation mode 

Position in tank system [tank number] 

b. Temperature profile in storage tank 

Fig. 12 Operation condition under full cooling load (31 July. 1995) 

1995. 

Histograms of each identified parameter are shown in Fig. 14. The d u e  of identified parameters for some 

days were unamilable because the data transmission fault was happened and the simulation could not be 

conducted due to abnormal value of temperature and flow rate. 

The value of identified model parameters w i e s  widely because of modeling accuracy and measuring 

error. So, statistical tests were applied in order t o  detect fault conditions in this case. Thompson test is a 
statistical test in which a particularly far d u e  can be detected in the identified value of each parameter. 

Histograms of significance level of Thompson test for each identified parameter are shown in Fig. 15. The 

significance level higher than 1% or more strict than 1% were obtained in 14 June in case of P, in 19 and 

20 July in case of U A  and no extreme value in case of qA. 

Table 6 show a list of extreme parameter values. The cause of the extreme value of 3 days in the l i t  

is unknown because neither abnormal water level nor insulation damage of tank wall happened. It may 
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Fig. 13 Temperature change in each measured divided tank with identified parameters (31 July, 1995) 

Fig. 14 Histograms of identified P, U A  and qA in hospital building 

attribute to the sensor mounting fault before 22 July when the fault was partially recovered. The value 

of identified parameter is unavailable in 4 days because of the data transmission fault. The simulation for 

these 4 days cannot be conducted due to abnormal flow rate and temperature, and so this fault could be 

detected. 

4.2.3 Fault detection of insulation damage 

Fig. 16 shorn the change of identified q A  related to constant heat gain from tank wall. And, the shift 

of identified q A  suggests the insulation damage of tank wall. The identified q A  has negative value before 

22 July and positive d u e  after 22 July. But, any insulation damage of tank wall did not happen in this 

day. The 22 July is the day when the sensor mounting fault for input temperature into the storage tank 

was recovered. The shift of the input temperature apparently resulted in the shift of heat flow through 

tank wall. P and U A  did not shift in 22 July. So, the shift of input temperature into storage tank due to 

sensor fault affects the value of identified q A  only. 
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Fig. 15 Histograms of significance level of Thompson test for each identified parameter 

Table 6 List of extreme parameter values 

Date P U A  qA Cause 
6 Jun. - - - Abnormal measured data  

14 Jun. 1.172 4077 -5634 Unknown (false alarm) 
18 Jul. - - - Abnormal measured data  
19 Jul. 0.913 6555 -4769 Unknown (false alarm) 
20 Jul. 0.989 5929 -8416 Unknown (false alarm) 
29 Jul. - - - Abnormal measured data 
3 Aug. - - - Abnormal measured data 

5 CONCLUSION 

1. A method of fault detection in thermal storage tank and results of applying to a real thermal storage 

system are presented. 

2. In the fault detection, a physical model is used for a water thermal storage tank of multi-connected 

complete mixing tqpe, and unknown parameters of the physical model are identified from measured 

data. FauIts can be detected by comparing value of identified parameters with d u e  of the identified 
parameters under normal condition. In the physical model for fault detection, heat gain is divided 

into two parts as cyclic and constant heat gain. 

3. Simulation study was conducted in which some fauIts in storage tank were tried t o  be detected, 

and it was confirmed that barious insulation damages of tank wall and abnormal water l e d  can be 

detected successfully from parameter identification. 

4. Some primitive operation faults were discussed and analysis reul ts  of identified parameters are pre- 

sented for measured data in a real system of office building. The distribution curve of the identified 

parameter was assumed to  be a normal distribution with the mean and ~ w i a n c e  obtained from 

identification results. The value of parameters on the outside of both 1 % are judged to be under 

fault condition, and it is found that these extreme values are attributed t o  abnormal measured 

data of temperature in tank and inlet except an unknown day. Fault data of insulation damage 

was unavailable from measured data, so the fault data  of insulation damage were generated as 0.1 

"C higher than the measured data. The data of identified parameter were divided into two groups 

before and after a specific boundary day, and whether the two groups have the same mean value 

or not was judged using t test. The significance level o f t  test has the peak value in the day when 
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Fig. 16 Change of identified qA of the hospital building 

insulation damage happened. 

5 .  Analysis results of identified parameters are presented for measured data in a real system of hospital 

building. The fault condition such as abnormal water level or insulation damage of tank wall did 

not happen from May to August 1995. But, the data transmission fault was detected. This is the 

result that the simulation for parameter identification could not be conducted due to  abnormal data 

of temperature and flow rate. Some false alarms were observed, but the causes are unknown. The 

shift of identified qA related to  constant heat gain from tank wall was observed, but any insulation 

damage of tank wall did not happen. This is because the identified value of qA was affected by the 

shift of measured input temperature into storage tank due to sensor fault. 
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A b s t r a c t  

A fault detection and diagnosis method based on the use of first principles models is described. 
A single reference model of correct operation is used to generate innovations and thereby detect 
faults. Diagnosis is performed by analysing the variation in the innovations over the operating 
range using a rule-based classifier. The method has been tested on the cooling coil subsystem 
in a simulated air-handling unit. Results of these tests are presented to illustrate the operation 
of the method. 

1: Introduction 

Fault detection involves the determination that the observed behaviour of the target system is 
unacceptably different from the expected behaviour. The unacceptable behaviour may occur 
over the whole operating range or be confined to a limited region. Fault diagnosis involves 
determining which of the possible causes are consistent with the observed behaviour. It may 
be possible to identify the nature of the fault unambiguously, but often it is only possible to 
eliminate some of the possible causes. The process of diagnosis requires that the most important 
possible causes of faulty operation have been identified in advance and that these different 
causes give rise to behaviours that can be distinguished with the available instrumentation. 
Unambiguous diagnosis imposes progressively greater demands on both the instrumentation 
and the sophistication of the diagnosis method as the number and similarity of the faults to be 
considered increases. 

Faults in HVAC systems can be divided into two classes: binary or abrupt faults, e.g. broken 
fan belt, and degmdation faults, e.g. coil fouling. Abrupt faults are easier to detect, since they 
generally result in a sudden failure of some part of the plant, although they are not necessarily 
easier to diagnose. In the case of degradation faults, it is necessary to define a threshold, 
below which the fault is considered insignificant and above which it is considered desirable 
to detect the fault. The difficulty of detecting and diagnosing degradation faults depends on 
the threshold adopted. In principle, this threshold must be determined by some kind of cost- 
benefit analysis. The possible benefits of detecting a particular fault include energy savings, 
avoidance of occupant discomfort or illness, and avoidance of damage to the building fabric and 
contents or other components of the HVAC system. The costs of detecting a particular fault 
include the cost of any additional instrumentation, computer hardware and software, and any 
human intervention. Both the costs and the benefits will depend on the particular building and 
application and must be determined on a case-by-case basis. 

2: Description of Method 

The fault detection and diagnosis (FDD) method presented here is illustrated in Figure 1. It 
consists of two basic components: a preprocessor (for fault detection) and a classifier (for fault 
diagnosis). The preprocessor consists ofa two static models: a first principles model and a radial 
basis function (RBF) model. The parameters of the first principles model are estimated from 
test data obtained from the system being monitored. The radial basis function network is used 
to compensate for any structural inadequacies in the first principles model. Together, the two 
models represent the correctly operating system and they are used to predict the steady-state 
output of the system from the measured inputs. The prediction is passed through a first order 



low-pass filter, which is used to model the dynamics of the system, and the predicted dynamic 
output is compared with the measured output. Any differences between the predicted and 
measured outputs (innovations) are indicative of changes in the system. However, innovations 
may also be due to modelling errors and noise in the measurements. To allow for these errors, 
the RBF model is also used to predict a confidence interval for the output predictions. The 
confidence limits act as a detection threshold. If the innovations exceed the threshold for a 
sustained period then a fault is deemed to have occurred. 

The classzfier consists of three 'bins' which are used to store a moving average of the innova- 
tions generated by the preprocessor in different regions of the operating space. In the example 
presented here, there are three different operating regions, corresponding to low, medium and 
high coil duty. A rule-based classifier is used to analyse the contents of these bins and produce 
a diagnosis. The number of bins, the operating regions that they describe and the rules have 
been specifically designed to distinguish between three common degradation faults in cooling 
coil subsystems: valve leakage, coil fouling and supply air temperature sensor drift. 

MODEL 

......................................... ............................... 

: STATICMODEL 

.................................................................... m 

PREPROCESSOR 

LNPLKS 
SYSTEM RULES 

Figure 1: The fault detection and diagnosis scheme 
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2.1: First Principles Model 

The first principles model of the cooling coil subsystem has two parts: a valve model and a coil 
model. The valve model is necessary in order to predict the flow rate of the water entering the 
coil from the control signal to the valve actuator since this is not usually measured. The model 
represents the installed characteristic of an equal-percentage three-port valve by means of a 
modified exponential function whose curvature is determined by a single parameter. The model 
of the coil is based on the effectiveness-NTU relationship for a counter-flow heat exchanger. A 
single parameter, UA, represents the overall conductance of the coil. The dynamic response 
of the system is approximated by a first-order low-pass filter. The model does not treat the 
non-linear dynamics associated with rate limited actuators, the variation in coil time constant 
with operating point or the dynamic response of the supply air temperature sensor. Details of 
the valve and coil models can be found in [I]. 

The model of the valve and coil is used to predict the off-coil air temperature from measure- 
ments of the on-coil air temperature, the supply air mass Aow rate (calculated from the velocity 
measurements) and the control signal to the valve. Other quantities such as the chilled water 
supply temperature and mass flow rate of water in the primary circuit are not generally mea- 



sured by the BEMS, and are assumed to remain constant at their design values. Any changes 
to the values of these quantities therefore constitute unmeasured disturbances, and significant 
enough changes will generate false alarms. These inputs to the model that are assumed to  re- 
main constant can be treated as parameters. Table 1 shows all the parameters required by the 
valve and coil model, together with their method of identification. 

Table 1: The ~arameters  of the first ~rinciples model 

parameter 
valve curvature coefficient 
overall conductance of coil 
water mass flow rate into valve 
chilled water supply temperature 
maximum supply air flow rate 
maximum temperature rise across fan 
time constant 

training data 
design data 
design data 
design data 
commissioning data 

The last two parameters in Table 1 are used to enable the temperature rise across the supply 
fan to be estimated in the case where the fan is located between the cooling coil and the supply 
air temperature sensor. 

Design and manufacturers'data are used to provide initial estimates of the valve curvature coef- 
ficient and the overall conductance of the coil. Training data obtained from tests on the system 
are then used to refine these parameter estimates by minimising the mean square difference of 
the model predictions and the measured system outputs. Since the model is not linear in these 
two parameters, their optimum values cannot evaluated analytically for the training data. A 
non-linear direct search method is therefore used 121. 

2.2: Radial Basis Function Model 

The first principles model necessarily includes a number of simplifications and approximations 
that limit the accuracy of the model in some regions of the operating space. In regions where 
there is training data, the errors in the predictions of the first principles model can be deter- 
mined from a direct comparison of the predictions and the training data. These errors are then 
compensated for using an RBF network 131, which uses a set of weighted Gaussian distributions 
to model the errors. The centres of the basis functions are positioned in the input space of the 
models using the 'k-means clustering' algorithm [4]. Further weights are calculated to allow the 
RBF to model the density of training data in the input space and the confidence limits for the 
combined model. 

An important property of RBFs is that the resulting model is local; its contribution to the 
combined model tends to zero outside the region covered by the training data. Another impor- 
tant property is that the model is linear-in-the-parameters, allowing a confidence interval for 
the predictions of the model to be estimated as part of the least squares parameter estimation 
procedure. In the regions where there is a high density of training data, this confidence interval 
is used as the confidence interval for the whole model. In regions where the density of training 
data is low, the confidence interval for the combined model is estimated from the differences 
between the predictions of the first principles model and the training data. This assumes that 
the distribution of the training data within the operating space is sufficient to ensure that the 
errors in the predictions of the first principles model are not significantly greater outside of the 
training da ta  regions. 

2.3: Classifier 

Three 'bins' are employed to store a moving average of the amount by which the innovations 
exceed the 99% confidence interval. The bins correspond to low, medium and high coil duty, 



as determined by the control signal to the coil valve actuator, u,. The low bin is updated if 
0 5 u, < 0.2, the medium bin if 0.2 < u, < 0.6 and the high bin if 0.6 < u, < 1.0. A measure 
of the age of the data in each bin is also maintained. If this value exceeds a threshold, the 
innovation data in the corresponding bin is considered too old and the bin is emptied and its 
value reset. 

Boolean rules derived from expert knowledge are used to analyse the content of the bins. A bin 
can have one of four states: 

where b is the moving average value of the innovation, A is the threshold for b, a is the effective 
age of the bin value and T is the threshold for a. An example of a rule for the valve leakage 
fault is: 

IF low bin IS positive 
AND mid bin IS small 
AND high bin IS small 
THEN fault IS leokoge 

An evidence value is generated with each diagnosis that is proportional to the number of valid 
bins. If the states of the bins match the rules for more than one fault type then the evidence is 
shared equally between them. 

3: Results 

The FDD scheme was tested on a simulated air-conditioning system to assess its ability to 
detect fouling and leakage faults in the cooling coil of an air-handling unit. The test data are 
generated from an HVACSIM+ simulation of a three zone VAV air-conditioning system. The 
main component models used in the simulation are described in [5]. The structure of the plant 
and the control scheme is similar to that described in [6] but the sizing of the equipment is 
taken from the detailed design of a recently completed office building in London. The simulated 
building has three zones, each having time-varying occupancy, equipment and lighting loads. 
In addition, each zone is subject to significant, highly variable, solar gains. Test data were 
generated by the simulation using weather data measured on two days: a March day, during 
which the cooling demand remains relatively low for most of the occupancy period, and a June 
day in which the system is subjected to a wide range of operating conditions. Figure 2 shows 
the behaviour of the correctly operating cooling coil on the first and second days. 

Training data were generated by performing open and closed loop tests on the simulated plant, 
as shown in Figure 3. Tests of this sort could be carried out as part of the commissioning 
process in a real building [7]. Constant loads and inlet conditions were maintained during the' 
tests. In the first phase, all closed loop control was disabled and the control signal to the cooling 
coil valve actuator was varied in a series of steps at four different air flow rates. In the second 
phase, local loop control was restored, and the set-point for the supply air temperature varied 
in a series of steps. Three series of steps were performed, the first with the VAV boxes under 
closed loop control, the second with maximum air flow rate through the VAV boxes and the 
third with minimum air flow rate through the VAV boxes. Due to the inaccuracies associated 
with the measurement of mixed air temperature, the training data are restricted to the part of 
the operating range of the plant in which the mixing box dampers are set to provide full outside 
air. The supply temperature exceeds the outside air temperature when the valve is closed due 
to the heat produced by the fan. 
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Figure 2: Test data on the March day (left) and June day (right) with no faults. The upper 
graph shows the supply air temperature and the outside air temperature and the lower graph 
shows the fractional air flow rate and the mixing box and cooling coil control signals. 

The FDD scheme was tested using the correct operation case and two different fault cases: 3 % 
flow rate leakage through the control valve and I mm of calcium carbonate fouling on the tubes. 
The results of applying the scheme to these three cases on each of the test days are presented in 
Figures 4 and 5. Figure 4 shows the variables associated with the preprocessor for each of the 
test days. Two graphs are presented for each day: the upper graph shows the innovation as a 
solid line and the confidence interval as a symmetrical band centred about zero on the innovation 
axis and the lower graph shows the control signal to the valve, which is used to  determine the 
appropriate bin for any innovations. Figure 5 shows the variables associated with the classifier. 
Four graphs are presented for each day: the three upper graphs show the bin values for the 
different regions of the operating range and the lower graph shows the final output which is the 
evidence for a particular fault. The thresholds that are shown as a band centred about zero 
were determined from the training data. 

The scheme did not generate m y  false alarms on either of the test days despite the existence 
of modelling errors. The modelling errors can be observed as non-zero innovations for the fault 
free test cases. The confidence limits prove to be a reliable measure of model accuracy and the 
majority of innovations are contained within the confidence interval. However, the confidence 
limits were exceeded on the March day when the coil was operating at very low duty but the low 
bin value did not exceed the maximum value experienced for the training data and a false alarm 
was not generated. The modelling errors that are apparent may arise in either the static or the 
dynamic submodels. The confidence limits that are estimated are a measure of the inaccuracy 
of the static submodel. Since the dynamic submodel is rather crude, sustained transient activity 
can be expected to lead to false a la rm.  However, it is assumed that, in practice, most sys tem 
do not undergo sustained periods of high frequency transient activity and that they spend most 
of their time a t ,  or near, steady-state. 

The scheme was unsuccessful at detecting fouling on the March day, due to the plant not entering 
the high duty regions of the operating range where the fault is apparent. Also, the leakage fault 
was not diagnosed on this day despite the coil spending most of its time at low duty. Reference 
to Figure 4 shows that the control signal was rarely very close to zero. For most of the time, 
the control signal fluctuated around a value of 0.2, which is too high for the leakage fault to 
have any effect on performance. There are two periods during this test where the valve was 
nearly closed (at I hour and 4 hours). The innovations do exceed the confidence limits during 
these periods, but this is not sustained for long enough to cause the bin values to exceed the 
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Figure 3: The training data. The upper graph shows the supply air temperature and the outside 
air. temperature and the lower graph shows the fractional air flow rate and the mixing box and 
cooling coil control signals. 

thresholds. The main reason for the lack of data is that the model is not used when the dampers 
are modulating due to the difficulty associated with obtaining a reliable measurement of on-coil 
air temperature in real systems. Since the coil usually has a high gain where the valve is very 
nearly closed, the closed loop control will result in rapid movement through the region where 
leakage is apparent, resulting in only small amounts of useful data. 

On the June Day the scheme managed to detect both of the faults. The fouling fault was 
detected due to the coil being exercised at high duty where the effects are most apparent. The 
leakage fault was detected at the end of the test when the valve was almost fully closed. 

4: Conclusions 

The work has demonstrated that an FDD scheme based on the use of a reference model of 
correct operation coupled with expert rules is capable of identifying faults in HVAC plants. The 
combination of a first principles model and a local black box model has been proposed as a 
means of maximising the use of both a priori information and the information contained within 
training data. The twc-tier modelling approach that has been adopted also allows statistical 
techniques for linear systems to be employed to calculate confidence limits. 

Simplifications in both the static first principles submodel and the dynamic submodel lead to 
wider estimates of the confidence intervals and hence a less sensitive scheme. Although the 
RBF model can compensate for the structural inadequacies of the first principles model, this 
will only occur within the regions where training data were obtained. As the model is used 
outside these regions, the confidence limits will widen to reflect the underlying inaccuracy of 
the first principles model. Dynamic inaccuracies are not catered for by the estimated confidence 
interval and the mismatch between the approximated and true dynamic behaviour will lead to 
false alarms if there are sustained periods of transient activity. Future work will involve assessing 
whether enhancements to the first principles model can improve the effectiveness of the scheme 
(e.g. by including the effects of the fluid capacity rates on the overall conductance of the coil). 
The problem of dynamic inaccuracies will be addressed by analysing whether first principles 
relationships can be used to extend the dynamic model. 
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ABSTRACT 

The paper describes acondition monitoring scheme based on first principles models. The scheme 

involves estimating the values of model parameters tha t  are expected to change in the event of 

a fault. T h e  first principles models are, in general, not linear in the parameters, and recursive 

estimation of the parameters of these models is avoided by estimating the parameters of an 

intermediate model that  is, linear in the parameters. This intermediate model, which takes 

the form of a radial basis function network, is used periodically t o  generate d a t a  covering the 

complete operating range of the system. These da ta  are then used in the estimation of the 

parameters of the first principles model. The paper describes the techniques used and presents 

results from applying the method to the task of detecting two faults in the cooling coil subsystem 

of an air-handling unit. 

1 Introduction 

The  sensor and control signals in an HVAC system contain potentially valuable information 

about  t he  state of t he  system, and energy management and control systems (EMCS) have the 

ability to monitor and store these signals. In practice, t he  only checks tha t  are carried out  are 

t o  verify that  set  points are being maintained and tha t  certain critical variables remain with 

predetermined limits. This may allow the detection of certain abrupt or catastrophic faults, 

but t he  task of identifying the  underlying cause of the failure often requires a detailed manual 
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analysis of trend data  up t o  the point of failure or a test of the system so that  adiagnosis may be 

made. The slow changes in performance caused by degradation faults may be even more difficult 

t o  observe manually, and these faults may remain undetected until their effects are quite severe. 

One reason for this is that  feedback control tends to reduce the effect of such faults on the ability 

of the system to maintain comfort: even though other aspects of the performance of the system, 

such as energy consumption, may be significantly impaired. 

An alternative approach is to use the sensor and control signal data  collected by the EMCS to  

monitor the state of the system and infer the nature and extent of any faults using an automatic 

fault detection and diagnosis (FDD) system. Fault detection involves the determination that  the 

observed behavior of the target system is unacceptably different from the expected behavior. 

The  unacceptable behavior may occur over the whole operating range or be confined to  a limited 

region. Fault diagnosis involves determining which of the possible causes are consistent with 

the observed behavior. In some cases, it may be possible to identify the nature of the fault 

unambiguously, but often it is only possible to  eliminate some of the possible causes. The  

process of diagnosis requires that  the most important possible causes of faulty operation have 

been identified in advance and that  these different causes give rise to  behaviors that  can be 

distinguished with the available instrumentation. 

Fault detection and diagnosis in HVAC systems has been explored as part of an International 

Energy Agency collaborative research project (Annex 25) and by a number of other researchers 

(e.g. Usoro e t  al. 1985, Pape e t  al. 1991). Significant research has been carried out  by other 

industries, such as chemical processing. All of the approaches require the use of models of 

some sort. These models may be qualitative (e.g. Kaler 1990, Dexter and Benouarets 1995a) 

or quantitative (e.g. Iserman 1984) or a combination of the two (e.g. Yu and Lee 1991). For 

fault detection only a single model of correct operation is required; the system is deemed t o  

be faulty if its behavior does not match that  of the model of correct operation. Diagnosis 

of different faults requires either an analysis of how the difference between the observed and 

predicted behaviors varies with operating point or the use of models of the different types of 

faulty operation (Benouarets et al. 1994). 

The approach presented here involves identifying a model of the system on-line and analyzing i ts  

parameter values t o  ascertain whether a fault has occurred. The paper describes an  FDD method 

designed to  diagnose multiple faults and presents results of tests performed on a simulated cooling 

coil subsystem with fouled coil and a leaking valve. 



2 Overview of the FDD Method 

Figure 1 is a schematic of the condition monitoring scheme which comprises a radial basis 

function (RBF) model and a first principles ('physical') model. The R B F  models the local 

behavior of t he  HVAC system and is updated using a recursive gradient-based estimator when 

the system is (approximately) in steady state. In order to avoid estimator wind-up (or over- 

training),  the R B F  is only updated when the difference between the predicted and measured 

output  exceeds a certain threshold, indicating tha t  the performance of the system has changed. 

The  R B F  is then exercised over t he  operating range of the system and the da ta  generated used 

in the  estimation of the parameters of t he  physical model using a direct search technique (Box 

1965).  The  parameters t ha t  are estimated for the physical model are physically meaningful and 

represent a tangible measure of the system performance. Determination of detection thresholds is 

therefore greatly simplified and they can be set tosui t  each particular system and its performance 

criteria. 

This  indirect method of estimating the  parameters of the physical model has been adopted 

because physical models are not,  in general, linear in the parameters and are, therefore, unsuited 

to recursive parameter estimation. Because the RBF is a local model, i t  provides an estimate 

of t he  most recently observed behavior of the system in different parts of the operating space, 

responding relatively quickly to changes in the behavior of the system. 

The  rest of the paper describes the application of the method t o  the detection and diagnosis of 

coil fouling and valve leakage in a cooling coil. 

3 First Principles Model 

The  model represents the principle static characteristics of cooling coil subsystems of t he  type 

found in air-handling units. The air-side approach of a coil is defined by: 

The  NTU-effectiveness relationship for counter-flow operation of a dry coil is used t o  estimate 

the  approach from the overall conductance, UA, and the air- and water-side capacity rates C, 

and C,: 



where: 

1 - ezp(-NTU(1 - w)) 
E = 

1 - wezp(-NTU(1 - w)) 

UA and - m i n p 7 C C f ,  
and NTU = min(~. ,~ , )  mar C.,cU 

T h e  capacity rate of t he  air can be calculated directly since the air mass flow rate is usually 

available (or can be calculated from the velocity), but  the water mass flow rate through the 

coil is not usually measured and needs t o  be inferred from the control signal t o  the actuator 

of t he  control valve. To achieve this, a model has been developed t o  approximate the behavior 

of a typical equal percentage three port valve. The  model consists of a modified exponential 

function, characterized by the parameter c. The  relationship between the  fractional water mass 

flow rate into the coil, &, and the valve actuator control signal, u, is given by: 

T h e  modification avoids the need t o  switch t o  a different function in the  lower par t  of t he  range 

in order t o  avoid the significant opening at zero stem position tha t  would occur with a pure 

exponential. The  model also treats leakage resulting from restriction of t he  travel of the stem 

due  t o  foreign matter  on or  near t he  valve seat. The leakage parameter, I ,  specifies the fractional 

flow when the  valve is nominally closed. The  fractional water flow into the coil is then: 

Four parameters (m,,,.,, c, I, UA) are required for t he  combined valve and coil model. For 

simplicity, t he  coil model uses a constant value of UA, and therefore does not t reat  the effect 

of varying fluid flow rate on the corresponding heat transfer coefficient. However, it is possible 

for the variation in the water-side heat transfer coefficient to be partly compensated for by a 

change in the  value of the valve characteristic, c. An extension t o  the model would be needed 

to treat  t he  corresponding effect of variations in t he  air flow rate, e.g. in VAV systems. 

T h e  approach tha t  is estimated by the model is compared with the approach calculated from the  

measured temperatures using Equation 1. There are different associated with the  measurement 

of each of these temperatures. The  temperature of t he  air entering the coil, To;, is equal t o  

t he  temperature of t he  air leaving the mixing box. However, this temperature is difficult t o  

measure accurately due  t o  imperfect mixing of the outside and recirculation air streams in 

many systems. The  approach adopted here is t o  t reat  as invalid any measurements made when 



the mixing box dampers are not in either of their extreme positions. The temperature of the 

air leaving the coil, To,, is generally not measured in a draw-through system, so the supply 

(discharge) air temperature is used, after correcting for the temperature rise across the supply 

fan, AT. This temperature rise may vary with the flow rate through the fan, e.g. in a VAV 

system. The relationship between the temperature rise and the flow rate depends both on the 

characteristics of the fan and the way it is controlled. Since the rise is relatively small (- 1 K, 

2OF), an approximate correction has been assumed: 

The maximum temperature rise across the fan, AT,,, can be measured as part of commissioning 

and the maximum air mass flow rate, can be estimated from the system specifications. 

3.1 Initialization of the First Principles Model 

The parameters of the physical model are initialized in two stages. Design information and 

manufacturers' performance data  are used to  produce initial estimates of the parameter values 

and to define the regions of feasibility for each parameter. Training data collected when the 

plant is deemed to be operating correctly (e.g. a t  commissioning time) are then used t o  estimate 

the parameter values corresponding to  the fault-free system. Significant differences between the 

initial values and the values identified from the training da ta  indicate differences in performance 

between the system as-designed and the system as-built. 

Since the physical model is not linear in the parameters, analytical techniques cannot be used 

to  locate the optimum parameters values for a given data  set. Problems were experienced 

with gradient-based methods as a result of discontinuous derivatives in the valve model. Box's 

complex direct search method has therefore been adopted since it does not require derivative 

information. The search is also effective in handling parameter bounds. Each of the parameters 

of the physical model is normalized so that  its feasible range maps onto a range of zero to  one, 

in an effort to  produce circular objective function surface contours which can help to  increase 

robustness. The objective function used is the mean of the squares of the errors (MSE) of the 

physical model predictions a t  each of the training datasamples. The search process is terminated 

when the objective function value fails to  improve for a number of iterations. 



3.2 Updating the Parameters of the First Principles Model 

During operation of the condition monitoring scheme, a subset of the parameters of the physicd 

model (fault parameters) is updated so as to provide the b e t  fit t o  da t a  generated by the R B F  

model. T h e  fault parameters tha t  are included in the search are the UA of the coil and the 

fractional flow leakage I ;  all other parameters remain fixed at their initial values. The  R B F  

model is used t o  generate outputs  at points distributed uniformly within the  input space and 

these are compared with the  outputs  of the physical model in order t o  calculate t he  MSE. The  

complex method is then employed t o  minimize the MSE by searching for the optimum fault 

parameters. 

4 Radial Basis Function Model 

Radial basis function models are mathematical tools for approximating multi-dimensional sur- 

faces using local non-linear functions. T h e  most common function used is the Gaussian function. 

A model is constructed by centering a number of Gaussian functions a t  selected positions within 

the  input  space and selecting widths so that  the tails of neighboring functions overlap, see Figure 

2 which shows two Gaussian functions in a single input dimension. The  output  of a particular 

function (its actiuation) decreases with the Euclidean distance between the  input t o  t he  model 

and the  center of the function, giving the model i t s  l ocd  properties. The  output  of t he  network, 

y,, at a particular point, x ,  is the sum of the activations, 4;(x), multiplied by the corresponding 

weights, wi: 

T h e  weights are estimated initially from the training da t a  and are then updated using approxi- 

mately steady-state operating da t a  from the system. An important property of R B F  networks is 

tha t ,  if t he  number and shape of the basis functions are fixed prior to training, estimation of t he  

weight vector is a linear optimization task which can be solved analytically using conventional 

least squares methods. 

For this application, t h e  R B F  network is used t o  model the static relationship between the 

system inputs  (the fractional air mass flow rate through the coil, & and the control signal 

t o  t he  valve u,) and the  system output  (the air-side approach calculated from the  temperature 



measurements, a). The weight vector is updated using a simple linear gradient descent method. 

Usually, if an RBF model is trained to  approximate a system off-line from a finite data  set, then 

the positioning of the centers and the degree of overlap between the Gaussian functions can 

be optimized to  suit the system characteristic by employing non-linear optimization methods. 

However, since the system characteristic will change, these attributes cannot be fixed a priori 

and on-line refinement would make the model non-linear-in-the-parameters. A general, fixed, 

configuration of basis functions is therefore required that will allow the model to  approximate 

arbitrary non-linearities by optimizing the weights alone. To achieve this, it is ensured that  

the range of each input is normalized to be between 0 and 1, the centers are then positioned 

on a uniform grid in.this normalized input space. The widths are selected to be equal to the 

distance between adjoining centers thereby providing a parsimonious activation surface. It was 

determined that  the non-linearity of the cooling coil subsystem could be accurately modeled by 

having eight centers in each dimension (giving a total of sixty-four centers for the two dimensional 

input space). 

4.1 Initialization of the RBF 

The RBF weights are initialized using a conventional least-squares estimation procedure. This 

procedure is sensitive t o  outlier points and any 'holes' in the training data may lead to an 

ill-conditioned solution. To avoid these problems and to produce consistency between the two 

models a t  the outset, the RBF model is initialized using training data generated from the  

calibrated physical model. The data  are generated on a fine, regular grid of points that  span 

the operating space. 

If a series of n data  points is generated by the physical model, the muItipIe input, single output, 

RBF model can be written as: 

where 



yp(i) is t he  i th prediction of the physical model, w is the vector of RBI? weights, % is the 

matrix of basis functions at each input point, x ,  and E is the vector of prediction errors between 

the RBI? and the  physical model. T h e  least squares criterion can be applied t o  calculate the 

unbiased est imate of w tha t  has minimum variance, which is: 

4.2 Updating the RBF 

Once the RBI? has been initialized by training it to represent the correct operation s ta te  of the 

system it is updated using normal operating da t a  from the system. A gradient-based recursive 

parameter estimation method known as normalized least mean squares ( ~ s t r ~ m  and Wittenmark 

1989) was chosen for its modest d a t a  storage and processing requirements. For the scalar output  

RBF described in the previous section, the prediction a t  sample i, c(i) in response t o  an input 

vector, x( i ) ,  is given by: 

where bT(i)  = [&(r( i )) .  ..#,(x(i))] is the vector of basis function activations and w is the 

vector of weights. If the weight vector at sample i-1 is used t o  generate t he  model prediction 

then a reasonable criterion of how well the model performs is: 

where y(i) is t h e  measured output  of the system. Differentiation with respect t o  w ( i  - 1) shows 

tha t  the gradient of this criterion is: 



where e ( i )  denotes the prediction error. The projection algorithm involves moving the parameter 

estimate in the direction of the negative gradient by an amount K such that: 

w ( i )  = w ( i  - 1) + ~ + ( i ) e ( i )  

If w ( i )  is assumed t o  be the correct weight vector a t  sample i then: 

Re-arranging for K: 

Hence, the updating formula is: 

In this form, the updating formula would converge on the optimum parameter values for a finite 

set  of training da t a  samples if the number of samples were equal t o  the number of parameters. 

In practice, where the number of presented samples is greater than the number of parameters a 

learning rate, A ,  is introduced so that: 

where is a small number tha t  is introduced to protect against division by zero for the case 

when + ( i )  = 0. In situations where the system parameters are time-invariant then the learning 

rate affects the speed of convergence and the accuracy of the solution (S. Abu el Ata-Doss e t  al. 

1985). For this application, in which a system has time-varying parameters, the learning rate 

determines the tracking speed of the estimator. 

4.3 Data Preprocessing 

Both the R B F  and the physical model are static models. The dynamics of the system are 

ignored due t o  the difficulty of modeling them accurately using physical equations. A transient 

detector is used t o  prevent updating of the R B F  when the measured system variables are varying 

significantly. Firstly, a discrete-time, low-pass, filter is used t o  reduce the effect of noise. The  



activity of each variable, defined as the absolute change from one time step to the next, is 

then averaged using another discrete-time, low-pass, filter. Finally, the averaged activity is 

normalized and compared with a threshold value. When the activity is below the threshold, the 

system is deemed t o  be sufficiently close to steady state to update the RBF. A description of a 

similar detector is given by Dexter and Benouarets (1995b). 

5 Results 

The results of tests on a simulated air-conditioning system are presented to demonstrate the 

ability of the scheme to detect both fouling and leakage faults in the cooling coil of an air- 

handling unit. The test data are generated from an HVACSlM+ simulation of a three zone VAV 

air-conditioning system. The main component models used in the simulation are described by 

Haves (1994). The structure of the plant and the control scheme is similar to that described by 

Dexter and Haves (1990) but the sizing of the equipment is taken from the detailed design of 

a recently completed office building in London. The simulated building has three zones: each 

having time-varying occupancy, equipment and lighting loads. In addition, each zone is subject 

to significant, highly variable, solar gains. Figure 3 and Figure 4 show the behavior of the 

correctly operating cooling coil on two different days. 

Training data were generated by performing closed loop tests on the simulated plant. Tests of 

this sort could be carried out as part of the commissioning process in a real building. Constant 

loads and inlet conditions were maintained during the tests. The supervisory control scheme 

was disabled and the set-point for the supply air temperature varied in a series of steps. Three 

tests were performed, the first with the VAV boxes under closed loop control, the second with 

the VAV boxes demanding maximum air flow and the third with the VAV boxes demanding 

minimum air flow. The training data  are shown in Figure 5. Due t o  the problems associated 

with the measurement of mixed air temperature discussed in Section 3, the training da ta  are 

restricted to the part of the operating range of the plant in which the mixing box dampers are 

set to provide full outside air. 

Table 1 shows the valuesof the parameters estimated for the physical model by using the complex 

method to optimize the fit of the model to the training data. 

The  condition monitoring scheme was configured to estimate the UA of the coil and the leakage 

through the coil valve. The scheme was then tested using three different fault cases: 3 % flow 

rate leakage through the control valve, 1 mm of calcium carbonate fouling on the tubes, and 

both faults present a t  the same time. The results of applying the scheme to these three cases 

on each of the test days are presented in Figure 6. There are three graphs for each of the 



fault cases. T h e  upper graph shows the difference between the measured approach and the 

approach predicted by the physical model with the correct operation parameters, which gives an 

indication of system performance at the current operating point. The  middle graph shows'the 

value of t h e  UA parameter estimated from the da ta  generated by the RBF and the  lower graph 

shows the  estimated leakage. T h e  breaks in the lines indicate times when da t a  were rejected by 

the transient detector. The parameter estimates at the end of each run for each of the two days 

are given in Table 2. The  value of the learning rate, A, was 0.1. The  UA value for the fault-free 

case is slightly different to that  given in Table 1 because i t  was estimated from d a t a  generated 

by the R B F  instead of directly from the measured training data.  

A comparison of the UA values observed for the different system states on the two days indicates 

a modest bu t  significant reduction when the coil is fouled. Two factors give rise t o  a smaller 

reduction than  would be expected. Firstly, the coil operates at only moderate duty, particularly 

on the first day, and hence its performance is less sensitive t o  fouling. Secondly, if combinations 

of valve position and air flow rate ( the variables that  span the  operating space) tha t  occurred 

in the training d a t a  do  not occur in the test data,  the corresponding basis functions will not be 

updated. Since all parts of the RBF contribute with equal weight t o  the re-estimation of the 

parameters of t he  physical model, the change in the estimated value of the UA will only be a 

fraction of t h e  actual change. This  problem is being addressed in further work. 

A similar, bu t  more subtle, effect is observed for the leakage parameter. The leakage faults are 

not detected on the first day, in spite of the coil operating at lower duty than on the second 

day. This is due  to very little steady-state da ta  being collected a t  the operating point where 

the  fault is apparent (i.e. when the valve is fully or nearly closed). There are two reasons for 

this. Firstly, t he  model is not used when the dampers are modulating due t o  the  uncertainty 

involved in estimating the temperature of the air entering the coil from the measurements of the 

fresh air and  return air temperatures. Secondly, the region where the valve is nearly closed has 

a high gain and the da t a  in this region will usually be changing relatively quickly, and hence 

will be rejected by the transient detector. On the second day, there happened t o  be a number of 

steady-state samples collected at the point where the valve was nearly closed, and  the scheme 

managed to estimate over 1 % leakage on both of the days with leakage. 

For both of t he  test days, i t  can be observed that  the graph showing the difference between 

the  prediction of the correct operation physical model and the measured output  of the system 

gives a good indication of the presence of a fault. For the fouling faults, the residual is positive 

at high coil duty, whereas for t he  leakage faults, i t  is negative at low duty. T h e  correlation 

between t h e  nature of the residual and the type of fault can be exploited for fault diagnosis as 

described by Benouarets e t  al. (1994). However, this approach requires the model t o  be accurate 

for the complete range of operation, as modeling errors will lead to false alarms. The effect of 



modeling error can be observed in  the graph showing the fouling fault on the second day. On 

this occasion, the residual has a negative value when the coil is at  low duty. Reference to the 

raw data revealed that  the control signal to  the valve a t  this point is -10%; a t  other times 

during the test when the control signal had a similar value, but the air mass flow rate was 

different, there is no corroborating evidence of leakage. This suggests a modeling error within 

this operating region. Because of the lack of corroborative leakage evidence, the scheme is best 

able to fit the physical model to the evidence by decreasing the estimated value of UA. 

6 Conclusions 

A condition monitoring scheme based on physical models has been described and its ability to 

detect the presence of valve leakage and water-side coil fouling within the cooling coil subsystem 

of an air-handling unit demonstrated. The UA of the coil and the fractional flow rate of water 

leaking through the coil were the quantities reported by the scheme. These quantities could be 

transformed into more tangible measures of performance, such as the reduction in coil capacity 

and the increase in  energy usage, thus simplifying the task of setting detection thresholds. No 

detection threshold values have been proposed in this paper; ideally their magnitude should be 

tailored to each particular system based on the level of deterioration in  performance that could 

be tolerated by the building owner and/or occupier. 

Estimation of the parameter values of the physical model is a non-linear optimization task and 

there will always be a danger of converging to a local minimum, regardless of the technique 

used. If the data  used for the optimization covers only a small region of the operating space 

then the chance of the method failing to converge to the true (global) optimum is increased. 

Use of the RBF model enables data  to be generated across the range of operation and this helps 

to make the non-linear optimization more robust. However, the method requires the use of two 

parameter estimation procedures, each having potential inaccuracies. It is difficult to quantify 

the estimation inaccuracies that are incurred with the present method. The algorithm that is 

used to estimate the parameters of the RBF does not allow confidence intervals to be calculated 

directly, but this could be achieved by using a more computationally intensive estimator, such 

as recursive least squares, that would make the covariance matrix directly available a t  each time 

step. However, since the system is assumed to have time-varying parameters then forgetting 

would need to  be employed which would serve to keep the covariance matrix high, leading to 

over-estimated levels of parameter uncertainty. Inaccuracies also occur when estimating the 

parameters of the physical model from the RBF. The non-linear form of the physical model pre- 

vents analytical evaluation of confidence intervals for each of the parameters but an assessment 

of the overdl fit of the physical model to the RBF can be made from the MSE. 



The accuracy of the estimated parameters will also depend on the structural adequacy of the 

physical model. The model that  has been used in the paper is a simplified representation of 

a cooling coil subsystem that  has been developed with the objective of capturing the principle 

static characteristics of the system while keeping the number of parameters t o  a minimum. One 

of the approximations made by the model is that  of a fixed UA; in reality the UA will vary as 

a function of the air and water flow rates. The overall effect of the change in the UA due t o  

variations in the water flow rate can be compensated for t o  a certain extent by the valve model. 

The effective value of the valve characteristic parameter, c, is determined by the combined effects 

of the inherent characteristicof the valve, the valve authority and the variation in UA with water 

flow rate. The variation in UA with air flow rate is not accounted for within the structure of 

the physical model. If the UA value were estimated using data from different regions of the 

operating range a t  different times, the estimated value would vary due to  the variations in the 

flow rates. However, because the RBF is used to  generate data throughout the whole range 

of operation, the physical model optimization process yields an effective UA which is a good 

indicator of coil performance. 

The method that  has been described is best suited to  the tracking of degradation faults: where 

the system continues to  be operated throughout its range of operation but with changed char- 

acteristics. Failure faults typically result in the system saturating at one operating point, which 

would make it impossible to  build a global model of the new, faulty, characteristic. Failure faults 

could be detected by observing changes in the weights of the RBF, but diagnosis of failure faults 

may require the use of test signals to  acquire more information about the system. 
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Nomenclature 

Air temperature entering the coil 

Chilled water supply temperature 

Air temperature leaving the coil 

Mass flow rate of water into coil 

Mass flow rate of air onto Coil 

Specific heat of water 

Specific heat of air 

Capacity rate of air 

Capacity rate of water 

Overall heat transfer conductance 

Effectiveness of the coil 

Number of transfer units for the coil 

Ratio of fluid capacities 

Valve model curvature parameter 

Valve model leakage parameter 

Temperature rise across fan 

Control signal to cooling coil valve actuator 

Water-side convective heat transfer coefficient 

Air-side convective heat transfer coefficient 

Heat transfer rate of coil 

Maximum possible heat transfer rate of coil 

Actual air-side temperature approach 

Predicted air-side temperature approach 

Maximum temperature rise across fan 

Physical model prediction of approach 

RBF weight 

RBF activation 

RBF input vector 

RBF learning rate 

A small number 
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Figure 1: The condition monitoring scheme 

Figure 2: An RBF network and Gaussian functions 

Figure 3: Test data on first day with no faults 

Figure 4: Test data on second day with no faults 

Figure 5: The training data 

Figure 6: Test results 



Table 2: The values of the parameters estimated from the updated RBF 

Table 1: The values of the parameters estimated from the training data  

1 Dav 1 I Dav 2 

Parameter 

UA (kW.K-', kBTti.hr-'.OF-') 

m ,,,,, (kg.s-', 1b.sS1) 

c 

1 (%I 

- 
Value 

5.19 (9.84) 

6.20 (13.67) 

2.61 

0.03 

System state 

1 mm fouling 

fault-free 

3 % leakage 

1 mm fouling 

3 % leakage + 

I kW.K-' (kBTU.hr-'.OF-') I % I kW.K-' [kBTU.hr-'.OF-') 

UA 1 I ti .4 

5.19 (9.84) 

5.13 (9.73) 

5.04 (9.56) 

4.93 (9.35) 

0.03 

0.11 

0.03 

0.18 

5.19 (9.84) 

5.19 (9.84) 

4.90 (9.31) 

4.76 (9.03) 
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ABSTRACT 

A scheme for detecting faults in an air-handling unit using residual and parameter 

identification methods is presented. Faults can be detected by comparing the normal or 

expected operating condition data with the abnormal, measured data using residuals. Faults can 

also be detected by examining unmeasurable parameter changes in a model of controlled system 

using a system parameter identification technique. In this study, Auto Regressive Moving 

Average with exogenous input (ARMAX) and Auto Regressive with exogenous input (ARX) 

models with both Single-Input/ Single-Output (SISO) and Multi-Input/Single-Output (MISO) 

structures are examined. Model parameters are determined using the Kalman filter recursive 

identification method. This approach is tested using experimental data from a laboratory 

Variable Air Volume (VAV) air handling unit operated with and without faults. 

INTRODUCTION 

Fault detection and diagnosis of Heating Ventilation Air-conditioning ( W A C )  systems 



is an important part of maintaining proper performance, reducing energy consumption, 

increasing reliability, and availability of the system. One of main purposes of on-line monitoring 

and diagnosis is the early detection of failures of equipment and sensors used in the control of 

HVAC system. 

Studies on fault detection are extensive and various approach have been proposed. Willsky 

(1976) examined statistical techniques for the detection of failures in stochastic dynamic 

systems. Isermann (1984) surveyed existing fault detecting and diagnosing methods based on 

the estimation of unmeasurable process parameters and state parameters. Patton et al. (1989) also 

provided an overview of various fault detection and diagnosis methods by presenting research 

which included many references to application case studies. Frank (1990) reviewed the state-of- 

the-art fault detection and isolation in automatic process using analytical redundancy. 

In recent years, several schemes for fault detection in W A C  systems have been 

investigated. Liu and Kelly (1989) proposed a rule-based diagnostic method for fault detection. 

Anderson et al. (1989) studied statistical analysis preprocessors and rule-based expert systems to 

monitor and diagnose HVAC system faults. Pape et al. (1991) developed a methodology for fault 

detection in W A C  systems based on optimal control. In order to detect faults in system 

operation, deviation from optimal performance were sensed by comparing the measured system 

power with the power predicted by using the optimal control strategy. Norford et al. (1993) 

presented a method for diagnosing fault in HVAC systems using the parametric models of 

consumed electric power. 



In this paper, faults and symptoms were studied using changes in physical quantities, such 

as the deviation of temperature, pressure, or flow rate from their normal operating points. When 

a process operates under normal conditions, the process parameters should be at their normal 

values. A fault in the system can be detected by observing the residual value, which is the 

difference between the normal (or expected) data and abnormal operating data. If some physical 

change in the equipment causes a deviation from the normal state, the model parameters of the 

process will also deviate from their normal values. These parameters can be estimated for fault- 

free and fault-containing systems using parameter identification methods. 

Faults are detected when a specified threshold was exceeded. The threshold can be 

determined by using statistical methods. A three-sigma limit (three standard deviations) is often 

used as a threshold value (Montgomery et al. 1994, Rose et al. 1993, Farnum 1992, Fasolo et 

al. 1992). 

There are two types of faults: complete (or abrupt failures) and performance 

degradations. Complete failures are severe and abrupt faults. Performance degradations are 

gradually evolving faults. Although there are many kinds of potential faults in an air- 

handling unit, the eight different equipment and instrumentation faults shown in Figure 1 were 

studied in this study, based on experimental testings. 

SYSTEM UNDER TEST 

Air-handling Unit 

The variable air volume (VAV) used in this study was based on a reference system ( Kelly 



1992) developed by the International Energy Agency (IEA) Annex 25. A simplified system 

layout diagram of the air-handling unit (AHU) is shown in Figure 2. The unit consists of fans, 

dampers, a cooling coil, sensors and controllers. The static pressure in the main supply duct is 

controlled to maintain a constant static pressure at each VAV box inlet by sensing the static 

pressure and controlling the speed of the supply fan. The flow difference between the return fan 

and the supply fan is controlled by a return fan with variable speed. The supply air temperature is 

controlled by the chilled water control valve to maintain a constant reference temperature. 

Heating and preheating of the outdoor air are not considered in this study. 

Controllers 

A proportional-integral-derivative (PID) controller using the velocity algorithm was 

designed to control the supply air temperature. Two other controllers were designed to  control 

the static pressure in the supply duct and the difference between the supply fan and return fan 

flow rates. The PID velocity control algorithm is expressed as: 

where U() denotes the control signal at the ith sampling instant, E() is the error at the ith 

sampling time defined by the diierence between the set point value and the measured value, and 

T, is the sampling period. The parameters K, K, and K, are the proportional, integral, and 

derivative gains of the PID velocity control algorithm, respectively. The sampling period was 10 



The supply air temperature was controlled at 14.5"C ( 58°F) using a three-way control 

valve. The supply duct static pressure controller maintained the static pressure at 249 Pa (1 .O in. 

H,O) in the supply duct by modulating the supply fan speed. The retum fan speed was 

controlled to maintain the return air flow rate at 0.472 m31s (1000 cfm) below the supply air flow 

rate. 

In the present study, the controller gain was approximately determined using a simple 

first-order transfer function for the system with the delay term obtained from a step change in the 

set point. The transfer function is given by: 

where Ks is the system gain, Tc is the time constant, TD denotes the dead time, and S is the 

Laplace variable. From the experimental data, the K ,  Tc, and TD values for the supply air 

temperature controller were determined to be 1.02 K N  (l.836"FN), 80 seconds, and 20 

seconds, respectively. Using this approximate transfer function, the PID controller gains were 

first adjusted to minimize the integral absolute error over time @ o f  1980 ) and then modified by 

experiments on the actual system. The h a l  PID gains used for this three-way valve controller 

were K, = 1.5 V/K (0.8333 VJ0F), K, = 0.0157V/sK (0.0087 V/s°F), and K, = 10.6 Vs/K 

(5.8889 VsJ°F), respectively. The controllers for the static pressure and the air flow rate 



difference did not used derivative terms due to the fast response of the controlled variables. The 

proportional and integral (PI) controller gains were also determined by computer simulations and 

then modified by experiments (Lee et al. 1994). Normal operating conditions for the controller 

tuning and the fault detection tests are given in Table 1. 

To smooth the measured data and reduce the effect of random noise, smoothing 

filters were applied to the measured supply duct pressure, the measured flow rates, and the 

supply air temperature. The smoothed values were then used by the controllers. The following 

equation was employed: 

where M, is the smoothed measurement, a is the smoothing weight factor, M, is the actual 

measurement, and i is the current sampling instant. A value of a equal to 0.7 was employed. 

TECHNIQUE OF FAULT DETECTION 

Residual Method 

Faults in a broad sense result in symptoms that involve the deviations of measured values 

from their normal operating points. A fault can be detected by observing residual values which 

are defined as the differences between actual measured values under a fault condition and the 

expected values under normal operation. 

The residual of the supply air temperature, R ,  was defined as: 



where Ts is the supply air temperature and T,, is the supply temperature setpoint. 

The residual of the supply duct static pressure, Rp, was defined as 

where Psis the measured static pressure value and P,, is the static pressure setpoint value 

The residual of the flow difference between the supply and return fans, Rp, was defined as 

where QD is the difference between the measured supply and return air flow rates and Q,, is the 

setpoint value. 

The residual of the cooling coil control signal, R ,  was defined as 

Ru - U C C  - UCC,SP 

where Ucc is the control signal for the cooling coil valve as determined by Equation 1, and 

Ucc,, is the setpoint value or reference value at a normal condition. 



The value of Ucc controls the supply water temperature for a three-way valve or the 

supply water flow rate for a two-way valve. At a normal operation, Ucc is the same as Ucc,,. 

However, when a fault occurs, Ucc will deviate from Ucc,,. A problem, however, arises because 

Ucc,, is not a fixed value, but varies with the load on the AHU. One possible way of handling 

this difficulty is to calculate the mean value and standard deviation of Ucc,, every sampling time 

using a number of data points ( e.g. 20 data points ) from previous time steps. This works well 

for systems subject to slowly varying loads and for quickly developing (complete) faults. 

Another approach for determining U,,, is to use a reference model that is developed 

under normal conditions. The reference model is a function of load change and environmental 

conditions, such as outdoor air temperature and humidity. The residual is the calculated 

difference between the measured value and the estimated value from the reference model. If 

there is no fault, the measured and the estimated values should be the same. Deviations between 

the measured and the estimated values indicate the presence of faults. This reference model 

approach is essential for detecting long-term performance degradation, such as the fouling of 

heating and cooling coils. 

The residuals for the actuators are defined as the difference between the input control 

signal and the measured positions of the actuators or speed signals of the fans. The residuals of 

the supply fan speed, R,,, and the return fan speed, R,, are given by 



where Ns and N, are the measured values of the supply and the return fan speeds, and Us and U, 

are the control signals for the supply and return fans, respectively. 

The residual of the cooling coil valve position was defined as 

R" - "P - "cc 

where Vp is the three-way cooling coil valve position determined by monitoring a variable resistor 

on the valve stem. At normal operation, R,, R,, and R, are approximately zero. However, 

these values deviate from zero, when an actuator fault occurs. 

Parameter Identification Methods 

When a process operates under normal conditions, the parameters in a continuously updated 

model of the process will be at their normal values. If some physical changes in the system causes 

deviation from the normal state, some or all of the model parameters will deviate from these 

normal values. The fault condition can then be detected as shown in Figure 3 .  

The parameters of a model can be estimated by employing a system identification method. In 



this study, Multi-Input/Single-Output (MISO) and Single-Input1 Single-Output (SISO) Auto 

Regressive Moving Average with exogenous input (ARMAX) models and Auto Regressive with 

exogenous input (ARX) models were used , and model parameters were recursively identified 

using Kalman filters. 

The general structure of the SISO or MIS0 ARMAX models (Ljung 1987) is given by 

A(q)flP) - B(q)u(t-nk) C(q)e(P) 
(11) 

where n is the number of time step delays from input to output. A(e) and C(e) are polynomials 

in terms of the time delay operator q-I 

where B(e) is an nb x nu matrix. The quantities nu, nb, and nc are the orders of the polynomials, 

and nu is the number of input variables. For the SISO model, nu = 1. 

B(q) - 
bl 1 b,, .... 

b,,q-I b22q-' .... 
.... 

b"*,qnbl b * p l  . bntuuqbl 



For the first order MIS0 model with a delay of two sampling times, equation 11 becomes 

v(9 - - a,v(t-1) + b,,u,(t-2) + b,,u,(t-2) + ... + b,,u,(t-2) + e(9 + c,e(t-1) 
(14) 

where n is the number of input variables. 

As a special case of the ARMAX model, the ARX model structure is given by 

This equation can also be written explicitly for a first order model with a delay of two 

sampling times as 

Recursive Parameter Estimation Using Kalman Filter 

The typical recursive parameter identification algorithm (Ljung 1987, 1991; Johansson 1993) is 

given by 



where 6(t) is the parameter estimate at time t. yr(t) is the regression vector which contains 

old values of observed inputs and outputs, y(t) is the observed output at time t, and fi0 is the 

prediction of the value y(t) based on observations up to time 1-1 and the current model at time t- 

1. 8, represents the true description of the system, e(t) is the noise source with the variance, 

R2 - E[e2(f)], and w(t) is assumed to be white Gaussian noise with covariance, Rl - E[w(f) w T(t)]. 

The gain K(t) determines how the current prediction error [y(0 - 3(9] updates the parameter 

estimate. It is typically chosen as 

K(0 - Q(Oyr(0 

The Kalman filter algorithm is given by 

f i0 - urT(O&t-1) 



An optimal choice of Q(t) is computed from Equation 17 through 23. 

Threshold Checking 

The proper choice of the threshold values are important for detecting faults. The thresholds can 

usually be determined from statistical properties of the process. The concept of statistical method 

is very straightforward. If a measurement is greater than an upper limit threshold limit or is lower 

than a lower threshold limit, the process is said to be out of the normal state and a fault is 

presumed to have occurred. 

In this study, a three-sigma limit was used as the threshold value. If the measurable characteristic 

x of an item is normally distributed with the mean 2 and the standard deviation o , it is possible 

to find the probability that x will lie within a fixed interval. The probability that x will fall within 

the interval [ 7 - 30, 7. 30 ] is 0.9973. The threshold for a measured variable x was specified 

as lx - jr7 - 35, where 2 denotes the assumed mean and 5 denotes the assumed standard 

deviation. Typically, 2 and are calculated from a set of test data(Faso10 and Seborg 1992, 

Farnum 1992). When residual method is used, I X  - 4 is the value of the residual, and when 

the parameter identification method is used, (X - 4 is the difference between the estimated 

value and the mean value at normal condition. 



TEST RESULTS AND DISCUSSION 

As previously mentioned, a fault in the system can be detected by observing the residual values. 

When an input-output model is used for the system description, a fault can be detected by looking 

for changes in the model parameters, which are estimated by using model identification methods. 

The first order system models were used in this study to estimate the model parameters before 

and after a fault occurs. Pseudo-linear ARMAX equations and linear ARX equations were 

employed. The structure of the multi-input ARMAX system model is given by 

where Ps is the static pressure at the supply duct, Q, is the flow difference between the supply 

and return fans, and Ts the supply air temperature. The variable 8 is the angle that the 

recirculating air damper makes with a plane perpendicular to the direction of flow, Q, is the 

supply air flow rate, TM is the mixed air temperature, and HM is the mixed air humidity ratio. The 

subscripts P, Q, and T denote the supply air static pressure, the flow difference between the 

supply and return fans, and the supply air temperature, respectively. 



If noise is not explicitly taken into account, Equations 24 through 26 become an ARX model. A 

disturbance influences the output and this output changes the feedback signal to the controller, 

which in turn changes the controller output. Since the control signal includes information on 

disturbances in the SISO model, only the control signal and the output need to be considered. 

The structure of the simplest SISO ARX model becomes 

Ts(P) - - a, Ts(t-I) + b,, UAt-2) + e(P) 

where e(r) is the equation error. 

Four different identification methods were compared by using average absolute errors (AAE) 
defined by 

where y and p are the observed and the predicted values 

The HVAC system was tested for the parameter identification method under the load condition 

shown in Table 1. It is important to note, however, that system identification parameters may 

change with load changes. Since load conditions often vary slowly in actual building systems, 



one might expect that dramatic changes in the identified parameters would indicate quickly 

developing (complete) faults. 

Table 2 shows the AAEs of T, , P, , and Q, calculated for four ARMAX and ARX models. It 

can be seen that all the estimated values are close to each other for the case of a constant load on 

the AHU and no external disturbances. Since the result of the SISO AFZ model is almost the 

same as the other results, only the results from the model corresponding to Equations 27 through 

29 will be discussed below. 

For system parameter identification, normalized input values are used. The supply air 

temperature is divided by room air temperature and the control signals and actuator signals are 

normalized to make their maximum value unity. All the faults were introduced after 1,500 

second in operation. If complete faults occur, the control and the measured signals change 

significantly. To detect these kind of faults, it is necessary to use feed-back signals from the 

system and the controllers. It should be noted that those signals which were momentarily out of 

bound of the given thresholds during the observation periods were ignored in this study. 

Fault 1 is a complete failure of the return fan. The return fan was changed from normal operation 

to an abruptly shut off condition. Since the return fan was controlled to maintain the return fan 

air flow rate below the supply air flow rate by a fixed amount, the return fan fault caused the 

return fan flow to change dramatically. The best variables for detecting this fault are the return 

fan rotational speed and the air flow rate difference between the supply and return flow rates. 



Figures 4a shows system variables such as supply air temperature, air flow rate difference, and 

pressure at the supply air duct. Figures 4b through 4h show the residuals of the supply air 

pressure, the flow rate difference between supply and return air fans, the supply air temperature, 

the three-way valve control signal, the supply fan rpm, the return fan rpm, and the three-way 

valve position, respectively. Residual values in Figure 4c shows that the return fan failure causes 

the flow rate difference to jump suddenly, while the supply air pressure and temperature are 

maintained constant. The significant fault signature can be seen in the residual values of the return 

fan speed (Figure 4g). If the return fan is stopped, the controller attempts to compensate by 

increasing the control signal. However, the fan is not controlled and the fan failure generates a 

big change in the residual value of the fan rotational speed. 

As shown in Figure 5, this fault can also be detected by the parameter identification method. The 

identification parameters of the flow difference are greatly changed and deviated significantly 

from the threshold due to the return fan fault (Figure Sd), while the parameters of supply air 

pressure stays within the threshold range (Figure Sb) and parameters of the supply air 

temperature deviates only slightly from the threshold (Figure 5f). 

The residual values and the changes in the model parameters for this fault and the other seven 

faults given in Figure 1 are summarized in Table 3 and Table 4, respectively. 

Fault 2 is a complete failure of the supply fan. The supply fan was changed from normal 

operation to an abruptly shut off condition. Since the static pressure at the supply duct is 



controlled at a certain value by modulating this supply fan speed, the failure in the supply fan 

significantly influences the static pressure at the supply duct. From Table 3, it is seen that the 

supply pressure abruptly decreased to a zero value (residual value -0.249 kPa [-1.0 in. H,O]), and 

also the flow rate difference is decreased to zero value. This failure causes the supply fan 

controller to increase the output control signal to its maximum value in an attempt to increase the 

static pressure in the main supply duct. 

To keep the flow difference between the supply and return fan flows positive, the return fan 

rotational speed is also decreased to zero. Since there is no air flow through the cooling coil, the 

air temperature in the supply duct slowly increases and thus the cooling coil control signal also 

increases. The best variables chosen for fault detection of this fault are the supply fan rotational 

speedresidual and the static air pressure residual. The fault can also be detected through the 

parameter identification scheme, as shown in Table 4. The identification parameters of pressure 

and flow rate difference are greatly changed but those for supply air temperature changed little. 

Fault 3 is a complete failure of the chilled water-circulation pump. The pump was changed from 

normal operation to an abruptly shut-off condition, as might result from mechanical or electrical 

problems. From Figure 6, it is seen that the supply air temperature is changed temporarily and 

then returns to normal. If the pump fails, the mixed water flow rate through the three-way valve 

is immediately decreased and thus the supply air temperature is increased and the error signal to 

the controller is increased. This error signal is reduced by increasing the three-way valve opening 

position. From Figure 6e and Table 3, it is seen that the cooling coil valve control signal is 



increased above the threshold value to compensate for the pump failure. The identification 

parameters of the supply air temperature are changed due to the pump fault, while the parameters 

of supply pressure and flow difference are within the thresholds as seen in Figure 7. 

Fault 4 is the fault condition where the cooling coil control valve sticks in a certain position. In 

this case, the residual values after the fault do not change significantly in spite of fault occurrence. 

If there is no external disturbance, the output condition should be unchanged. But, there is a 

small difference between the normal or expected signal and the measured value. In the case of 

noise and external disturbances, such as the load change and fresh air temperature change, the 

supply air temperature may be slightly changed. As time goes by, this small change of 

temperature and the small difference between the setpoint value in the normal case and the 

measured value cause the control signal to change continuously due to the integral term of the 

controller. It can be said that it is difficult to  detect this fault from the supply air temperature 

residual, but this fault can be detected over time from the change of input control signal . From 

Table 3, the profile of the control signal residual of the cooling coil valve can be seen to be 

slightly different from the one without the fault. However the residuals related to the supply air 

pressure and the air flow difference are not changed. From Table 4, it can be seen that the 

parameters for the supply air temperature change slightly, while the parameters of the flow 

difference do not change. The parameters of the supply air pressure are within the threshold 

values. 

Fault 5 is the case when a temperature sensor undergoes a complete failure. From a given set of 



sensor readings, a normal operating range for each temperature sensor can be established based 

upon expert knowledge about the process, sensor characteristics, and historical data bases. 

Once the range of each measurement is selected, it can be determined whether the measurement 

is within a normal range or not. 

If the temperature sensor is disconnected, sometimes the measured temperature oscillates 

randomly. If the supply air temperature range is out of the normal operating range, typically 

between 0°C (32°F) and 40°C (104"F), when the system operates in cooling mode, the 

temperature sensor is known to be at fault. The temperature signal can be set to zero to make the 

output signal constant at the fault condition. The input signal is abruptly changed and the 

controller attempts to compensate by increasing the control signal. However, the temperature 

signal is not changed and the temperature sensor fault generates a big change in the cooling coil 

valve control residual, while the supply air pressure and the flow difference residuals are not 

changed as seen in Table 3. It is seen kom Table 4 that this results in the parameters for the 

supply temperature changing greatly, while the parameters of the flow difference are unchanged. 

The parameters of the supply air pressure are within the threshold values. 

Fault 6 is a complete failure of the static pressure transducer in the air supply duct. For this 

fault, the output of the pressure transducer is abruptly changed to zero due to electrical or 

mechanical problems. The pressure transducer generates the feed back signal to the supply fan 

controller. The failure in the pressure transducer significantly influences the static pressure in the 

supply duct. From Table 3, it is seen that the pressure residual is greatly changed, but the 



supply temperature and the flow difference due to step change are not significantly changed. 

The impulse response values in Table 3 can be ignored, since for fault detection, it is best to 

consider only step and ramped values. Because the feed back pressure signal is zero (actual 

value is not zero), this controller makes the supply fan control signal maximum to try to maintain 

the feed back pressure signal at the reference value. Unlike the supply fan failure, the supply fan 

operates at its maximum rotational speed and the flow difference and the supply temperature are 

controlled normally after some transient changes. 

This fault can be detected through the parameter identification scheme as shown in Table 4. The 

identification parameters of the pressure are significantly changed, while those of the flow rate 

difference are not changed. The parameter changes of the supply air temperature are insignificant. 

Fault 7 is a failure of the supply fan flow station. The output signal is abruptly changed from 

its normal value to zero due to a differential pressure transducer failure or a mechanical fitting 

problems. Since the return fan was controlled to maintain a constant flow difference using the 

flow station signal, the flow station failure causes the return fan control signal to change, which 

is proportional to rotational speed. Residual values in Table 3 show that the supply fan flow 

station failure causes the flow rate difference residuals to jump suddenly, while the supply air 

pressure and temperature residuals are constant. The significant fault signature appears in the 

residual values of the flow rate difference. As the supply flow station output signal is zero, the 

return fan controller attempts to compensate by sending a lower control signal to decrease the 

return fan flow rate, which decrease the fan speed. The actuator residual values are not changed. 



As shown in Table 4, the fault can be also be detected through the parameter identification 

method. The identification parameters of the flow diierence are greatly changed due to the 

supply flow station fault, while the parameters of the supply air temperature are slightly changed. 

The parameters of the supply air pressure are within the threshold values. 

Fault 8 is a failure of the return fan flow station. The output signal is changed abruptly from its 

normal value to zero due to the same problems as in fault 7. If the return flow station output 

signal is reduced to zero, the flow difference signal is increased and the return fan controller 

attempts to compensate by sending a higher control signal to increase the return flow and reduce 

the flow difference. Compared with fault 7, this fault has the opposite effect on the residual 

values. As shown in Table 4, the fault can be detected through the parameter identification 

method. The identification parameters of flow difference are greatly changed due to the return 

fan flow station fault, while the parameters of the supply air pressure and temperature are 

slightly changed. The parameters of the supply air pressure are changed but not nearly as much as 

those of the flow difference. 

For the eight complete faults discussed above, the two fault detection methods can be used to 

detect the faults of a VAV air-handling unit. The residual method requires less computing time 

to calculate the residuals, but requires more sensors than parameter identification methods. The 

residuals after the faults display the unique fault signatures seen in Table 3 .  Thus, not only fault 

detection but also fault diagnosis is possible. The later is the subject of a companion paper (Lee 

et al. 1996). 



SUMMARY 

Residual and parameter identification methods were employed for fault detection in an air- 

handling unit of a building HVAC system. For parameter identifications, ARMAX and ARX 

models were employed with MIS0 and SISO structures to estimate model parameters recursively 

using the Kalman filter. Eight complete faults of equipment and sensors were tested under 

constant load conditions and for short time periods. These faults were examined using both 

residual and parameter identification methods using the laboratory measured data. The test 

results show that both methods can be used for detecting the presence of faults in the air- 

handling unit. 

Faults were detected when residuals and identification parameters change significantly and 

thresholds were exceeded. Momentary indication of a fault was not accounted for, but 

continuous presence of fault signature for a reasonable time period was considered. The work 

was done for one load on the AHU. If building loads change rapidly, these methods may not 

detect the faults. 

The proposed approach can be applied to practical problems when observation is made in a short 

time period under the assumption that the load remains constant. However, fixther investigation 

is needed for the load change cases. Fault signatures were developed for eight complete faults. 

The use of these signatures to diagnose a particular fault is the subject of a second paper. 
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TABLE 1 Nominal Operating Conditions 

I Variables I Description I Nominal values I 
Qs 

I T,, I Mixed air temperature ( "C) I 22.0 1 
Tm I Inlet water temperature of the cooling coil ( "C) 

I I 

Supply air flow rate (m1ls) 

10.2 

TABLE 2 AAE Comparison of ARMAX and ARX Models (Pump Fault Condition) 

1.5 

I I 

HM Mixed air humidity ( dew point temperature, "C) 12.5 

ARX 

=(PSI 
(kPa) 

0.0028 

0.0030 

AAE(Ts) 
( "C) 

0.0243 

0.0282 

Model structure =(Qd 
(m3/s) 

0.0988 

0.0997 

ARMAX 

'MIS0 

SISO 

MIS0 

SISO 

0.0256 

0.0256 

0.0028 

0.0030 

0.0976 

0.1010 



TABLE 3 Residual Values After Faults 

Fault 2 

Fault 3 

Fault 4 

Fault 5 

Fault 6 

Note that ( r) and (i) mean ramp and impulse responses after faults and other residual values are 
step changes. 

Fault 7 

Fault 8 

TABLE 4 Changes in Identification Parameters After Faults ( SlSO ARX) 

-0.249 

0 

0 

0 

-0.249 

0 

-0.65(i) 

-0.47 

0 

0 

0 

0.55(i) 

Fault 1 

-0.8 

1 

Fault 2 

Fault 3 

1.766(r) 

1.5(i) 

0 

-14.5 

1.2(i) 

a,? 

0 

Fault 4 

Fault 5 

0 

0 

-0.1797 

-0.1778(i) 

Fault 6 

Fault 7 

Fault 8 

4.9(r) 

1.66 

-0.06 

5.0(i) 

1.33 

b ~ f  

-0.03 

-0.055 1 

0.7(i) 

0.25 

0 

-0.0427 

-0.05 

0.25(i) 

-0.05 

-0.04 

-10 

0 

0 

0 

-l.O(i) 

a ~ f  

0 

-0.044 

-3.586 

0 

0 

-0.8432 

0.05 

-0.05 

0.05 

0 

0 

0 

0 

0 

0 

b ~ f  

0 

0.0713 

0.05 

0 

0 

0.11 

- 6.0(i) 

0 

0 

0 

0.0305 

0 

-0.77 

0.05 

0.2 

0 

0 

a,, 

-0.4 

0 

0 

b ~ f  - 

0.42 
~ ~~~ 

-0.954 

0 

0.01 

0 

-O.O6(i) 

-~~ ~ 

0 

0 

0 

0 

0 

0 

0 

-1.0 

-0.6 

0 

-O.l5(i) 

0.6 
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Figure 1 Fault situations. 
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Figure 2 System layout diagram. 
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Figure 3 Fault detection using parameter estimation. 
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Abstract 
The potentials of a FDD method bared on parameter estimation and physical models is tested on a coil 
subsystem in laboratory environment as well as in a simulated coil version. Basically the faultfree case 
is analysed because rather fundamental features in the parameter search procedure are of interest and 
these should not change if faults occur or not. However, some fault situations are also tested to study the 
sensitivity of the parameters in detecting and diagnosing applications: The statistical features of 
parameters are of particular interest considering 

variability of the signals 

impact of filter 
sampling rate and period 

The coil system can be run under different options from externally operated fast moving valve to a 
rather slow valve motion with feedback loop for air temperature control (simulations). 

The parameters in the model act as pre-defined fault indicators and features studied are, for instance, 

coil temperature effectiveness, flow rates and valve leakage 
effectiveness of air control loop (deviations from set-point and time delay) 

The following general conclusions are drawn from these tests: 
large variability of the signals is necessary to keep statistical errors small and thereby also 
intercorrelation effects 
filter with time constant about equal to the thermal one for the coil should be used to reduce 
transient modelling and measurement errors . to resolve dynamic features the sampling interval must be maximum 114 of the shortest relevant 
time constant of the system. The sampling period must be long enough to ensure sufficient signal 
variability 

With these conditions fulfilled the present method may serve ar a FDD tool, particularly suited for 
analysing degrading component functions, as indicated by the tests performed. The lower limit of faults 
to be resolved seems to be about 10 %, compared to correct behaviour. If faults occur that are not 
targeted by the parameters special care must be taken in the analysis by use of a priori learnt 
identification of parameter changes and such faults. 



I. Introduction 
In the present report a fault detection and diagnosis (FDD) approach based on 
parameter estimation and physical models for the component functions is analysed in 
more detail regarding fundamental features like 

accuracy of parameters 
data acquisition and use of filter 
sensitivity to changes in system 

applicability (On-line FDD to function control). 

The capability to detect and diagnose faults rests critically on such features, most of 
them should be rather independent whether faults occur or not. 

For this purpose a subsystem consisting of a coil, operated in the dry regime, and 
various types of control valve functions is analysed when it is mnning in its faultfree 
state as well as in some fault situations. This system has been implemented in two 
ways to generate test data: 

in laboratory with externally operated valves to establish stepwise changes of 
supply water temperature and flow rate 
by simulating the same system with a control valve and a feedback loop for the air 
side. Slightly different models compared to those used in the FDD routine are used. 

In both cases rather short time sequences of signals but high sampling rates were 
exploited because the coil is quite small. A central point in this study is to check the 
overall uncertainties of various parameters and means to reduce these, particularly 
important for simultaneously occurring faults. 

In section 2 the FDD procedure and application examples are briefly described. The 
test cases run are accounted for in sections 3, using measured data and 4, exploiting 
simulations. Both correct and faulty behaviour of the systems are tested. Aspects on 
data acquisition is discussed in section 5 and the potentials of the present procedure 
are commented upon in section 6 .  

2. Method and Application cases 

The parameter estimation procedure makes use of measured data sets for various 
signals, relevant for the component or subsystem to be analysed, a system description 
based on physical models and targeted features that are essential for the function. In 
this section a brief account of the applied method and the data generation regarding a 
coil subsystem as well as its modelling for FDD and simulation is given. 

2.1 Comments on FDD approach 

An overview of the procedure is presented in the Source Book [l] section 4.3.1. The 
method is thus a computer program with administration and calculation routines. 
Their level of development and how they are applied in the present studies are further 
described in Appendix A of this report. Here a few points are further emphasised: 



the parameters may be of detecting or diagnosing types, to what extent is given by 
the models. However, the parameters must be defined so that they indicate a 
malfunction when changing from their reference values, the correct behaviour, 
the parameters may be seen as mean values with standard deviations (STD:s) and 
intercorrelations between pairs of parameters. In determining the accuracy all these 
effects have to be considered (simplified to quadratic addition, cf. section 5.2, [I]), 

0 a fault may also be identified by c o m b i n g  parameters within the same set of 
parameters or using data from different subsystems or components. Such 
procedures may be quite modelling dependent, needing further knowledge for 
interpretation. 

2.2 Subsystems tested 

Schematic pictures of the tested subsystems are shown in figures 2.1 and 2.2, 
indicating the components included and the signals used. Both the laboratory and 
simulated systems use similar coils but the latter one is controlled by a mixing valve 
with feedback loop and the former one with flipping valves that switch between two 
different supply water temperatures. The coil is quite small and consists of 24 tubes 
arranged in 3 parallel circuits and 3 rows. The air flow cross section is 0.09 m' with 
wavy fins. The nominal power is 10 kW. 

Laboratory system in open loop arrangement: 

Fig. 2 .1  Schematic layout of the experimental set-up with signals recorded. Denotations ar ordered: t 

and m = temperature andflow rate & w and a = water and air & i and o = inlet and outlet & A, boi 
and set = valve stem position, boiler and set-point. 

Input and output temperatures are measured as well as the flow rates. The data are 
stored in a PC which also controls valve switching. The measurements may be carried 
out over a rather short period (150 - 550 s) and sampling interval of 1 s, due to the 
short thermal time constant of the coil, about 5 s according to measurements. The 
types of signals that can be applied are: 

step up and step down of water inlet temperature or sequences of such steps while 
air inlet temperature is constant, 
step up and step down of the water flow rate while the air flow rate is kept constant 
during each measurement session. 



Simulatedsystem in closed loop operation: 

Fig. 2.2 Schematic layout of the subsystem with signals recorded. Denotations as in Fig. 2.1 but with 
TC and FC=temperanrre andflow control, respectively 

The recording of data was made on the same time scales as the experiments but the 
valve motion was set rather slow, 15 s from closed to open or vice versa, and a PI 
controller with the following rather arbitrarily chosen features: 

band width I C 
integral time constant 25 s 
valve characteristics linear 

The models used are almost similar to those applied for the FDD routines and will 
briefly be discussed in the following section. The simulations include both thermal 
and hydraulic modelling for the valve, connecting pipes and the coil, while the boiler 
or chiller is assumed to provide a pre-determined level of temperature. The pressure 
drops in the circuits are estimated by using valve authorities combined with a given 
pump curve. Air flow rate and supply temperature are ascribed values according to 
given time dependent functions. 

2.3 Models and Parameterisation 

2.3.1 FDD model 

The subsystem model consists of 
0 the coil (at present running in the dry regime) 



connecting pipes between positions of temperature sensors and coil 
0 the control valve, given by K, -numbers and flow characteristics 

Apart from the by-pass circuit the pipes are hydraulically included in the coil piping 
but a minor temperature loss to the surrounding may be accounted for. 

The measured and calculated output temperatures for air and water are used in the 
minimisation procedure. The model data are based on the steady state approximation, 
modified to include thermal capacitance and transport delays in the coil and pipes. 
The parameters indicating various faults or degrading function are defined as follows: 

- temperature effectiveness of the coil @I) 

where, x denotes input data and DD design data for the coil. Subscript act and m refer 
to actual and modelled values, respectively. IEA An 17 heating coil model has been 
utilised [2], however, with dynamics modified and an option to use polynomial fits for 
E. 

- pump flow rate @2) 

where, x refers to experimental data, directly measured or calculated from information 
about the pump (speed, energy consumption, pressure drop andor pump 
characteristics). Often this flow rate is set to constant. Sometimes it is practical to 
omit p2 (fixed to 1). 

- function of three port valve @3) 

where, F is a function that can be calculated, given the valve stem position A, valve 
characters type (lin, log or a combination thereof) and the size (K, -numbers). 
Parameter p3 is a multiplier sensing the valve behaviour, i.e. mismatch between flow 
rate (FC) or supply water temperature (TC) and A. If pl and p3 are free valve leakage 
can only be observed if A is small (nearly closed states). To suppress the effect of 
correlations when p2 is also free it might be necessary to ascribep3 a narrow validity 
range (maw. 0.9-1.1). The STD might then give information about leakage, at least if it 
is large. 

- controller function for air outlet temperature @4 and p5) 

where, G is a function (exponential continued with a cosine) depending on steps in the 
set-point, Atyc, (if none put equal to W 2  with bd denoting control band width) and 
the equivalent time constant, r (x) , for the coil. 

In the present FDD approach the previous expressions are thus used to model the 
output temperatures for air and water in temperature or flow control mode operation 
of the coil. In the latter case the mixing temperature from the coil and by-pass circuits 
may also be used as option. The signals are converted to dynamic ones by following 
corrections: 



the transport delays on the water side are reproduced by means of flow dependent 
dead times and smoothed transferred signals. Accumulating water tanks are placed 
at the inlet and outlet of the coil and the volumes correspond to the pipe distance 
from the temperature sensors to coil midpoint. When these volumes are filled, after 
a number of time steps (> 1 but below a pre-set limit), the mean values of the 
temperatures are shifted in to and out bom the coil. 
the heat balance is then evaluated in the steady state approximation and including 
the dynamics due to thermal capacitance of the coil (using one node). The outlet 
temperature for the air is then obtained while the one for water is stored as 
described above. 

This information is then passed on to the parameter estimation program which 
performs the main calculations [3] . Briefly, the residuals between measured and 
calculated responses are evaluated, transformed to bequency domain and damped 
with a Gaussian filter function before being minimised utilising the Levenberg- 
Marquardt procedure (least square fitting), see 141. 

Finally, if a reduced number of parameters are used it might be necessary to redefine 
some parameters in order to associate them with specific faults. As an example, carry 
out the fittings with pl and p3 free while p2 is kept constant. Then, for 

- FC using the mixed water temperature as response simple manipulations with coil 
and valve equations give (denotations according to list of symbols): 

t.,, =tho; -g(p3) .err . p l  .p3  (2.5) 

I, =tio + A P ~ ) . P ~  

To compare the indicators for temperature effectiveness obtained in the two fittings an 
equivalent parameter for water side results may be defined:: 'pit= pl 'p3. 

- TC using the coil water outlet temperature as response gives similarly (due to the 
water feedback): 

and the equivalent parameter 'pl'=pl/p3. 

This option in using reduced number of parameters will also be tested below in order 
to simplify the interpretation. 

2.3.2 Comments on the simulation model 

The system in figure 2.2 is simulated in order to generate data for FDD analyses. TO 
make the tests more easy to interpret the modelling is rather similar to the FDD 
model, but 

the pipes are described with specific models considering heat losses, thermal 
capacitance and transport delays for water flow 
the control valve with regulator and pump are also simulated by simple models, 
e.g., the pressure drop over the valve is considered by assuming a constant pump 
pressure but modified with the valve authorities. 

Furthermore, 



all parameters are set to 1.0 when indicating the correct behaviour, while faults 
may be introduced by ascribing them other values 

0 coil model is based on measured values of the temperature effectiveness En,(..) in 
all cases. 

3. Tests on Experimental Data with Large Variability 
The laboratory set-up described in section 2.2 was used and these experiments were 
made with various step changes of the input signals, which should represent cases 
with maximal variability. It must be emphasised that such operation conditions can 
not be obtained in real plants but the analyses are nevertheless of interest from 
principle point of view, because the results serve as an upper limit of the capability of 
the method. The studies are restricted to the coil unit in heating mode. 

3.1 Measurements and FDD model 

Three sets of step input signals (1 in temperature and a sequence for the water flow 
rate plus a rapid change in air temperature) were combined to data sets of 5 12 
sampling events (cf. Fig. B. 1 in Appendix B). These data sets were used in all test 
cases and must be considered as a very favourable arrangement to obtain good 
variability of the signals. The duration of each step was made long enough to establish 
thermal equilibrium. Data were recorded each second for the inlet and outlet 
temperatures as well as the flow rates. 

As no control devices are involved the FDD model was restricted to parameters 
checking the coil function, p 1 and p2, as defined in section 2.3. There are three 
objectives with the present studies: 
0 impact of filter 

parameter correlation 
test impact of some faults 

In all case the analyses are carried through using a starting period of 50 s, the skip 
time, where data are omitted in the fittings to ensure that differences that may occur 
in the initialisation conditions are damped out. On a 90 MHz PC each parameter 
estimation took about 30 s. 

3.2 Results 

Correct behaviour: 

The resulting parameter values are given in Table 3.1 for different filter time 
constants, including correlations and the objective function. Denotations used: 

px = estimated value for parameter with number x 
sx = standard deviation (STD) for parameter with number x 
a = air side response 
w =water side response 
R = type of response (a or w) 
CC/.l= correlation coefficients for a parameter pair 
1123 = STD in decimal digits 
ObjF = objective function with residuals based on fluid outlet temperatures 
T , =filter time constant 



Table 3.1 Twojiee parameters and differentfilter rime 
constants in a hearing coil rest. Thermal time constant is 
about 5 s. 

7 R pllsl p2/52 C U I Z  ObjF 
[sl [-I [-I [-I [-I [CI 

1 a 0.934/002 1.1281001 4.94 0.18 

w 1.0781007 1.1881011 0.86 0.71 

5 a 09341003 1.1291011 4.94 0.14 

w 1.0201018 1.0801033 0.95 0.53 

10 a 09341003 1.130/013 4.94 0.11 

w 1.0191024 1.078/043 0.96 0.43 

25 a 0.9341003 1.1301012 4.95 0.06 

w 1.0301038 1.0971051 0.87 0.25 

50 a 0.9341003 1.128/012 -0.96 0.03 

w 1.0511032 1.138/059 0.98 0.10 

As can be seen: 
the parameters are very constant for different filter time constants but differ for air 
and water side fittings as well as from 1. This is probably due to modelling defects. 
the insensitivity of the applied filter effect, apart from the STD:s for water side that 
increase slowly, may be explained by the fact that time periods after a step change 
are long compared to the thermal time constant. However, filter time constants 
about equal to the thermal one seem reasonable, i.e. here about 5 s. 

0 the STD is small in all cases as might be expected because of the variability of the 
data 
the correlation between pl and p2 is strong but as long as STD:s are small this will 
not prohibit fault indication. 

Faulty behaviour: 

It might also be interesting to introduce some faults, which can easily be done for the 
flow rates by modifying the signals to the FDD model. Thus the following faults are 
introduced: 

F2w = water flow rate is 15 % lower than the measured one ('1.15 on the signal to the model) 
F2a =air flow rate is 10 %higher than the measured one ('0.90 on the signal to the model) 
and combination of these two ones. Additional denotations are 
FO = faultfree case 
sc = correlation error in parameters 
N = parameten normalised to their reference values 

Moreover, total errors in treated parameters are approximated by adding all 
contributions quadratically. The results are collected in the following table. 



Table 3.2 Two free ~arameters and different flow rate frmlts 

case R p l l s l  p2s2 CCl12 ObjF sc 

FO a 0.9341003 1.129101 1 6.94 0.14 

w 1.0201018 1.0801033 0.95 0.53 

F2a a 0.9081003 1.049101 1 6.93 0.15 

w 1.022/017 0.9941026 0.96 0.45 

N a 0.972004 0.9291015 6.93 - 0.008 

w 1.002025 0.9201043 0.96 - 0.033 

F2w a 0.9351002 0.9791008 -0.92 0.14 

w 1.0181028 0.9341031 0.95 0.56 

N a 1.0011004 0.8671014 -0.93 - 0.007 

w 0.9981033 0.8651046 6.96 - 0.057 

F2acF2w a 0.907/003 0.912/009 6.93 0.15 

w 1.0201015 0.8701022 0.95 0.45 

N 
- 

a 0.9711004 0.8081014 6.96 - 0.007 

w 1.0001023 0.8061040 0.96 - 0.030 

By normalising parameters to their reference values it is possible to identify faults. 
However, in case of air flow it is affecting both parameters and may add to errors in 
water flow. This puts requirements on statistical quality and fault magnitudes in order 
to resolve such effects. According to the definitions in eqs. (2..1-2) air flows, PO, may 
be tested by the relations 

pO=plwlpla 
2 112 e=(ea2 +ew ) (3.1) 

2 112 ex=(sx2 +scx ) 
where, 

x = a for air and w for water side data 
e = overall parameter uncertainty 

In the present case p0=1.031/039, i.e. not statistically' safe. Increasing the fault to 20 
% gives the values 1.1371068, a more reliable indication (2 times the error e). The 
change in p2 for the water side ensures that the heat balance is fulfilled while p2 
changing for the air side is not clear. Modelling errors may be the reison why air flow 
faults affect both pl and p2 in this case. 

3.3 Summing up 

The present analysis has indicated that 
although the fittings are made on well controlled laboratory measurements and 
validated models, reference parameter values differ from 1 with 5 - 10 %. This is 
probably a realistic figure that will increase for in situ measurements 

0 the statistical quality of all data is good but correlations are large implying that 
these are embedded in the model structures 

0 the filter function has a small impact on the parameter values, probably due to the 
spectral shape of the signals. However, a slight filtering effect seems reasonable to 
reduce measurement noise 



faults can be observed by changes in parameters but for faults that affect more than 
one parameter there is a lower limit in magnitude for these to be resolved, 
depending on the quality of the signals. 

4. Tests on Simulated data with Moderate Variability 
In this case signals that are more realistic for normal operation of real plants are - 
utilised in identifying the parameters. Both correct and faulty operations were 
simulated and tested with the same FDD routine as used in the previous example. 

4.1 Generation of test data 

The simulations were carried through for a short time period of 300-600 s and a time 
step of 0.2 s. Data were recorded each second, corresponding to the shortest coil time 
constant being resolved with 4 to 5 steps. The tests were performed with both 
temperature and flow control of the coil (TC and FC) and data were generated with a 
coildesign similar to the laboratory set-up but the air supply temperature and flow 
rate were changed harmonically to mimic moving dampers in mixing and VAV boxes. 
Thus, 
driving signals: 
air inlet temperature 4. (20-25 C) 
air flow rate through fan ma (0.012-0.027 kgis) 

water flow rate through pump m, (0.010 kgis) 
boiler temperature (72 C for TC) 

(62 C for FC) 
set-point for air temperature L (40 C) 
recorded signals (to FDD): 
outlet air and water temperatures: t, and t, 
valve stem position (relative): A 

To make the tests more realistic a random noise was applied on some signals, i.e. 
temperatures 1 % 
flow rates 5 % 

of their amplitudes. 

An example of simulated signals is shown in Appendix B. Faulty operation is 
obtained by giving the parameters in the simulation model values different from 1 
andlor modifying the signals to the FDD routine. 

4.2 FDD implementation 

The fittings were performed in three steps with filter time constant of 5 s: 
analysis of water side responses giving p I ,  p2 and p3 or p 1 and p3 

analysis of air side responses giving pl ,  p2 and p3 or p l  and p3 
analysis of controller function giving p4 and p5 

The skip time was set to 30 s in all cases and the calculations were carried out on a 
PC, as earlier. Each fitting was performed within a minute. The signals accounted for 
in section 4.1 are all needed in the fitting procedures as well as design data for the 
system. The FDD and simulation models differ in treatment of the dynamic behaviow, 
as indicated in section 2.3.2. 



4.3 Results and discussion 

4.3.1 Correct behaviour 

An example of the fittings is shown in Appendix B and the resulting parameters are 
collected in Tables 4.1 and 4.2, together with STD:s, cross correlations and objective - 
function. Denotations used are the same as defined above. However, when parameters 
have been processed using eqs. (2.5) or (2.6) these data are given in single quotes. 
It should also be emphasised that in no case it was possible to let all three parameters 
be free simultaneously. One must be restricted or fixed to make the minimisation 
procedure to run properly. 

Table 4. l a  Results for temperalure control mode based on 600 sampling 
interuals/data set. p3 restricted to 0.95-1.05. Fitting to coil outlet 
temperatures 

R p l l s l  pus2 p3s3 CC/lU13/23 ObjF 

a 1.023/010 0.969/012 1.050/001 /-.72/.45/-,151 0.53 

w 0.9741016 0.969/015 1.040/002 10.73/.71/.61/ 0.88 

Table 4.16 Results for temperature control mode based on 
600 sampling interualddata set. p3 restricted to 0.95-1.05. 
Fitting to set-point for air temperature 

R @/-I ~ 5 1 ~ 5  CC/45/ ObjF 

a 0.989/010 0.992055 -0.01 2.20 

Tests with two free parameter, pl and p2, gave a very irregular result as will be 
further discussed in 4.3.2. 

In Tables 4.2 the corresponding data for the FC case are displayed for the option of 
mixed outlet water temperature and using two free parameters while p2 was fixed. The - 
result is acceptable but the correlation between pl and p3 is high, particularly for the 
air side. This is not quite surprising and not dangerous as long as the corresponding 
STD:s are small. 

Table 4 . 2 ~  Results forflow control mode based on 300 
sampling interualddata set. p2 is faed to I .  Fitting to 
coil outlet air and mixed water temperatures 

R 01/51 ~3153 CC/13/ ObjF 

Table 4.26 Results forflow control mode based on 
300 sampling interualddata set. Fitting to set-point 
for air temperalure 

R @/-I pus5 CC1451 ObjF 

a 1.0101023 1.2441177 0.16 3.49 



Fittings with parameters pl and p2 free but p3 restricted were also tested with rather 
poor results. The air side fittings gave parameters in good agreement with the previous 
ones but for the water side no minimum could be indicated. 

4.3.2 Fault tests 

Finally, a few tests with minor system faults were carried out in order to analyse the 
sensitivity of the parameters. The TC and FC cases were tested by applying faults like 

FI =coi l  fouling corresponding to about 15 % increare in the overall air-to-water thermal resistance 
F2w = water flow rate is IS % lower than the mearured one ('1.15 on the signal to the model) 
F2a = air flow rate is 20 %higher than the measured one ('0.80 on the signal to the model) 
F3 =valve leakage changed 6om 1 to 5 %, 
and combination of those. Furthermore, FO denotes faultfree case and the results are 
given in Tables 4.3 to 6, where the same denotations as defined above are used. 

The TC case was analysed with two sets of parameters, viz. 
p l  and p2 free but p3 restricted and 
p l  and p3 free but p2 fixed. 

Data sets of 600 samplings are used in all tests. 

Toble 4.3 Test offoult cares with TC. p3 resnicted to 0.95-1.05 

Case R pllsl pZs2 p3s3 CC/12/ CCl131 CC1231 

FO a 1.052/015 0.9361008 1.0491014 - . I 4  .78 0 9  

w 0.9451080 0.963072 1 .0451058 .81 .70 . I 8  0.57 

F 1 +F3 gave no significant difference from F 1. As can be seen from the table 
faults are possible to indicate but with various degree of accuracy. It isparticularly 
important to normalise with reference data 
the STD:s differ much from case to case and are sometimes quite large. The reason 
for this may be the TC operation, further discussed below 
the correlations change sign when faults occur which may indicate weaknesses in 
the model structure 
leaking valve is difficult to detect by increase of s3 unless the leakage is 
considerable, although a minor effect can be seen in s3. 



It might also be of interest to study a 2 parameter fitting with same test data. It should 
be noted that in these cases the parameter pl for water side fittings has been processed 
by means of eqs. (2.5) an (2.6), which has been indicated by giving the tabdated 
values in single quotes. 

Table 4.4 Test offault cares with TC p2 is faed to I .  

Case R p l l s l  ~3153 CCl131 ObjF sc 

FO a 0.8471009 1.462058 -0.87 0.39 

The results are very contradictory for this case, e.g. 
the reference values differ clearly from 1 
some faults may be indicated in the normalised parameters, others not 
statistical errors and correlations are large 

The reason for this behaviour is probably that the feedback of coil outlet water makes 
the operation less distinct, implying that the parameters for correct as well as faulty 
behaviour will be difficult to identify, as already indicated. A solution to this problem 
would be to also measure the coil water inlet temperature and use it in the fittings as 
described in section 3. The valve function is then tested separately. In addition to that 
the measuring period could be increased. 
The FC case was analysed with two free parameters as in 4.3.1 and tests with fault 
cases F2w, F3 and F2w+F3, using data sets of 300 samplings. 

Table 4.5 Test offauh cases with FC. p2 is fued to I .  

Case R p l l s l  p3s3 CC1131 ObjF sc 

FO a 1.0291015 0.9301036 -0.99 0.14 

w '0.972022' 0.9911015 0.59 0.25 

F2w a 1.0361015 0.812031 -0.99 0.14 

w '0.9671020' 0.8551014 -0.64 0.25 

N a I.M)7/021 0.8731048 -0.99 - 0.031 

w 0.9951030 0.8631021 -0.62 - 0.026 

F2a+F2w a 1.0271048 0.6061070 4.99 0.38 

w '0.9831023 0.735/016 -0.85 0.20 

N a 1.0011051 0.692079 -0.99 - 0.063 

w 1.01 11032 0.742022 -0.72 - 0.023 

F3 a 1.0241015 0.9341035 -0.99 0.15 

w '0.972022' 0.9941025 -0.76 0.27 



F2w+F3 gave no significant difference fiom F2w. With this parameterisation both 
statistical errors and intercorrelation effects are reasonably small and the flow rate 

- fault well indicated. It is clear that small valve leakage can not be observed unless the 
operation is such that the valve is in a nearly closed position. The same yields for TC 
cases. It is also worth noting that flow rate errors of about equal size but opposite 
direction have the same impact on p3 and need further information to be resolved. 

4.4 Summing up 

The present analyses were carried out on good models and data, apart fiom low 
variability of the signals, a situation rather opposite to the tests described in section 3. 
There are both similarities and differences in the results: 

correlations are still large supporting the conclusion that these features are 
embedded in the model structure 
reference data are close to 1, due to the modelling 
statistical uncertainties are in general larger, probably caused by limited richness of 
the signals, an effect that can be reduced by increasing variability andlor sampling 
number 
the procedure is capable of indicating pre-defined faults by change of parameter 
values even in more complex systems. However, parameterisation is dependent of 
detailed system layout and should be tested fiom case to case (by simulation) 
based on simulations faults smaller than 10 % (in terms of parameter values) can 
not be resolved, particularly if more than one fault occur simultaneously 
pammeter changes for various types of faults should be checked with simulations 
in spite of their pre-definitions if the component function is complex, as is a coil 
with control valve, for instance. 

5. Data acquisition 
In the previous tests, sampling rate and filter time constants were chosen empirically, 
i.el transients should be resolved with at Ieast 4 steps for dynamic models. Likewise, 
the filter time constant should not exceed the thermal one but suppress outliers in the 
measured signals or modelling defects. Such conditions imply, however, rather large 
sampling rates and to ensure high variability also long sampling periods, requiring 
large data storage capacity. In the present section the consequences of reduced 
resolution of the measurements is studied using simulated data (cf. 4.2). The tests are 
restricted to FC case and mixed water side responses with p l  and p3 free. As before, 
parameter p l  is processed and given in single quotes in the tables. 

5.1 Increased sampling interval 

The time step used in the previous studies was set to 1 s, considerably shorter than the 
thermal time constant. Time steps of 5 and I0 s for the sampling routine were also 
tried. The filter time constant was put equal to the time step length or, tentatively, to 
50 s. Moreover, the number of sampling intervals was kept constant, 300, implying 
that the measuring time was increased proportionally to the length of the time step. 
The results are given in Table 5.1. 



Table 5. I Results forflow control mode using diflerenr length of sampling 
interval bur the same number of samplings (300). 

- step pllsl p31s3 CCH31 Objf '4 

[SI 1-1 [-I [-I [-I [sl 

As can be seen the parameter values behave rather irregular, an effect increasing with 
length of sampling interval and filter time constant. For dynamic analyses these are 
very restricted. 

5.2 lncreased filter time constant 

The same system as in the previous case was used but with sampling interval restored 
to 1 s and filter time constant considerably increased, up 10 times the thermal one. 
Overall sampling time was set to 300 s in the tests. 

Table 5.2 Results forflow control mode using d%ferent/ilter time 
constants (r ,). Thermal coil time constant is about 5 s. 

rf pllsl  p31s.3 CC1131 ObjF 
[sl [-I 1-1 [-I LC1 

1 '0.9771009' 0.9921007 4 . 4 4  0.37 

5 '0.978101 8' 0.9911015 -0.59 0.25 

10 '0.9841028' 0.9921024 -0.78 0.20 

25 '0.9711035' 0.9721032 -0.70 0.1 1 

50 '0.8811098' 0.8171082 4 . 9 7  0.05 

As can be seen the results are slowly deteriorating when the filter time constant is 
increased. r , should not be set larger than two times the thermal coil time constant. 

5.3 lncreased number of sampling intervals 

The final quantity in the data acquisition procedure to study is the number of sampling 
intervals. The variability of the signals affects the possibility to resolve the parameters 
(reduced uncertainty) and increased length of the measuring period gives in general 
more information. r , is set to 5 s. 

Table 5.3 Results forflow control mode using dflerent 
number of sampling intervals (N). 

N p l h l  p3ls3 CCH31 ObjF 
1-1 1-1 1-1 [-I [CI 



The parameter values are changing very little but in addition to the improved statistics 
there is a tendency for increased correlations when the samplings are increased. 
However, the statistical features of the parameters (STD + intercorrelations) are 
improved. This result is equivalent to, repeating a measurement series M times, the 

STD will reduce with f i  , assuming the same boundary conditions. 

5.4 Summing up 

The empirical rules to determine length of sampling interval for dynamic system 
identification apply, i.e. transients should be resolved with at least 4 steps. Also the 
filter time constant should be restricted, suppress measurement noise but keep the 
essential features of the models. The number of samplings has a statistical impact on 
the results in that it reduces the STD:s of the parameters. The obvious drawback with 
long sampling periods is increasing measurement and computation times. In addition 
to that the possibility to resolve fluctuating faults is reduced. 

6. Conclusions 
Tests with the present method have been carried out on a coil in various applications, 
open or closed loop operation and in the latter case in both temperature and flow 
control mode. Both correct and faulty cases were studied by use of data from a 
laboratory set-up and a simulated system. 

As regard to the fitting procedure it can be concluded that 
the estimation is quite sensitive implying that the modelling must be very realistic 
and the signal information rich, otherwise the number of free parameters must be 
reduced 
the parameter accuracy is set by the STD:s and intercorrelation effects. 
Correlations between parameters occur generally in the present test cases, 
indicating that they are embedded in the model structure by definition. The impact 
of the correlations can be kept small by high statistical quality of the measured 
signals 
the data acquisition should be carried out with large sampling rate and a slight filter 
effect when dynamic models are used, i.e. the standard (literature) values used in 
the present tests seem adequate. 

The present studies, however, indicate that the adopted parameter estimation method 
has potential in FDD applications: 

minor faults were introduced in the measured signals (faulty sensors) and in 
simulations, which were mostly possible to identify by changes in parameters. 
However, sometimes the faults affect more than one parameter, particularly when 
these faults are not specifically targeted, making it urgent to cany out simulations 
with many different types of faults to map possible parameter combinations 
certain parameter sets did not produce useful results, probably due the model 
structure not giving a unique result within the uncertainty of the measured data (FC 
and TC coil). To cope with such cases the number of free parameters could be 
reduced, the variability of the signals increased by disturbing the system, 
introducing additional sensors to make the fittings more robust etc. 



It seems as the present method is best suited for analyses of degrading component or 
system functions but other possibilities of exploiting it exist. At On-line application 
the parameter estimation procedure is repeatedly applied and a two-step procedure is 
proposed: 

detection analyses: few global parameters when low variability of signals occur, to 
check overall system function 

0 diagnostic analyses: when a fault has been observed special measurements are 
conducted with large variability of the signal to allow more free parameters 

By such an arrangement the drawback with the delay in responses (computing time) 
can be reduced. 
Finally, to make a more complete diagnosis of a HVAC system more components 
must be included in the analysis, like fan, pump, mixing and VAV boxes, and 
combined with the information from the coil subsystem. In this way the interpretation 
will also be more substantial. 

List of Symbols 
1. Denotations (St units) 

A = valve stem position 
a = air side 
bd = band width 
CC = correlation coefficient 
crr = thermal capacity ratio (airlwater) 
DD = design data (or characteristic curves) 
A t = temperature difference 
ex = error of type x 
E(.) = temperature effectiveness 
F(.) = function or fault 
G(.) = function 
g(.) = function 
h(.) = function 
i j = indices 

m = flow rate 
N = number of samplings, normalised data 
ObjF = objective function 
pj = parameter j 
R = type of response (air, water, controller) 
sc = intercorrelation fault in p 
sj = standard deviation (STD) for parameter pj 
t = temperature 
r =time constant 
type = valve characteristics 
x = input signal 

2. Subscripts 

act = actual (observed)- 
a = air side 
boi =boiler 
by = by-pass 
c =control 
f = filter 
i = inlet 
m = model based 
mix = mixed coil and by-pass flows 
o = outlet 

P =pump 
set = set-point value 
w =water side 
x =experimental 
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Appendix 

A Implementation of the method 
The aim is to provide a software that automatically performs an analysis of a 
subsystem. However, in the present tests the software is in a rather preliminary stage 
of development but still arranged to mimic a real application. Thus the procedure is 
divided in two parts: 
0 data acquisition which is done in separate measurements or simulations providing 

necessary data sets 
0 the analysis, carried through in a sequence of batch runs for each defined 

component or subsystem 

Below this second part is further described. 

A.1 Program structure 

Prerequisites for the test case as well as in a more final version: 
0 the user must provide compiled modules for the actual components 
0 information about design features, parameters and how to address in- and output 

spectra (text files of specified formats at present) 
0 long time storing of the results for each fitting procedure, at present performed 

manually with text editors, 

arranged in an order as given by the following block diagrams (some routines not 
fully implemented). 

1 menu 
-pre-processor 
slauifirr/evalualion 

2 pre-proccnor: 
provide film with models, 
design data, free parameten, 
sru of measured signals and 
storage for rnullo 

3 start parameter atimnlion: 
.call fining prcgram for thc sptcificd component 
-store r a v l u  (parameten and residuals) 

4 more cornponenu to nnalysr ? yes a 2 

5 menu: 

Fig. MI. TabularJlow chart for pre-processingpart of the FDD routine 



1 menu: 
... ..... ... 
classifier/cvaluation 

2 classifier: 
read results from prr-procrssor filrs 
treat (rrfior)/oormnlisr paramrarr 
store new results 

3 more component to analyse? yes -> 2 

4 display results in tables or plots (for time evolution) 
with decirrian making aspects: 

-parameter values with statistics 
-diagnorris and proposed actions 

Fig. ,412. Tabular flow chart of the parameter analysis. A11 
these routines are pe$ormed manually at present. 

A.2 Software available. 

The implementation of the programs according to the flow charts is thus partly 
completed: 

the supervisory program handler (menu) remains to be developed 
the main administration for supplying information (all types of data files and 
subroutines for models) to the parameter estimation program exists but minor 
modifications may be needed. This program is written in FORTRAN 77 and DOS 
command files 
the program package for parameter estimation [3] is commercially available 
(compiled), written in PASCAL and automatically included in the calculation 
routine 
modules for various models are to be included in the course of development of the 
FDD procedure 
the parameter analysis routine remains to be developed (cf. Fig N2) and should 
thus include parameter refinement routines, error calculations, plotting facilities, 
comments on the results etc. 



B Examples of measured signals and residuals 

Example of signals used in the parameter estimation procedures based on experiments and 
simulations. Also the corresponded residuals for the air side are given which are rather 
representative for all tests. Time scale in seconds. 

ti, LC1 

Res [C] 

Fig. 5. I Example of resulfsjrom tests with aperimenrol data. From fop: air and wafer inlet 
temperatures, air and waferjlow rates; at bottom the residuals for air side responses. 



Res [C] 

0 100 200 300 400 500 600 

Fig. 5 .2  Example of input signals used in all tests with temperature control. From top lo 
bottom: air and water inlet temperahrres, airflow rate and valve stem position. 
Bottomfigure gives the residuals for air side responses. 



Monitoring energy consumption in heating systems 

AN25/CHt240994/1 
Peter Sprecher, Landis & Gyr Building Control, Switzerland 

Summary 
A 1st order model of a heating system is setup, including the most imponant heat gains and losses. 
Determination of its parameters is discussed. In case that no measurements of fault free operation are available 
the parameters of a simplified model can be estimated based on prior knowledge. Otherwise a more 
sophisticated model can be identi6ed using the measurements available. Some possibiities of automatic m&l 
validation are compiled. Model based testing of new energy consumption measurements is then discussed. 
Emphasis is put on easy threshold determination An economic threshold and a statistical one are 
distinguished. Finally a suggestion to reduce false a l m s  is added 

1 Introduction 

The most common method for monitoring the energy consumption in heating systems is the energy signature 
method The energy signature shows the energy consumption within a certain time period in dependence of the 
outdoor temperature. More precisely the energy consumption depends also on the mom temperature setpoint 
schedule, the solar radiation, the wind speed, and internal heat gains. As a building has a ihermal inenia the 
energy consumption depends also on the history of the mentioned variables. Therefore the energy signature 
method needs several extensions and guidelines for selecting appropriate measurement periods. This paper 
attempts to compile such extensions and guidelines. It funher addresses the problem of automtic testing of 
identified models and of new measurements. 

2 Basic approach 

Fig. 1 illustrates the basic approach for testing the energy consumption 

Fig. 1 System suucture for testing the energy consumption Q 
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A model is used to determine the expected energy consumption Q. The difference to the actual consumption is 
compared to a threshold which depends on the current inputs and the knowledge in the model. To decide on 
alarming the size and the frequency of the threshold e x w x h g s  are considered 

For a given installation the following 2 cases can be distinguished: 

1. No energy consumption measurements have been collected and evaluated so far. New measurements have 
to be checked based onprior knowledge. 

2. A representative set of energy consumption measurements has been collected and verified to represent fault 
free operation. New measurements can be checked based on these reference measurements. 

In the first case the expected energy consumption for a given outdoor temperature ia determined using a very 
simple model based on prior know1edge.h the second case the expected consumption is detennined using a 
more sophisticatedmodel built from the reference measurements. 

3 Models 

Heating systems without mechanical ventilation are considered only. 

3.1 Basic model with main heat contributions 

Heat balance for the building: 

The following first order model is considered to be sufficiently accurate in moa cases: 

where: 

TR ,T, = room temperature and its nominal value (20'0 
I& ,I&D = outdoor temperature and its design value 
Is&, = solar radiation and its m d u m  
vw, v, = wind speed and its nominal value 
vwo = min. wind speed for significant contribution of wind (conhibutions of smaller wind speeds taken 

into account in GB) 

QH = heating power 
QGu = unknown free heat gain (e.g. people in case of M automatic admission checking) 

em = occupancy level [I, expressing the degree to which the building is occupied (e.g. number of 

occupied moms w.r.t total number of rooms) 
P- = nominal value of P, , to be chosen freely (typically Pd = 1 ) 

QGoocN = nominal value of occupancy dependent internal heat gain, appearing if P, = e- (e.g. people, 

lkwn9) 
QGM = measured internal heat gain (e.g. electricity, people in case of automatic admission checking) 

Qmax = max. solar heat gain 

QHrN = nominal heat loss due to wind (= heat loss for vw = v, , TR = T, and '6 = I&D) 
GB = heat conductance of building enveloppe (for heat losses by transmission and ventilation) 

CB = heat capacity of building 



If a large building with different mom temperatures is considered, the average of these temperatures is taken 
as TR.  

- 
'Ihe energy consumption in a time period d (e.g. 24h) is QHd, where ' - '  denotes the average taken over d 

This energy consumption can be computed from (1) as 

where: 

- AT, = m temperature change over d, i.e. TR(t) - T,(t -d) 

Heat balance for the heat generator: 

For simplicity an oil b o i  is considered. Based on [I], sect. 3.1.3, the energy consumption in a time period d 
becomes approximately 

where: 
- 
Q, = average power supplied to water 
Q,, = burner power 

= stand-by ~ O S S ~ S  [%I 
Q,N = nominal boiler efficiency 

Total heat balance: 

Combining (2) and (3). observing an eventual domestic hot water energy demand Gw, and neglecting 
distribution losses the total heat balance becomes 

- 
&,, is assumed to be independent of the outdoortemperature and to depend on the occupancy level To, 
only. 

To have a model form more suitable for parameter estimation (4) is rewritten as 



where: 
- r = average burner running ratio over d 
At, = burner running time within d 

QGm = nominal measurable internal gain (may be chosen freely) 
= QBud, max. energy consumption within d 

dN = nominal value of time period d (may be chosen freely, d may vary) 

QBLV = qBINQBu. boiler nominal power 

Q D w  = nominal value of the domestic hot water energy demand QDW 

p,, are the parameters to be estimated Basically each of them measures the ratio of a certain power and the 
boiler nominal power. 

3.2 Simplified models and appropriate measurement periods for specific cases 
Depending on the available measurements and the selected measurement periods [ti,ti +di], i=1,2,.., the full 

model (5a..h) can be simplified However simplifications due to missing measurements lead to less accurate 
models. Sometimes the measurement periods can be selected in such a way that the model inaccuracy 
manifests ifself little only. The following cases are considered: 

1. No measured internal heat gain ilGM : 
- 

- Drop term with QGM in (5a). 
- 

- Internal heat gains taken into account in QGU or QGUN only. 



2. Occupancy level &, unknown or constant: 

- Drop term with Tm in (5a). 
- - 

Unmeasured internal heat gains taken into account in QGu only. 
- 
QGU - QDWN - Redefine pz as pz = . ( 1 - d - b  

QBIN 

3. No measurement of solar radiation Is: 
- Drop term with is in (5a). - 
- Solar heat gain taken into account in Q G ~  . - 
- Try to select measurement periods where the average solar heat gain is small w.r.t. the heating power QH 

(e.g. exclude periods where the outdoor temperature is close to or above the heating Limit). A statistical 
method to exclude periods with high solar gain is reported in sect. 6.3. 

4. No measurement of wind speed v, : 
- Drop term with vw in (5a). 

- Signifcant losses due to wild speed taken into account in term G ~ @ ~  -To). 
- A statistical method to exclude periods with high losses due to wind is reported in sect. 6.3. 

5. No measurement of mom temperature TR : 
Replace in (5a) TR by the average setpoint T,. 

6. Large time periods d, or periods with small room temperature change ATR : 
If d is selected that large, that the energy required for the room temperature change ATR is small w.r.t. the 

heating energy GHd,  the term with ATR in (5a) may be dropped (e.g. d = 1 week). The same simplification 

is possible, if begin and end of the period are chosen such that the change ATR is small (e.g.;ATR 5 1K). 
This simplification leads to a static model. 

7. Electric heating system: 
In (5a..h) set 6 = 0 and replace QBu and QBlN by the maximum electric heating power %,-. Qd is 
directly measured 

8. Domestic hot water supplied by separate boiler: 
Dmp QDWN in (5d). 

In [I l l ,  sect. 4.6, an appmach called h-m-method is inuoduced for installations with large solar heat gain. - 
The model used takes the terms with pl, h. and p5 of the full model (5a). Dividing by FR - TO) leads to a 

model of the form 

where 

h = Qd 1 d + PzQB" ('heat demand'), 
TR -To 



Taking 'measurements' h and m the parameters Ho and A, are identified A problem with this approach is that 
h is usually not measurable because it includes the parameter p2. 'herefore this h-m-method is not further 
considered here. 

3.3 Data directed model search 
Model (5a) is based on physical considerations. However this doesn't guarantee an appropiate model. An 
alternative is to search the model structure based on a representative set of measurements by  called 
stepwise-type regression procedures (see Montgomery and Peck [6], chap. 7). This approach is followed e.g. 
in Abdel-Nabi et al [7]. A further alternative is given by MacKay [a], who uses the available data to train an 
ANN. 'hese data based methods are not discussed in this paper because the author has no experience with 
them. 

4 Expected energy consumption based on prior knowledge 

Basically estimates of the parameters in model (5a) are determined from prior knowledge and then used to 
determine the expected energy mumption or a related figure. Distinguish whether a heating d e m d  
calculation is available or not: 

Case 1: Heating demand calculation available: 

Fmm this calculation the following data are available or derivable: 

- T o  : design outdoor temperature 

- eB : estimate of building envelope heat conductance 

Eventually also: 
a - 

- QGU : estimate of average free heat gain 
A 

- QDw : estimate of nominal domestic h a  water energy demand 

- QGod : estimate of nominal occupancy dependent internal heat gain 

- 
Useful data for estimating QGu , QDWPU-. and ilGoaN are given in [2], sect. 5. 

' h e  boiler manufacturer is expected to supply the following data: 

- QBN : estimate of boiler nominal power 

- 6 : estimate of stand-by losses 

Estimates for further parameters appearing in (5a..h) are unlikely to be available. Using this prior kmwledge 
the following model can be setup: 



where: 
.. 
F = expected average burner running ratio 

- 
~f no internal gains are measured drop term with QGM in (7a). ~f the occupancy level 2- is constant or 

- - - 
unknown proceed as in sect. 3.2, case 2, i.e. redefine $2 as $2 = (QGU - QDw) I QBlN (1 - fo)- to. If m e  of 

A - .. .. 
the estimates Qcu, QDw , and Q- cannot be supplied drop them in (7c) and (7d). In the worst case the 
terms with G3 and $, must be deleted and fi2 = -6. 

Case 2: No heating demand calculation available 

Assume this case only for old installations (<1980). From the building location and climate tables the design 
outdoor temperature ToD can be determined. From the boiler cype sign the expected boiler nominal power 

QBNcan be read. Based on [I], sects. 3.1.3 and 5.6.2, estimate the boiler stand-by losses as &=2% and its 

oversize factor as i, = 3. With these minumum data Saup the model 

where: 

- - A 

~t is also possible to have combitions of case 1 and 2. Example: Estimates Qcu, QDm, and QGoccN can 

be supplied, but 68 not. To estimate p, use (8b) instead of (7b). 

Note that the models (7a..e) and (8a..b) are static. Therefore they can be applied only to large h e  periods d or 
to periods with small room temperature change ATR. 



5 Expected energy consumption based on previous measurements 

Basically estimates of the parameters in model (5a) are determined based on previous measurements and then 
used to determine the expected energy consumption or a related figure. 

5.1 Parameter estimation 
If measurements in (5a) are missing the corresponding parameters cannot be identified and the model must be 
simplified according to sect. 3.2. The remaining parameters can then be identified by a least squares 
procedure, either direct (DLS) or recursive (RLS), (see Tiidtli [4]). 

The recursive velsion has the following advantages: 
- low storage and computing demand 
- estimates early available 
- can handle measurement series of unlimited length 
and the following disadvantages: 
- several design parameters required 
- at an early stage difficult to distinguish between good and bad measurements 

The direct version has opposite feams.  A good compromise would be to run first the direct version and to 
derive from its results design parameters for the recursive version to follow. 

Both versions can be supplemented by an estimator of the equation e m r  variance h2 (see later in sect. 6.3). 
Further the recursive version given in [3], sect. 2, is modified by substituting the matrices Pk and Qk 
according to 

where pk and Qk are scaled mahices. The complete esha tor  then reads: 

For k = 1,2,.. 

where: 

k = number of estimation step mere: number of measurement periods observed so far) 

b, = left side of measurement equation mere: bk = Tk) 



a, = measurement vector (here: weights of parameters pL7 according to (5a)) 

6, = parameter estimates (here: 6, =[fi1,..fi7IT or subset thereof) 

P, = scaled estimation mauix, q = ~ar[p~~a~,..a~,b~,..b~]/ hZ 

it = estimate of equation error variance h2 

Design parameters: 
POI = expected value of initial parameter vector po 

h.3 = Var[pol1 hZ 
~ , , k  =0,1,.. = variances of parameter changes at steps k=0,1,.., scaled by hZ 

For the assumptions underlying the mmplete estimator (IOa..e) see [3], sect. 2. However, in contrast to [3] h2 
is now assumed constant to enable its canceling in updating P,. Note that basically no initial estimate for hZ is 
required, because % is canceled in (I&). However ii might still be useful to estimate P, as ~ a r [ p o ] l  %. 

Consider now the choice of the design parameters p,, P,, Bk.k =0,1,.., and i i :  

It is reasonable to set Q, = 0 for all k. If Q, + O  the estimator would follow parameter changes due to 
gradually appearing faults. Such faults couldn't then be detected by comparing the expected and the effective 
energy consumption. 

With Q, = 0 Vk the estimator assumes the parameter vector p to be constant, and p, is its expected value 
based on prior knowledge. For p,, prior knowledge based estimates are already given in sect. 4. For p5 and 
p, such estimates are very difficult to supply. merefore simply set fi5 = fi, = 0. For pl assume that i3e 
building can be heated up from To, to T, in about 2 days. Then 

Use these prior knowledge based estimates as components of p,. Note that they only serve as stan values for 
the parameter estimator. The estimator also works with bad start values, e.g. all ai =O.  It then simply takes 
longer to get plausible values. 

- 
A good choice for P, is P, =goo =diag(~ar[pl],..~ar[pm])/~~, m = number of parameters to 

estimate. However, the variances of the individual parameters are hard to estimate based on prior knowledge. 
A mugh estimate can be given by observing that usually 

- pi E (0,l) for i = 1,2,4,5,6 

- p3 E (-1J) 
- P7 E (0.1) if dN =48h 

Following TCidtli's suggestion [4], sect, 3.1, estimate Var[pi] equal to 1 for i=1..7 (square of range, disre- 
garding larger range of p3). 

To estimate the equation error variance hZ one may proceed as follows: - 
1) Subjectively estimate the maximum error Aim = l i  -71, (e.g. 20 %). 

,. 
2) Assume Aim to be 20 of the normal distributed equation error. Then h$ = 14. 



5.2 Selection of appropriate measurement periods 
The full model (5a) and its simplifications are usually mgh approximations only. It is therefore advisable to 
select the measurement periods in such a way that the effects of the model deficiencies are as little as possible. 
This holds for the identification of the model parameters as well as for the later use of the model for fault 
detection. The following selection rules are suggested: 

1) Period d not significantly smaller than 24h (Reason: Keep variation of GGU low.) 

2) Dmp sections with small energy consumption (Reason: Expect dominant unknown free heat gain) 

In case of static models: 

- If measurement series covers at least 2 heating periods: 
3.1) Select d = 1 week 

- Othenvise select period such that: 
3.2) d = 24h. 
3.3) Room temperature has equal values at period begin and end. 
3.4) Room temperature changes at period begin and end in same direction 
3.5) Change of average daily room temperature w.r.t. previous day is small. 
3.6) Deviation of average daily mom temperature w.r.t. its long tern filtered value is small. 

The xules 3.1 or 3.2-6 resp. aim to avoid errors due to the thermal inertia of the building. An alternative to the 
rather complicate xules 3.2-6 is suggested by Visier and Paillassa [5], where a separate model is inuoduced for 
each weekday. As long as the occupancy schedule is fix each of these 7 models can adapt to the specific 
conditions of the weekday concerned (occupancy, free heat gains, short term history). A drawback is that large 
measurement series are required as in cased = 1 week 

An application may have available measurements of the solar intensity Is. But the modelling of its innuence 
according to (5a) may be insufficient because the solar heat gain may vary m g l y  due to varying occupants 
behaviour. In this case it is appropriate to exclude measurement periods with significant solar intensity. 

A stastical method to detect and discard outliers is reported in sect. 6.3. 

5.3 Testing parameter estimates and resulting model 
Parameter estimates may be mliable,  especially during the first few steps of RLS estimation Further the 
model structure may be inappropriate (e.g. under- or overdetined). It is therefore necessary to perform some 
tests before using the model for fault detection 

Parameter estimates may be unreliable because of so called multicollinearity, i.e. near linear dependence 
among the regressors. Mulicollinearity can be detected by checking the variance innation factors 

[ ( A ~ A ) - ' I ~ ~  for DLS case , i=l..m, 
for RLS case 

where m = dim(p), and A is the nxm measurement matrix composed of measurement vectors aj, j=l..n. 

According to Montgomery and Peck [6], chap. 8, multicollinearity is severe it VlF > 5. In this case one must 
try to collect further measurements in new regressor regions. If this is not possible (here: measurements cover 



already a complete heating period) one has to simplify the model by dropping one of the nearly linear 
dependent regressors. If the model has only 1 independent variable @ere the outdoor temperaNre q) a simple 
alternative to testing VIFs is to directly check the observed range of this variable for W i g  sufficiently large 
(see Visier and Paillassa [5], sect. 4.1). 

If the VIF's are acceptable, the model may be checked for having insignificant parameters. In case of DLS a 
simple test is the following t-test for each parameter pi: 

(b j  - 6 , ~  [(AT*)- I]" . standard error of pi (here: bj = 5 )  
n-m i-I 

hypothesis that pi is / i s  not significant 

threshold of t-statistic for significance level a/ 2 and n-m degrees of freedom 

For the RLS case a test statistic corresponding to the one in (12) has not yet been studied here. A more reliable 
test is offered by the so-called backward elirninination procedure (see Montgomery and Peck [6], chap. 7, 
suitable for DLS only). Insignificant parameters and corresponding regressors can be deleted. 

A measure for the quality of the whole model is the coefficient of mulitiple determination 

In case of RLS RZ can be defermined approximately only because 6 has to be campuled recursively and is 
not hown exactly until all n measurements are processed. Based on some first experiments RZ 2 0.8 is 

suggesled for the model to be acceptable. 

Finally the parameter estimates should pass the simple plausibiity test of being within their expected ranges 
specified in sect 5.1. 

6 Testing energy consumption 

Basically the energy consumption is checked for exceeding its expected value by more than a tolerated amount 
A key problem is the choice of the corresponding threshold. 

6.1 Criteria for threshold selection 
On the one hand the threshold has to observe the uncertainty the expected energy consumption is subject to. 
On the other hand it has to observe when the excess energy consumption becomes severe concerning 
economics and environment Rossi and Brown [9] distinguish between a statistical threshold and a rule 
threshold. As rule threshold they suggest an economic threshold resulting from the minimization of a cost 
function containing energy and senice costs. W z a t i o n  is subject to comfort and safety constraints. 



6.2 Simple economic threshold 

A simple economic threshold A< can be derived by requiring that the costs for a single service c, are 
amortized by the energy cost savings within a given time d, , say 1 heating period: 

c, are the energy costs per kwh. (14) is a gross simplification in that the excess energy consumption 
AQd = AQdm is assumed to be the same for each time period. More precisely one may assume that Ar 
depends on the load and consider a typical total load, specified e.g. in heating degree days per year. This would 
lead to a load dependent threshold 

6.3 Statistical threshold based on previous measurements 

Let: A = nxm measurement mauix composed of n<k previous measurement vectors al..a, 
b. = 7. 

I I 

b = [bI,..b,lT, measurement vector corresponding to A 

DLS case: 

A threshold can be determined by using the following results of Montgomery and Peck [6], chap. 4: 

- Let: A and a, given, band b, u h m n  r.v. 

- Abk = bk -akTp - N ( O , ~ ~ ( I + ~ ~ ~ ( A ~ A ) - ' ~ ~ ) ) ,  

where 

6 = (ATA)- LA%, 

is a bias-free estimator for hZ. 

- A h  and MSE independent 

Fixing a type 1 error probability a the threshold for ATk = Ab, follows as 



RLS case: 

In [3], sect. 3.2, it is shown that for given al..ak and bl,..bk-, similar to (15) 

Substituting in the direct h2-estimator (18) 6 by pk-I and n by k-1 the resulting new estimator 

enables recursive computation. To simplify writing consider now it instead of ii-,  ere only little is known 
about the statistical properties of this estimator. It is not bias-free because 

h2 
~ [ i i ~ a ~ . . a ~ ] = - ( x k a ~ ' % , . ~  k-m +k). 

For large k the bias decreases because pi-, dies out. Dividing by k-m instead of k makes the bias even larger. 
Replacing therefore in (23) k-m by kthe resulting recursive estimator reads 

From this biased estimates unbiased ones, itbk,,, could be derived by 

where 

Here the distribution of A h  given in (22) is only known to hold, if in addition to al..ak the measurements 

b1,..bk, are also given. But in this case it-, is not a r.v. at all. A reasonable way out is to replace in (22) hZ 

by its estimate it-, , and assume that approximately 

The statistical threshold for ATk = Abk follows as 

where h.(a) = @-'(I- at 2). a is a type 1 error probability. 



ArL may serve two purposes: 

1) Before entering a new measurement pair &,ak) into the RLS estimator it may be checked for being 
abnormal by the two-sided test 

where H1 I Ho are the hypotheses that the measurement pair is I is not abnormal. This test serves to detect 

outliers above or below the expected value akTpk-l (e.g. abnormally high energy consumption due to wind 
or fault, or abnormally low consumption due to sun). Discarding outliers, a becomes the probability that a 
measurement pair is not used in the estimator although it is a normal one. 

2) A measurement pair (Tk,ak) may be checked for showing expectionally high energy consumption by the 
one-sided test 

where H1 I Ho are the hypotheses that there is I is not a fault causing high energy consumption fik-, is to 

be replaced by fi in case of DLS. Redefining h,,(a) in (29) as h,(a) = @-'(l - a ) ,  a becomes a false 

alarm probability. 

The two cases show that it is not always possible to distinguish between faults and disturbances. For 
parameter estimation this doesn't matter but for fault detection it is a severe problem. 

6.4 Statistical threshold based on prior knowledge 
Starting from (29) the prior knowledge based statistical threshold reads 

The values supplied for Poo in sect. 5.1 may do for RLS estimation by they are not sufficiently accurate for 

fault detection A good choice for Pm is Pm =diag(qar[pl],..~ar[p,]). A simple possibility to estimate 

Var[pi], i=l..m, is: 

1) Subjectively estimate the maximum emrs  in the prior knowledge based component estimates of pi. 

2) Build thereof the maximum e m r  Api,- = ICi -pi[, . 

3) Assume Api., to be 2 0  of the normal dismbuted pi. Then $ar[pi] = (Api.,)2 14. 



6.5 Threshold selection 

Given an economic threshold and a statistical threshold follow Rossi and Braun [9] and select the larger of the 
two as relevant threshold Ark': 

where: 

A : determined from (14) 

as given in (21) or (29) if model based on previous measurements 
Ars> : 

as given in (32) if model based on prior knowledg 

If the statistical threshold is larger than the economic one it is not possible to detect moderate faults. In case of 
a large difference the model should be improved 

In case of RLS estimation the statistical threshold based on previous measurements will quickly fall below the 
one based on prior howledge. This may lead to the assumption, that the measurement based model is now 
more accurate than the prior howledge based one and might be used already. However, the measurement 
based model may still be unreliable and lead to wrong conclusions as illustrated by Visier and Paillassa [5], 
fig. 12, Chamberte school. 'lherefore this model must not be used for fault detection until it has passed the 
tests in sect. 5.3. 

6.6 Detecting slowly developping deviations 

Although the estimator has no forgetting property ( Q ~  = O), in the long term it will still adapt to slowly 
developping deviations. To detect such deviations one can take a copy of the identified model e.g. every 2 
heating periods and analyze those copies manually. An automatic detector using the statistical threshold (29) 
can work with thefirst copy. 

6.7 Notificaiiun in case of threshold exceeding 

Comparing the energy consumption with predictions based on inaccurate models can lead to many false 
decisions. To reduce the number of false alarms one can base on the ideas of Pakanen [9] and issue a fault 
message only in case of several threshold erceedings within short rime. Further issue the message the sooner 
the larger the exceedings are. Formally e.g.: 

where 

- 1 
Ar; = - C A T ,  average of exceeded thresholds 

Ilk1 iE 1, 

1 1 ~ 1  = number of elements in 1, 



L =time window to remember exceedings (e.g. L = 10 dN ) 

H, I H, = hypotheses that there is I is not a fault 

Y =minimum percentage of exceedings of size zr: required for notification 

To distinguish between cases where the presence of a fault is rather uncenain and those where it is rather 
certain, a small y and a large one can be induced.  In the first case a warning message is appropriate 
whereas in the second case a fault message is due. 

7 Outlook 

TIE methods suggestedin this work are only partly tested. Therefore the next step is to apply them to different 
installations and data sets. 
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Abstract 

In the presented approach, faults are detected through comparing reference 
against measured data upon pre-set thresholds. The reference data i s  generated 
through simulation based on characteristic curves. Threshold violation initiates 
knowledge based diagnosis. The diagnosis uses knowledge models of building, 
system, performance indices, symptoms and faults. In case of a threshold vio- 
lation, the diagnosis tries to collect sensors o f  interest by applying rules to the 
knowledge models, to give a prognosis for those sensors for the next time step 
and to check them for threshold violation. Through that, a pattern o f  real and 
prognosticated symptoms is  generated. It i s  used for generating fault hypotheses 
and a preliminary diagnosis, which has to be confirmed in the next time step. 

1 INTRODUCTION 

Optimizing buildings in terms of low energy consumption and low cost i n  spite o f  high 

comfort requires the use o f  new methods. They are usually supported by various software 

tools for the different phases in  the building life-cycle. Big efforts have been made during 

the last years t o  represent on the computer all phases in the building life-cycle, f rom 

design over construction t o  operation phase and t o  integrate the corresponding software 
tools t o  take advantage o f  a continuous description of the building together with i ts 

technical equipment 141. 

In this context, fault detection and diagnosis (FDD) in  HVAC systems can be considered 

as one (sub-) task, which starts with the operational phase. If FDD is integrated in such 

a life cycle environment, a huge amount o f  knowledge about the building. i ts  usage and 

environment, the system and the processes it runs, i ts components and their topology 



has been collected (and validated!) unt i l  the operational phase. This enables FDD 
methods t o  operate on a wide knowledge base. In addition, the simulation models for 
building and system simulation are available already from previous design phases. These 
simulation models can be used t o  compute the system performance as a reference for 
the  systems behaviour. Thus, the fault detection is reduced on  comparing simulated (= 
reference data) and measured (possibly faulty) values. This simplifies fault detection 
decisively. Through the fact, t ha t  most o f  the t ime there wi l l  be a difference between 
reference and measured values, it is necessary, t o  define thresholds. The violation o f  
such a threshold indicates a faulty process. The thresholds can be either determined. 
through systematic, precursory off-line example simulations, experience, constraints or 
i n  relation t o  the given set points. 

The available knowledge about the building and the system has t o  be extended through 
knowledge about faults, symptoms causing those faults and fault/symptom relations. 
Major technical considerations in describing this knowledge are how t o  formulate the 
relations (rules) on such an abstraction level, tha t  they become as independent as possible 
f rom a specific system so that  they can be used in different projects without variation. 
The presented approach tries t o  achieve this by describing symptoms and faults in a 

component independent way and by formulating the rules upon either basic physical 
equations or symptom patterns. 

2 CONCEPT 

The fundamental structure o f  the discussed approach for a FDD-system is shown in fig. 
1. In analogy t o  the two steps fault  detection and fault diagnosis, the system is divided 
in to  two parts (see [6]): the preprocessor supervises the system wi th  regard t o  threshold 
violations and starts diagnosis if necessary. The diagnosis is managed by the classifier. 
The core o f  the  classifier is the knowledge base describing following knowledge domains: 

knowledge about the performance indices, 

knowledge about possible symptoms, 

knowledge about the controlled system including system topology . 
knowledge about the building, environmental conditions and buildings usage, 

knowledge about possible faults. 

The knowledge is described through hierarchically ordered objects collecting data in 
object attr ibutes and processing information in methods attached t o  the objects. The  
hierarchies give the possibility t o  reason on different levels o f  abstraction and t o  help l im- 
i t ing searchspace for faults. Thus, all advantages of object-oriented programming can be 
used (classification, hierarchies. (multiple) inheritance, message passing, polymorphism, 

...) and in  addition, declarative programming (rules) can be closely intermixed wi th  
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Figure 1: Structure o f  a knowledge based FDD-System 

procedural programming (methods). Therefore the  best f i t t ing paradigm can be chosen 

for a given subtask (e.g. calculations by methods, diagnosis by rules). 

The rulebase mainly represents the relations between the models. If the preprocessor 

initiates a request for diagnosis, the inference process collects the information, which is 

directly available in this moment and tries t o  isolate the location o f  the fault  (e.g. on 
branch level). Upon this basis the inference process builds hypotheses, which have t o  
be verified through the rule base. If this verification requires additional information t o  



the measured or simulated data, the system generates corresponding questions t o  the 
preprocessor. The information returned by the preprocessor w i l l  be used additionally by 
the diagnosis. 

3 FAULT DIAGNOSIS KNOWLEDGE MODELS 

3.1 PERFORMANCE INDEX MODEL 

A performance index (PI) is determined according t o  a specific calculation method [6] .  It 
is requiredfor the  calculation method, that  an intervall can be specified, so tha t  for values 
o f  the PI  within the interval1 it is allowed t o  assume normal operation. The simplest 
form o f  a PI  is the  difference between desired and measured value. Other examples are 
integrated values like efficiency or heat demand, statistcal values like mean or maximum 
values o f  t ime series or mass flow or energy balances o f  the considered processes. The  
Pl's characterize the  system. 

I 

Figure 2: Performance Indices as interface between real system and i ts  model i n  t t  
diagnosis system 

If any P I  exceeds one o f  i ts  predefined thresholds, a fault has probably occured. The  
performance indices are the central element for fault detection. As interface between the 
incoming data and the system model (see fig. 2), t he  Pl's are responsible for ini t iat ing 
diagnosis. Each P I  surveys a single variable a t  a specific location, where the  variable may 
be directly a process variable (pressure, flow, temperature, or valve position) or inferred 
variables like trends and t rend rates etc. The  attributes of the  PI  are shown in table 1. 
At least some o f  the system characteristic PI have t o  be checked periodically t o  ensure 
a precocious fault  detection. 



Table 1: Attributes of the performance indices 

I 

Input data I Reference t o  the  simulated and measured data 

Attribute 

Value 

Sensor 

I Result ing da ta  I Reference t o  the  compared data I 

Meaning 

Current numerical value of the PI  

Reference t o  the sensor the PI  is attached t o  

Upper threshold (absolute) 1 Maximum value (regarding absolute data) 

Upper threshold (difference) / Maximum value (regarding difference between 

1 / desired value andmeasured value) 1 

1 desired value a n d  measured value) 

Methods 

Lower threshold (absolute) 

Calculate P I  I Method for calculation o f  the value of the P I  

Check PI I Verification o f  threshold violations 

Min imum value (regarding absolute data) 

3.2 S Y S T E M  M O D E L  

Lower threshold(difference) 1 M in imum value (regarding difference between 

The system description represents the basic knowledge for fault detection and diagno- 

sis. Besides the layout data o f  the components, the system description provides the 

information about the  topological relations between the components (see table 2). The 

predeccessor/successor attributes represent the sequence o f  components i n  a branch o f  

a process. The direction is given through the flow direction o f  the medium (water, air) 

in that  branch. 

In addition, the description o f  the system instrumentation is necessary. Measuring in- 

struments are special system components. They do not  influence the system process 

directly. Instead, they are measuring a process variable in a specific location of the 

process under control. Malfunction of an instrument does not  affect any process vari- 

able except through other system components controlled by the instrument (like e.g. a 

valve). For fault diagnosis, the location of the measuring signal is important. Therefore, 

the same topolgy describing attributes shown in table 2 are relevant also for measuring 

instruments. As the sequence o f  instruments is not  important, the predeccessor and 

successor attributes are used t o  determine the location o f  an instrument between two 

'real' system components. 



Table 2: Topological attributes of system components 

Attribute 

Branch 

Successor I Succeeding component(s)  

Meaning 

Branch(es) o f  w h i c h  t h e  cur rent  componen t  is  a componen t  

of 

Components 

Predeccessor 

As an example, in fig. 3 the structure of the system description for a fully instrumented 
district heater substation as described in [I] is shown including attached Pl's. The part-of 
relation between the system components is shown in fig. 4: Each system component is 
instanciated of a corresponding kind of generic system components wherefrom it inherits 
i ts  layout attributes and behaviour (methods). A t  the stage of FDD, all those attributes 

Subcomponent(s)  o f  cur rent  componen t  

P receeding corn  ponent(s) 

Figure 3: System structure o f  a fully instrumented district heating substation including 
PI  instances ( joint evaluation exercise o f  the heating group) 



Figure 4: Example of part-of-relation of system components 

should have been calculated or requested during preceeding design phases. 

3.3 BUILDING MODEL 

Important informations of the building description for FDD are the required indoor tem- 

peratures together wi th the allowed ranges for all rooms, the knowledge about usage 

schedule, the inner heat sources as well as the size and the direction of windows. Those 

variables determine the variation in load demand. For fault diagnosis it is important 

t o  have access t o  these data, because the simulated reference behaviour of the system 

probably will not  be able t o  represent every possibly abrupt variation in these variables 

(e.g. variations in  solar gain on a partly cloudy day). Hence it wi l l  result in false alarms 

and the fault diagnosis has t o  be put  i n  the position t o  identify them as false alarm. 

Therefore the above mentioned data is used. In addition, the building model is required 

t o  have access t o  the room-equipment relation. The used building model is described 

in more detail i n  [2]. For the discussed DHS example, no knowledge about the building 

description is required except the load demand. 

3.4 SYMPTOM MODEL 

Symptoms are the effects of faults. Several kinds of symptoms may be distinguished: 

a symptoms, whose deviation can be measured 

a symptoms, whose deviation can be calculated 

a symptoms, which can be observed 

Most symptoms can occur i n  same or different expression in any of the system processes 

(heat supply, energy supply, domestic hot  water supply). T h e  measurable symptoms 

will be recorded either on the inlet or the outlet side of a device (single component, 

whole branch) (see fig. 5), because the measuring instrument normally are positioned 

there. 'Device' i n  this context may be any aggregation of components, that  is either the 

whole district heater substation, the primary or secondary loop as a whole or a single 

component in one of the loops. 



CalculatedSymptom DeviceEfficiency t EnergyConsumption 

<OutktPressure 
Pressure 

InletPressure 

OutdoorTemperature 
MeasuredSympto 

DomesticHotWaterTemperature 
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IndoorTemperature 

I \ValvePosit ion 

k Stop 
Devicestop < 

EmergencyCutOfi 

\~ot iced~ymptom DirtyDevice 
Dirtyness < 

EnergyTransportMediumFlowOut 

\Noise < BubblingNoise 

SqueakingNoise 

Figure 5: Structure of symptoms 
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Negativ 
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StaticExpression 
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Figure 6: Possible symptom expressions 

Typically, symptoms are described in  qualitative form through expressions as shown in  fig. 
6. The expressions may be structured into static, dynamic and comparative expressions. 
The distinction between symptoms and their expressions makes the handling of symptoms 
and creation of hypotheses more easy. Symptoms can change their expression during 
fault diagnosis without the need t o  instantiate a new symptom, e.g. f rom fluctuating 

t o  decreasing. In addition, they can be assumed t o  be present even wi th the expression 
'Normal' what means, that  the corresponding process variable is i n  normal operation 
conditions. 

As shown in  fig. 2, Pl's are the interface between the t ime series (measured, simulated 
and compared) and the computer model of the system. Each PI monitors a distinct 
process variable over time. If a monitored variable exceeds the pre-set thresholds, the 
PI  signals this as a symptom. The symptom expression is determined upon the k ind o f  
threshold violation (e.g. exceeding upper or lower threshold). 

3.5 FAULT MODEL 

Similar t o  the symptom model, the faults can also be classified independendly f rom the 
system components (see fig. 7). For each 'fault family', it is possible t o  formulatespecific 

rule-sets and methods, especially t o  investigate faults o f  the actual fault family. So, 
search-space wil l  be reduced: after hypothesising a specific fault only the corresponding 
rulesets have t o  be examined. In addition, such a structure allows t o  infer on different 
levels o f  abstraction. First, the type o f  fault is isolated (e.g. operation fault, wear fault 



MechanicalBreakDownFaulI 

GenericFaulI < OverheatingFaulI 
ThermalBreakDownFault 

IcingFaulI 
PartlyBlockageFault 

Blockage < 
ToIalBlockageFaulf 

Figure 7: Structure o f  faults 

or breakdown) and then the k ind of fault is determined (e.g. Blockage, Leakage or 

Cutoff). 

4 REASONING M O D E L  

The problem o f  finding generally applicable rules can be reduced by assuming fully in- 

strumented systems. In this case, each process variable at each device inlet and outlet 

(temperature, pressure, flow, valve position) will be measured and be available for diag- 
nostic purposes. This simplifies the rules considerably. Of course, additional rules are 

required, which handle the normal case o f  not  fully instrumented systems. Strategies in  

such cases are t o  extend the focus f rom component level t o  branch level i n  the hope t o  



Table 3: Fault attributes 

Location I Location where fault occured 

Equipment type / Type of equipment components where actual fault can oc- 

A t t r i bu te  

I cur in 

Meaning 

have the missing variable on that  level or t o  make asumptions on missing variables. 

- 

Correlated symptoms 

4.1 STRUCTURING OF RULES 

List of syptoms indicating this fault 

The rule base is structured in  rules for controlling the inference process, component 

related rules, symptom related rules and fault related rules. For symptom and fault 

related rules it is advisable t o  structure the rules according t o  the symptom and fault 

knowledge bases (see fig. 8). 

While component related rules express component specific relationships like dependencies 

between the primary and secondary loop in the heat exchanger, symptom related rules 

may be understood as some kind of bottom-up rules, checking basic relations between 
process variables. In contrast, the fault related rules describe more complex relations 

and symptom patterns, which have t o  occur simultaneously t o  indicate a fault. 

4.2 RULES 

The rules describe the mutua l  relations between the system and symptom model as 

well as the symptom/fault relation. In general, rules can be implemented as forward or 

backward chaining rules. Backward chaining is more efficient, if the possible results are 
known and the tota l  number of possible results is l imited [3]. This is usually true for 
diagnostic problems. In our case, the possible results are the faults shown in  7. The 

number o f  possible faults is limited, because they are abstract, i.e. device independend, 

faults. O f  course the to ta l  number o f  all faults i n  a whole plant m a y b e  very high. 
This is one reason t o  divide the inference process in to  a part for collecting sensors and 

correlated components o f  interest and in to  a part t o  build and check fault hypotheses for 

each o f  the components o f  interest separately. In that  case, the whole diagnostic problem 

is splitted up in to  smaller, component related diagnostic problems wi th l imited search 

space. The task o f  collecting sensors and components o f  interest is solved preferably 

through forward chaining, because the result is topology dependend and can not  be 

described in advance. 



Figure 8: Structure o f  rule-sets 

The  rules shown in  table 4 are developed f rom fundamental physic equations from the 

point of view o f  symptoms related t o  process variable deviation. They are writ ten in the 

form 

IF < process variable d e v i a t i a / f a u l t  > THEN < symptom > 

as the causal dependency between fault and symptom is. In general, those rules lead 
t o  the assumption, tha t  a specific fault could cause the symptom. Table 5 exemplarily 

shows symptom patterns which have t o  occur simultaneously, if the assumed fault really 

causes the init iat ing symptom. 

4.3 DIAGNOSIS SCHEME 

The  diagnosis process wil l  be started through one o f  the instanciated PI which has 

detected a threshold violation. First, the system collects the available information which 

includes: 



Table 4: Fundamental rules inferred f rom basic phvsic equations 

Total Blockage (Device) / Flow(Device. In) == 0 

IF 

Leakage 

PressureDrop(Device) too low 

PressureDrop(Device) too high 

Leak(Device) 
V Blockage(Device) 

/ Flow(Device, Out) == 0 
Cross section (Device) too big / Resistance too low 

THEN 

Flow(Device. In) f Flow(Device, Out) 
( j nil = m2) 

Flow(Device. Out) too low 
V Resistance too low 
( = + A ~ = + . R )  
Flow(Device, Out) too high 
V Resistance too' high 

Flow(Device, Out) too low 

Cross section (Device) too small Resistance too high 

Cross section (Device) too big 

Dirtyness(Device) 
V Blockage(Device) 

0 t he  sensor who triggered the PI, 

Cross section (Device) too small 

Pump problems 

a the branch o f  which the sensor is a component of, 

a t he  type of the PI  (value, trend, t rend rate, etc.), 

0 the type o f  the variable under control (temperature, flow, etc), 

Flow(Device, In) too low 
A Flow(Device. Out) too low 
A Flow(Device. In) == Flow(Device.Out) 

0 t he  expression o f  the variable deviation (too high, too low, etc), 

0 t he  component predeccessor and successor o f  firing sensor. 

Next, t he  diagnosis process tries t o  l imi t  the search-space by checking only sensors o f  

interest. Sensors o f  interest are the sensors next t o  the device the first deviation was 

detected at or sensors using the firing variable for controlling another device. This reflects 

the simple assumption, that the fault wi l l  be found with good probability in the same 

device, i n  which the fault expressed itself i n  one or several symptoms. If the measured 

data o f  the init iat ing sensor is used for controlling another device (e.g. in fig.3, Tzz) 
controls the valve position of control valve I), this establishes a connection between the 



Table 5: Fault/symptom patterns of leakage faults 

two devices. Therefore, the sensors attached t o  both devices have t o  be regarded as 

sensors o f  interest. For those sensors o f  interest prognoses for the next t ime step wil l  be 
estimated on the basis o f  extrapolation o f  the simulated and measured data. This wil l  

result i n  a pattern o f  prognosed threshold violations. 

:akage 

Leakage 

LeakageToOtherBranch 

Different medium 

Same medium 

1.) Pp.5.1~ = Ps.5.ln 

VTrs.,, > T5s.1~ 

PS 

SS 

VTps.ln < TF.F.I~ 
PS 

SS 

2.) P P S . ~ ~  > P.F.s.ln 

vT~s.1. > T5s.1~ 

PS 

SS 

lockage 

Total 

Partly 

In the most  unfavorable case, this pattern will be exactly the  init iat ing symptom. In 

this case, the  available information is t o  small t o  make a diagnosis. The  system gives a 

message upon the detected threshold violation and wil l  check after the next t ime  step. 

if it is possible t o  prognose another symptom pattern wi th  the new data. 

If a symptom pattern can be prognosed, basic rules as shown in  table 4 will be applied 

and corresponding fault hypotheses will be put  up. Those hypotheses have t o  be checked 

wi th rules as shown in table 5. If this does not  lead t o  a diagnosis result, another l ist 

o f  sensors of interest has t o  be collected, e.g. all sensors i n  the actual branch. Again, 

they have t o  be checked in  the same way as described. If it is sti l l not  possible t o  give 

a diagnosis, it wil l  be considered as a false alarm and in  the next t ime step another t ry  

of a diagnosis wil l  take place. 

PS = Primary Side 
SS = Secondary Side 

normal too low too high 

normal too high too low 

normal too high too low 

normal too low too high 

normal too low too high 

normal too high too low 

A n  overview over the presented models and their correlations as well as the diagnosis 

scheme is given in fig. 9. 

too low too high 

too low too high 

decreasing decreasing too high 

normal increasing too low 

too high too low increasing 

constant < mri.1, 

(decreasing) 

normal 5 mri,,,, 

normal 

normal 

normal 

normal 

normal decreasin 

normal increarinl 

0 0 

decreasing decrearin 



5 SYSTEM APPLICATION 

For the jo int  evaluation exercise a simulation model was bui l t  wi th the characteristic 
curves method [5]. The model input and output parameters are shown in fig. 10. The  
used equations are shown in  fig. 11. 

In the following, the test case 9 ' jammed control valve 1' is discussed. Fig.12 shows 

the temporal curves o f  the model input parameters: inlet temperatures o f  primary and 
secondary side, flow of secondary side, valve throw o f  control valve 1 and the inlet 
pressure in front o f  the mud separating device. Fig.13 shows the temporal curves o f  the 
model output parameters: outlet temperatures o f  primary and secondary side, flow in 
primary side and inferred parameters like temperature differences at the heat exchanger 
in both  branches and the pressure drop at the control valve. In each diagram, the 
measured and simulated curves as well as the differences are shown. Al l  curves show 
filtered values (filter length 20 t ime steps). 

The adjustment of the thresholds o f  the monitored PIS is shown in fig. 14. Fig. 15 

Figure 9: Overview on model dependencies and the diagnosis scheme o f  the presented 
approach 



- 

Figure 10: Input and output parameters o f  the DHS simulation model 

shows the attributes o f  the monitored Pls at the t ime  step, i n  which a threshold vi- 

olation is detected the first t ime (-+ 271, see attr ibute TresholdViolationTimestep). 
The PI monitoring the pressure drop at the valve detects this threshold violation (P13 
- P14). The detection is marked through the value TooLow in  the attr ibute Treshold- 

a 
Valve and Motor: m l = - + c  

H b  

Hydronic: 

Heat Exchanger: 

Figure 11: Distr ict heating substation model based on characteristic curves 



ViolationExpression. The initiating PI is marked through the value False in attribute 

lsPrognosedViolation. As described above, a list of sensors of interest will be collected. 

On the basis o f  the  values of the last 20 t i m e  steps a prognosis for the value in the next 

t ime step for each sensor of interest is estimated. These estimated values will be checked 
for Threshold violation. As can be seen in  fig. 15, a threshold violation is prognosed for 

the Pls Tlz, PI4, and Tll-T12. The values and expressions can be found in the attributes 
ThresholdViola t ion  Value and ThresholdViolationExpression. 

The pattern of found symptoms and their expressions together w i th  the system topology 

will be investigated further wi th rules as discussed above. The symptoms temperature 

difference a t  heat  exchanger too  low, pressure drop a t  valve too  low  and pressure after 

valve too  high all indicate, that  the flow in primary side is lower, than the flow should 

be according t o  the  reference. Too low flow can be caused through partial blockage, 

leakage or wrong measuring values in the actual branch. Leakage can be eliminated, 

because in that  case, the pressure would decrease. Too low pressure drop over the  

valve may be caused through a partial blockage after the valve or through discrepancy 

between the measured and the real valve position. A preliminary diagnosis on basis 

of the prognosticated values in t ime step 271 is part ia l  blockage after the valve or 

jammed control  valve. This diagnosis causes an alarm and wil l  checked in future t ime  
steps. Depending on the really measured values, the diagnosis wil l  be confirmed or 
corrected. As can be seen in fig. 13 (upper r ight diagram), depending on the thresholds 

adjustment, a difference between measured and simulated primary side flow is detected 

in the next t ime steps. Considering the input valve position (see fig. 12, lower right), 

the simulated flow increases according t o  the valve opening, where the measured flow 

is nearly constant. This is produced through either wrong measuring or jammed valve 

which is the final diagnosis. 

6 CONCLUSIONS 

The major advantage of the presented approach of a knowledge based diagnosis system 
is i ts general applicability. In principal, the presented system can be applied t o  a wide 
variety o f  HVAC systems without changes (asuming the rule base is complete). Only the 

system description has t o  be adopted t o  the system under control. But  the diagnosis 

uses a lo t  of knowledge not only about the system but  also about the building, the usage, 

the environmental conditions, etc. Because of the huge amount o f  required knowledge, 

such an approach is preferably recommendable in the context o f  a life cycle environment 

as mentioned in the  introduction. 

A general drawback of such knowledge based approaches is that  it is difficult t o  en- 

sure completeness and correctness as well as t o  check consistency in the underlying 
knowledgebases. Other advantages and disadvantages are summarized in  table 6. 



Table 6: Summary of advantages and disadvantages of the presented knowledge based 

approach 

- 

Advantages 

explanation facility 

attempt to model the reasoning of 
a human diagnostician (duplication 
of inference process possible) 

general approach (only system de- 
scription changes) 

0 can be easily combined with other 

approaches (e.g. associative net- 
works, neural networks) 

Disadvantages 

big effort required to build the sy. 

stem 

weak theoretical foundation (as far 
as abduction is concerned) 

0 difficult to  maintain the rulebase 
(knowledge engineer and domain 
expert required) 
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Figure 14: Adjustment of the thresholds of the instantiated PIS 

Figure 15: State of the monitored PIS in the moment of a threshold violation 



Fault detection of a subprocess consisting of flow route and control valve 
luhani H y v h e n  
VlT Building Technology 
P.O. Box 1804 (LhptSmiehenkuja 3) 
FIN-02044 VlT (Espoo, Finland) 

1. ABSTRACT 

A fault detection method is described and applied to two test cases. The one case is typical for district heating 
subdistribution systems where mass flow of heating water is controlled with an exponential conml valve. The other 
case is the oil feeding subprocess of an oil burner. There, the oil mass flow is controlled with a linear w n m l  valve. 
The fault detection method is based on simple fmt principles physical models and the processes are considered to be 
in steady state. The detection occurs when the model output deviates from the measured behaviour of the process. The 
diagnosis can be based on the model parameter values and their deviations from the initial values. The method does 
not suggest any specific diagnosis shategy but provides quantities that can be used in diagnosis. 

The model parameters are estimated using least squares estimation algorithm. The threshold values for the fault 
detection are calculated statistically. In the case of the exponential control valve the unlinearity is solved by using the 
characteristic curve of the process. The characteristic curve is detennined from the tuning phase data. The srmcture of 
the unlinearity is known and the parameters are estimated with least squares algorithm. 

In the paper, the model parameter estimation is carried out with off-line data but especially in the case of linear 
wnmol valve recursive estimation is possible. The process models and the method are simple and computationally 
effective so that they could be utilised in the near future in field level application specific conmllers in real time 
applications. 

2. INTRODUCTION 

In this paper, a method is described that was developed as a part of technical work carried out for developing fault 
detection methods 11.21 for two typical heat production units: dismct heating subdismbution system /3/ and oil burner 
141. The method is based on a simple physical fmt principles static process model and on the use of analytical 
redundancy /5/ of the system under consideration. In other words, the redundancy contained in the static relationships 
among the system inputs and measured outputs is exploited for fault detection. The procedure of evaluation of the 
redundancy given by a mathematical model of some system equations can be roughly divided into two steps: 
generation of residuals, and decision and isolation of the faults. Here the residuals are generated based on static 
parallel model approach, and on parameter estimation approach in which the consistency of the mathematical 
equations of the system is checked by using actual measurements. Because of the static process model, direct 
redundancy relations can be used. The decision is based on a simple threshold. The cause of the fault can be diagnosed 
based on parameter estimates of the process. 

The main emphasis in the development work has been on simplicity and on practical rather than on theoretical aspects 
of the method. The reason for this is that it is assumed that in the near future field level application specihc controllers 
will be capable of simple diagnostic tasks but with limited computational recow& only. For example, the 
computational speed, numerical and measurement accuracy, and amount of memory are limited for practical and, in 
the end of the day, for economical reasons. 

Ractical application of a fault detection method requires that the model srmcture is known and its parameters can be 
estimated reliably. Also it is required that the threshold values and parameter deviations from their nominal values for 
fault detection can be detennined before the method is taken into use. For these purposes and especially for processes 
with linear conml valve least squares estimation algorithms provide a good methodology and applying the method is 
quite straightfonuard. For processes with exponential conmol valve also the dinearity must be modelled before the 
required model parameters and threshold values can be solved. 



3. FAULT DETECTION METHOD 

3.1 OUTLINE OF THE PROCESS AND THE METHOD 

j outside 
j network 

.. The simplified process can be approximated to 
consist of control valve and a flow route the 
flow of which the control valve affects (Figure 
1). The control valve represents a varying flow 
resistance. The flow route consists of a pipeline 

resirlance : pressure and other components, and it represents a 
: difference constant flow resistance. The precess is 

connect* to an outside network which 
: outside generates the pressure difference over the 
: network sistance process. In an oil burner the pressure is 

q s  flow generated with an oil pump in the burner, and 
in a district heating subdistribution system the 
disnibution network can be seen as a constant 

. . pressure source. 

Figure 1. Elecnical circuit analogy of the flow route and control The control valve can be described as a flow 
valve. resismce the value of which changes as a 

function of actual conml signal. The suucture 
of the function of the varying flow resismce is 
usually known for each specific valve and it is 

typically characterised either by exponential or linear valve equation. In case of water or oil as media the process is 
fast and it can be considered to be in a steady slate condition all the time. The process dynamics need not to be 
considered. 

The basic idea of the method is to use a process model that relates the three variables: pressure difference dp, mass 
flow q, and actual control signal u. Rccess faults can then be detected either by calculating one of the process 
variables from the others, and comparing the calculated value to actual measured value, or by estimating the process 
model parameters and comparing them to nominal values. The threshold values and nominal parameter values are 
estimated from anon faulty process condition. 

In the following, the two applications are described. In case of an oil burner the control valve is linear and in case of a 
disnict heating subdisnibution system the control valve is exponential. For both applications, the process is described 
first briefly, then the process model is derived and last the applied method is described. 

3.2 OIL FEEDING SUBPROCESS OF AN O L  BURNER 

The subprocess under consideration is a part of the oil feeding line of an oil burner 141. An oil pump (314) sucks oil 
from the oil tank and mainlains consmt pressure in the pipe ( 315) leading to the nozzle (317,318). The pressure at 
the nozzle is controlled with a control valve in the return pipe line. Low pressure at the nozzle causes low m a s  flow to 
the furnace and high pressure causes high mass flow. Low and high pressure is gained with w n m l  valve position 
open and closed respectively. 

The subprocess can be approximated to consist of a conml valve, pipeline including constant flow resismces, and 
nozzle (figure 2). The pipeline consists of those pipes, curves, and components that are in the oil feeding line between 
the two pressure sensors PI1 and PI2 in figure 2. 

The oil pump represents a pressure generator which generares a constant pressure over its ports. The analogy to 
elecnical circuits is presented in figure 3. 



Because the oil pump generates a 
constant pressure there is no need to 
measure it directly. The pressure drop 
over the constant resistances of the 
feeding and return limes can be used to 

SI: posidoniodication 
PI. prsnnciodiotion 

Figure 2. Oil burner oil f&g subprocess. 

, - . - - nozzh . - . - . - . 
comtaot recistamer 

constant resistance return pipelines - filter - ets. 

Figure 3. Electrical circuit analogy of an oil pump - 
conmol valve -subprocess. 

represent the oil mass flow. Thus the 
pressure difference (PI2-PI1) over the 
pump and the pipelines can be used as 
the output of the process. The control 
variable, i.e. the position of the control 
valve (SI), is used as the input of the 
process. If the oil mass flow was 
measured it could be used as an 
additional redundant information. 

During normal operation the 
temperature of the oil can be considered 
as a disturbance. The effect of the oil 
temperature is assumed to be small. In 
a fauIt situation faults can be 

considered as disturbances. These kind of faults 
are malfunctioning of the valve, and the change 
of constant flow resistances due to fowling or 
blockage of pump, filters or pipeline 
components. Also big changes in oil viscosity 
can be considered as fauln. The viscosity change 
may be an effect of too low oil temperature. 

3.2.1 Process model 

In figure 4 the principal of composing the 
process characteristic curve is presented. The 
characteristic curve between input u and output 
dp is composed from the characteristic curves of 
the pump and the conmol valve. The figure 
shows also a reason why the oil flow 
measurement is not necessarily needed. 

9 
characteristic m e  of the control valve 

Pressure difference 

Figure 4. Composing the characteristic curve of the subprocess. 

dp characteristienwe ofthe pump 

characteristic cvrve 

m ~ t r o l  signal 
U 

oil marr flow 



The characteristic curve of figure 5 is composed from the process measurements and it describes the process operation. 

measurement 003, pmcepa charanerrnlc a w e :  measurements and 1st 
9, 

dp-l7.25.u 27.25 + e.ratiance of e is 0.31 
0 mahr  : M (linear approrimation) 4J6 + +marks : msaruremsnf data 

Figure 5.  The characteristic curve of the pmess. The measurements (+ marks) 
and the linear approximation (solid line). 

The oil pressure difference over the pump is drawn as a function of the conml signal u. The curve is almost linear and 
can be approximated with a polynomial form of 

and is used to model the process. 

The process quantities that are needed for modelling the oil feeding subprocess described above are: 
quantity computation/ unit meaning 

measurement 
dP PI 1 -PI2 kPa pressure difference 
u rV V valve shaft position 

The measured values must be instantaneous values. The sampling time does not play any role. It can be of varying 
length and chosen arbitrarily. The parameters cl and cz are estimated from the measurements. 

3.2.2 Method description 

Process faults can be detected either by using the model output error (figure 6) or the parameter deviations from their 
nominal values (figure 7). The model output error is the residual between the pressure difference given by the model 
(equation I), and the actual measured value. If the parameter deviations are used for fault detection the parameters of 
equation 1 are estimated on l i e  and compared to those estimated during tuning phase. 



d'ilfmmsc 
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compariwn To 
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Figure 6. Model output error in fault detection. 

memrmeorr horn 

When model output error is used the pressure 
difference over the oil pump given by equation 
1 is compared to the corresponding pressure 
difference m e w e d  from the process (figure 
6). The parameter values of equation 1 and the 
threshold values for fault detection are esti- 
mated during the tuning phase and kept fued 
during the operation phase. 

When parameter deviations are used for fault 
detection the parameters of the equation 1 are 
estimated periodically or recursively in real- 
time and the estimates are compared to values 
estimated during the tuning phase (figure 7). 

The method is runed following the steps below: 

1. Measuring the tuning data 

2. Prehandling of the measurement data 

3. Parameter and threshold value estimation 

It is imponant that the input signals to the 
Figure 7. Parameter deviations in fault detection. process vary in a large enough area i.e. the 

input signals must be exciting enough. It 
would be best if all the normal operation points could be measured during the tuning phase for a long enough time. 
The considered process is nearly linear and for hat  reason already a few operating points should give a good result. 
The process is assumed to be in non-faulty condition during the measurement of the tuning data. 

The control signal of the oil feeding valve can be varied quite freely. One has to take care that no harm is caused to the 
other pans of the process or user. For example, the burner heat effect may not be increased m high in order to avoid 
damages to the boiler. The control signal should be varied between 0 % and 100 % if possible. The changes should be 
slow enough so hat  the valve actuator and real position of the valve have enough time to reach each operation point. 

During the tuning and operation phases unfiltered measurement data is utilised. No filtering or such is needed for 
prehandliing of data but if possible the so called outliers should be removed and also those operating points where the 
process has clearly operated erroneously should be removed. For example, near open and close situations the process 
may saturate due to erroneous tuning of the actuator causing erroneous information of the process operation. 

Equation 1 can be presented in the following form 

where 
y=dp, x1 =u, and x2 = I  are signals 
cl and c2 are parameters the covariance of whose is P 
and e is assumed to be a zero-mean white Gaussian noise the variance of which is h2 

The parameter values c, and cz,, their covariance matrix P, and the variance h2 of the white noise e are estimated 
using least squares method 161. The estimation result is better if the averages are removed before the estimation. This, 
however, requires off-line estimation method to be used. The parameters can be solved by using some recursive 
estimation method in which case the estimation can be done in real-time. The initial values needed for recursive 
methods are gained for example through off-line methods. 

Analytically, it is not possible to choose a threshold value for fault detection that gives 0 % false alann rate. The 
thresholds are chosen in such a way that an alarm does not necessarily mean a fault but may be caused by a normal 
measurement noise, too. After the alarm event, it must be decided if the alarm is caused by a fault. 



The model output error is the residual between process model and corresponding measurements. When used in fault 
detection the threshold value calculated from the variance hZ of the noise e is used to test this residual. Threshold 
value is chosen as in the following equation 

- 
e = k * h  (3) Table 1 .  Confidence l i i t s .  

in which the coefficient k defmes the confidence limits for the 
model output according to table 1. 

In the same way, the threshold values for the deviations of the parameter c estimates are calculated from the diagonal 
elements of the covariance manix P. Assuming these deviations to be normally dishibuted their thresholds are 

where 
- 0 ci = threshold for t i -  ci 

C.  = parameter c i  estimate 
I 

e p  = estimate from tuning phase, assumed to be the m e  value 
th . 

Pii = i magonal element of mauix P 

P = cov(e- 

and coefficient k (table 1) defmes the confidence h i t s  for the parameter estimates. 

The output error can be used to detect the following faults: 

1. block in the oil flow route 

2. pump faults 

3. conuol valve faults 

Applying the method requires reasoning in two ways. F i t l y ,  the way the threshold values are selected does not 
guarantee 0% false alann rate and thus the decision of the fault situation can be made better if the decision function is 
based also on other propenies, e.g., such as presented in 171. 

Secondly, the estimadon of the model parameters prcduces a set of test quantities the changes of which indicate some 
faults in the process. Parameter estimates give some additional information of the process. The changes in the two 
parameters of equation 2 estimated from the measurements represent 9 different fault modes: either one of the parame- 
ters can increase, decrease or remain constant independently of the other parameter. If both parameters remain 
constant, the process is in non-faulty situation. Any other state out of the 9 possible states may mean some faulr 

The nine different states are shown in table 2. The faults leading to different states must be located by simulation, 
experiments, or some other methods. By studying the effect of different faults to the characteristic curves it can be 
derived what is the effect of each fault to the parameter estimates of c, and c2. The examples in table 2 are not verified 
by experiments and are the result of qualitative reasoning only. 



Table 2. The effect of the faults to the values of the parameters 

I parameter c, 

para- 
meter c2 missing, nozzle 

ballast 
valve fault 

no faults blocked, 
nozzle 
blocked, valve fault 

atomiser blocked pump wom I 
3.3 DISTRICT HEATING SUBDISTRIBUTION SYSTEM 

. . - . . . - . . 
,. - . - - . - - , - - - - - - - -  

Domestic hot 
, nehrork , 

, . . . . - . . . 

Figure 8. Disnict heating subdisnibution system. 

The subprocess studied is 
a part of the disnict hea- 
ting subsystem described 
in 131 and is located in 
the primary side of the 
dismct heating subdist- 
ribution system @HS) 
both in the heating 
branch and domestic hot 
water branch. In figure 8 
a rough diagram of the 
subdisnibution system is 
shown. The flow route in 
consideration is drawn 
with solid thick line. It is 
assumed that only one of 
the two branches is in use 
at a time. For the 
domestic hot water 
branch this is the usual ~ ~~ 

case during a summer period when no heating is needed and the heating branch is shut down with manual shut-off 
valves. The domestic hot water branch is used always but there are some moments when the domestic hot water 
demand is very low. For example during night there are moments and longer paiods of time when it can be said that 
only heating branch is operational. 

The simplified subprocess can be approximated to consist of a control valve, pipeline including constant flow 
resistances, and heat exchanger. The analogy to elecnical circuits is shown in figure 9. The consists of those 
pipes, curves, and components that are in the l i e  between the two pressure measurement sensors. 

The disnict heating network provides the pressure over the flow route. The pressure difference between inlet pipe and 
return pipe remains steady for short time periods but varies because of seasonal conditions. During winter when 
energy need is high the inlet pressure is typically higher than in summer. The massflow is measured for energy billing 
purposes and can be used for other purposes in modem automation systems. Also the actual control valve position is 
usually measured or known. During normal operation the temperature of the water can be considered as a disturbance. 
The effect of the water temperature is assumed to be very small. The faults to be detected are malfunctioning of the 
valve, and the change of constant flow resistances due to fowling of heat exchanger or pipeline. 



Constant flow resistance: 
-pipes 
- pipeline mmponents 

Conrtant flaw resistance 
- heat exhanger 

difference 

dpV ( GT flow resistance 

posihon of the 
valve shaft 

~ i s & t  heating return 

Figure 9. Simplified diagram of the subprocess. 

3.3.1 Process model 

The flow and pressure equations of the simplified subprocess are 

where 2, is constant flow resistance of the heat exchanger and pipeline 

The dependency of the valve kv-value horn the shaft position in general can be modelled with the following equation 

where the function g(u) describes the valve unlinearity. 

Applying equations 6.7 and 8 to 5 the following equation is obtained 

and funher when arranging for g(u)' 

Taking a derivative of 9 with respect to u and supposing that dp does not change as a function of u, the following 
equation is obtained. 



If the valve unlinearity is characterised with the following equation 

g ' ( 4  = c ' d u )  

the equation 11 can the be presented as below 

By applying equation 10 to 13 and solving it with respect to dp*d(q2)/du the following is obtained 

Now, equations 9 and 14 form the equation set that models the subprocess. In case of a linear valve is utilised instead 
of an unliiear one, equation 9 alone forms the model. The underlined pans represent signals that are measwed and 
calculated from process signals and the other pans represent model parameters that are estimated during tuning and 
operation phase. 

Unlinear valves that fulfils the requirement of equation 12 are, for example exponential valves characterised with 
following equations. 

where n, and n. are manufacturer specific parameters used to describe the unlinearity. 

Finally the subprocess model is 

The process quantities that have to be measured are: 
quantity computation/ unit meaning 

measurement 
d~ PI 1 -PI2 kPa pressure difference 
9 FI m3/h water volumetric flow 
u TV % valve shaft position 

Often, the valve position is not measured and only the control signal value is hown.  'Ihis causes extra work during 
the tuning of the method because the valve shaft position as a function of wnaol signal must be modelled. The control 
signal value from the controller can not be used in place of shaft position because the conaol signal changes stepwise 
and position rampwise and there is a difference between these two signals. The valve position must be used instead. 

The measured values must be instantaneous values and they may not be filtered or averaged in any way. The sampling 
time does not play any role. It can be of varying length and chosen arbitrarily. The signals (underlined terms) in 
equation 9, however, can be filtered with any linear filter. They can, for example, be cumulated over some time 
interval. 



. . 
is to the 'quare of the flow Figure 10. Block diagram of the output error method. 
measured and calculated from the process. 
The value of the function g(u) is 
calculated using equation 15 or 16. The parameter values of equations 9 and 14 and the threshold values for fault 
detection are estimated during the tuning phase and fixed during the operation phase. 

m h o ~ d  values 
from tuning 

pharc 

3.3.2 Method description 

Process faults can be detected either by &g infomation 

When parameter deviations are used for 
fault detection, the parameters of the 
pmcess model (equation 9) are 
estimated periodically and the results 
are compared to values estimated 
during the tuning phase. The 
parameters of the model describing 
valve unlinearity (equation 14) are 
estimated only during tuning phase and 
are fued during normal operation 
period. 

~ m c a s  para- 
macn fmm 
tuning phare 

If the subprocess is linear i.e. there is 
no such a component that causes some 
unliiear feature like the unlinear valve 

using a model output error (figure 10) or 
// 

parameter deviations from their nominal u" 

does, then the parameters can be 
estimated on-liie instead of periodical Figure 11. Block diagram of the parameter error method. 
estimation. 

m u r e  differnee 
values (figure 11). The model output error 
is the residual between the model output, p- model 

q2 , given by equation 17, and the actual 

The method is tuned following the steps below 
1. Measuring the tuning data 
2. Rehandling of the measurement data 
3. Parameter and threshold value estimation 

V 
mmpviron 

It is important that the input signals to the pmcess vary in a big enough area i.e. the input signals must be exciting 
enough. It would be best if each of the normal operation point could be measured during the tuning phase for a long 
enough time. For practical reasons this is usually not possible and the tuning must be done with less information. The 
pmcess is assumed to be in non-faulty condition during the measurement of tuning data. The method is "taught" the 
non-faulty operation of the process during tuning phase. When, at the operation phase, the measured process operation 
deviates from the taught (modelled) operation, it can be assumed that there is a fault in the process. 

measured value. If the parameter m h h d d  
deviations are used for fault detection the 
parameters of equation 9 and 14 are 
estimated periodically and compared to 
those estimated during tuning phase. 

g m c a r  mcasurrmmtr 
The sauare of flow eiven bv eauation 17 

In the DHS, the valve control signal can be varied beely. One has to take care that no h a m  is caused to the other parts 
of the process or user. For example, the domestic hot water temperature may not rise too high if the water is used 
during the tuning period. ' h e  control signal should be varied between 0 % and 100 % if possible. The changes should 
be slow enough so that the valve actuator and real position of the valve have enough time to have1 to each operation 
point. 



The pressure difference over the subprocess can not be affected by the operator. The pressure difference varies 
according to the heating load of the external dishict heating network. At a minimum, one should get measurement 
dara for one pressure difference value over all the valve position values. 

During the tuning and operation phases only unfiltered raw dara are utilised. Outliers should be removed if possible. 
Also those operation points where the process has clearly operated erroneously should be removed. For example, in a 
near open and close situation the process may saturate due to erroneous tuning of the actuator causing erroneous 

information of the process operation. 

In equation 14 the output signal (regressed variable) 
is the partial derivative of the square of flow with 

I I -- .- :. I respect to the valve position. Solving this on-line 
. ,  8 

2 du 
. ,  8 from measurements is sensitive to measurement 

noise which causes the result to be unreliable. For 
I - this reason the partial derivative is calculated off- - - line from a characteristic curve of the process. -2 0.8.- - .. 

m A characteristic curve is fonned from the process g ion- 
= d p =  2.4 bu 

(figures 12 and 13), in which the valve position u is 
on the x-axis and square of the flow on the y-axis. 
The different curves in figure 12 are isoclines having 
different values of pressure difference. The partial 

. . . 
1 8 ,  

derivative is calculated for each discretized position 
I Z 3 4 5 6 7 R P l l i l i  of u on each isocline curve using the following 

position u [dirltrete vdues] equation. 

Figure 12. Rocess characteristic curves and calculation 
of partial derivative of q2 with respect to valve shaft position. a q2 q2 (u + du) - q2 (u - du) -= 

au 2 ' d u  

Figure 13. Process characteristic curves of figure 12 plotted a a surface (mesh-plot). The flow 
value remains in zero at dp value 1.6 because there has not been any measurements at 
that value. In reality the value of q increases continuosly with value of dp. 

3.3.3 Parameter and threshold value estimation 

Equation 14 can be represented in the following form 

y = x , * a ,  + x , * a , + e  



where 

a4 y = d p -  , x, =2*d*dp,  and x2 =2*d  are signals au 
al = C and a2 = -C*Z 
and e is assumed to be zero-mean white Gaussian noise the variance of which is )12 

The parameter values al ja a2 are estimated using least squares method 161. Using parameter a, the parameter 
describing the valve unlinearity IL or n, can be solved. 

Because the partial derivative of square of the flow is solved from a characteristic curve the parameters must be 
estimated off-line. Funhermore, the estimation result is better if the averages are removed before the estimation. This, 
too, requires an off-line estimation method to be used. 

Equation 9 can be represented in the following form 

where 
Y=d, x, =g(u)'*dp, and x, =g(uj2 * d are signals 
bl and b2 are parameters, with covariance of P 
and e is assumed to be a zero-mean white Gaussian noise the variance of which is )il 

The parameter values bl, 9, their covariance matrix P, and the estimate of the variance )il of noise e, are estimated 
using the least squares method. In this case, too, the result is better if the averages are removed from the signals before 
estimation. 

It is not possible to choose a threshold value for fault detection that gives 0 % false alarm rate. The thresholds are 
chosen in such a way that an alarm does not necessarily mean a fault but may be caused by normal measurement 
noise, too. After an alarm occurs, it must be decided if the alarm is caused by a fault. 

Fault detection method output is the residual between subprocess model and corresponding measuremenls. As a 
threshold for this residual a value calculated from the variance )iZ of the noise e is used. The threshold values are 
chosen in the same way as in case of oil burner. 

Applying the method requires reasoning in two ways. F i t l y ,  the way the threshold values are selected does not 
guarantee a 0% false alarm rate and thus the decision of the fault situation must be done for example using a classifier 
presented in /I/. Secondly, the method produces a set of test quantities the changes of which indicate some faulls in the 
process. The test quantities that can be used in addition to the residual, are the parameters a,, a2 , bl and bl. 



4. RESULTS 

4.1 OIL FEEDING SUBPROCESS OF AN OIL BURNER 

The oil feeding subprocess w a  tested in a laboratory test rig. The burner w a  of a standard modulating type. The tesrs 
shown in figure 14 were done with the subprocess for tuning the model parameters. The meaurements were used to 
build the characteristic curve of the process and for parameter estimation. The pressure difference is presented in the 
upper half of the figure. The valve shaft position is presented in the lower half of the figure. 

31 I Figure 15 shows the valid process values and the linear 1.05 1 . 1  1.15 1.2 1.25 1.3 1.35 1.4 

approximation of the process according to equation 2. anus1 control signal iv] 

me .,dues, the covariance p and the Figure 15. Linear approximation of the model consrmcted From 
standard deviations of the Darameter estimates are the tuning phase data (0-marks). The measurement points 

The test takes place between the time of 45 s. and 135 
s. During the test the bumer effect is ramped up to the 

measurement 002, pressure dinerence dp maximum value and then down to the minimum value. 
For tuning some data was removed as being yvalid. 
The criteria for valid measurements was that the 

m - - pressure difference is in the interval of [4 .. 91 bar and 
z 6 the control signal in the interval of [ l  .. 1.41 V. 
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Figure 14. The tuning data for the oil feeding process. c 
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The 95 % confidence limits of parameters cl and c2 are respectively 
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Figure 16 shows the simulation of pressure difference 

measurement 002. dp: rimubled and meavlred (dotted h e )  and the corresponding process 
measurement (solid curve). The pmcess operating point 
has remained outside of the validity area most of the 
time. The simulated pressure has been high in the 
beginning of the test because the control signal has been 
ramped down manually before the test started. 

"3 20 40 W 60 t W  120 140 160 180 
time !IS1 . . 

a n d  mnlml s i s ~ I  u M 
Figure 16. Simulated and measured pressure difference. 

I t  ' r? n r i 
The tests shown in figure 17 were done with the 

, , L/ 
subprocess to test the fault detection method. The ! 
measurements were used to build the characteristic 

Y) IM 150 2W 250 
curve and for parameter estimation. The pressure differ- m e  t [ q  

ence is presented in the upper half of the figure. In the Figure 17. The d m  used to test the method. 
lower half of the figure the valve shaft position is 
presented 

In figure 19 the output of the pmcess model constructed during the tuning phase (solid line) is compared to the 
measurements (plus marks) and to the output a new model (o-marks). The 95 % confidence limits of the model 
constructed during the tuning phase are shown with dotted limes. It can be seen that the pmcess is operating all the 
time between the confidence limits, and also that the parameter values are within the confidence limits of the model 
parameters estimated during the tuning phase. 

In figwe 18 the measurements of a faulty process are compared to the output of a model of anon faulty process (figure 
15). The fault has been rhat the oil pipe has been choked partially. It can be seen rhat the faulty process operates all the 
time outside of the confidence limits of the non-Faulty pmcess model. Also the parameter values are outside the 
confidence l i i t s  of the parameters of the non-faulty process. 
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Figure 19. A linear approximation of the model from Figure 18. Rocess measurements(+), and the linear 
tuning phase (o-marks), model from test period (solid line approrimation (o-marks) of faulty process. 
and dotted lines for the confidence l i t ) ,  and the 
measurements (+ marks). 

4.2 DISTRICT HEATING SUBDISTRIBUTION SYSTEM 

(dashed l i e )  &e presented. In the-lower half of the 
figure the valve shaft position is presented. 

The tests shown in figure 20 were done with the 
~ s ~ ~ ~ ~ s ~ t  jhyZ(tun1ng): water flow q and presum dinerenca ap subprocess to tune the model parameters. The measu- 

3 rements were used IJJ build the characteristic curve, and 

Iample 

Figure 20. DHS Tuning data. 
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:., .. for parameter estimation. In the upper half of the figure 
.;; ..,,:; .:.. . . . .  

. ,  .. . both the flow (solid line) and the ~ressure difference 
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Figure 21 shows the /simulated square of the flow (dashed h e ) ,  the corresponding value calculated from the 
measurements (solid lipe), and the confidence limits. Only those operation points are included where the valve posi- 
tion has been in the Ftewal of [5% .. SO%]. The simulation model of equations 15 and 17 has been used and 
parameters shown in t+le 3 were obtained. The error of the simulation is shown in figure 22. 

Figure 21. Simulation bf q2. Simulation done with tuning Figure 22. Error of the simulation using tuning phase data. 
data. I 

Table 3. Parameter &timates obtained from tuning 
ghase.  I 

Equation 20 

b~ 
b2 

k2 

P 

i 
1.0e-3* 0.3528 
I 0.1054 
! 
I 0.0046 
I 

?.Oe-9* 0.65 0.67 

I 0.67 0.71 

The results of applying the method to a non-faulty process 
are shown in figures 23 and 24. In 23 simulated (solid line) 
and measured (dashed h e )  q2 are presented. In figure 24, 
the model residual (i.e. the error between measured and 
simulated process output) and its thresholds are presented. 
In the testing phase, only those measurements where the 
actual control signal remained in an interval of [5% .. 70 %] 
were taken, into account. The other measurement values 
were considered to be out of the valid area of the method. 



Figure 23. Simulation of q' using testing phase data. Figure N .  Residual of simulation of q2. The residual is the 
difference between measured process value and respective 
simulated one. 

svdmk092: meesured and rimulafsd qA2 w m k o e 2 :  error d the  simulation 

5. CONCLUSIONS 
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The method operates well and can be utilised in practical applications according to test results for a non-faulty 
process. Fault simulations have and evaluation of the sensitivity to different faults must be carried out before practical 
application. The method utilises well known techniques and for that reason is easy to implement. Calculationally the 
method is light. The heaviest tasks in calculation are the parameter estimation and, in case of an unlinear valve, the 
calculation of an exponential term. 

The method copes with a specific unliiear processes. The unlinearity assumed is typical in disnict heating systems 
and in HVAC applications. The unlinearity causes the performance of the method, if measured in terms of output error 
whiteness, to decrease, and the complexity of the method to increase. With a linear valve the method gives better 
results is less complex, and needs less calculations and memory. 

0 25 

1 0 2  

The method does not give 0% false a l m  rate but requires an additional classifier to make the decision whether the 
alann is caused by a fault or not. The Method produces several test quantities, which all can be used in diagnosing the 
fault or in improving the fault detection. By combining the information from different test quantities the method gives 
relatively fault selective information of the process operation. 
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Abstract 

The present contribution shows the results of an investigation in the area of fault detection at heat pumps. It 
first demonstrates that the exergetic efficiency of a heat pump forms a field-characteristic capable of monitoring 
the performance of a heat pump plant aver its full mrking range. This has been accomplished by analysing 
thoroughly one year of acquired data on a real air-tc-wter heat pump plant, on the one hand, and of laboratory 
tests performed on a water-tc-water heat pump and on a chiller, on the other hand. The exergetic &ciency of a 
heat pump, shows a field-characteristic having two major, easy to measure, independent variables (temperature 
at evaporator, and temperature at condensor). It is furthermore demonstrated how this field-charanenstic 
detects lack of performance of the monitored plants. 

1. Introduction 

The exergetic efficiency E of a heat pump (HP) is expressed by the following equation: 

E = 
COPHP 

COP' camot 

where CO% is the coeflicient of performance ofthe HP expressed as: 

COPHP = 
Heat -rate at condensor 

Electrical power at compressor 

and where COPCamot is expressed &: 

In this relation (3). Tcondensor. (Fig. 1, Pt 2w in heat sink medium) and Tevaporator, (Fig 1, Pt 4w in heat 

source medium) are both measured at water side, which wds easier to implement without losing any 

information. The real condensor and eMporator temperatures are more costly to measure and would not provide 

more pertinent values. 



I 
I 

The fist part ofthis investigation, was to study the behaviour o f s  over the whole working range of the HF'. The 
I 

objective was to &the property of s of being a stable function of COPcmOt 
I 
i , - 
i heat source heat sink 

(cold side) (hot side) 

i 
I ~ expanion valve 

I Fig. I .  Schematic representation of a heat pump 

2 .  ~c~u i s i t i on  of data 

To aaalyse the be&viour of E over the whole working range of heat pumps, measurements were performed on 

laboratory heat p&p and chiller rigs a~ well as on real a HP plant. The laboratory equipment provided accurate 

performance data dver the whole working range of heat pumps, whereas the real HF' plant provided data in real 

conditions wd to kenfy the 'theov. 

2.1 Data aquirld on the ESH plant 
I 

In Winterthur, on4 ofthe Sulzer buildings, namely the Energiesparhaus (ESH), is equipped with a fully 

ins-ented air-t+water heat pump. This real HPplant was used to acquire the needed operating data for this 

study. Fig 2 displays a schematic representation ofthis plant 

Pilot Plant Sulzer tSH 
Air-to-Water Heat Pump 

A n  Relngeratim Heat ing Heat Load, 

Fig. 2. Schematic representation of the air-to-water heat pump at ESH 
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Since this HP-plant is in operation, it was not possible to act upon the control settings. The condensor exhaust 

Hater temperature (Fig. 2, T-FI) was fixed (at 50°C). In consequence, only a part of the whole field- 

characteristic couldbe verified on this HP, but was still informative. 

2.2 Data acquired on the EINEV plant 

At the Ecole d'Inghiews de PEtat de Vaud (EINEV) in Yverdon-les-Bains, a fully instrumented mter-temter 

laboratory heat pump rig could be used for this study. This test rig had the advantage of being run at different 

temperature levels (at both condensor and eMporator side) and allow& to investigate the whole operating 

range of the heat pumps 

I" EINEV. Stand de Pompe a Chaleur 

Fig. 3. Schematic representation of the EINEV HP laboratory plant 



2.3 Data a c q d d  on the CANMET plant (Canada) 
I 

Measurements pekormed on the CANMET test rig (Chiller) were made accessible to other IEA Annex 25 
I 

participants. The &me scheme to find a field characteristic based on the exergetic efficiency as defined in (1) 
I 

ru applied. (Results see 3.3) 

2.4 steady- stat! conditions 

I .  
A field-characteri+ represents the performance of an equipment over a range of stable, or steady-state, 

conditions. To q ~ t @  the stability of a given magnitude we used a fixed-time window technique and 

calculated the standard deviation within h i s  window (rolling values). When h i s  value ru less than a given 

threshold (e.g. o.~K),  the magnitude ru considered of being stable. This technique ru applied simultaneously 

to the different magnitudes involved in the computation ofthe exergetic efficiency as stated above. The 

corresponding selkted values were then stored into a separate file containing only steady-state condition 

values. These 'stea$y-state points' were then used to determine the field-characteristic. 
I 
I 

2.5 The field-cdaracteristic of a heat pump or a chiller 

To show the existknce of a field-characteristic, all 3 data sets (ESH, EMEV and CANMET) were fitted to the 
I 

following first order algebraic equation: 
I 

with a and b as re&lting coefficients ofthe curvefit. These values a and b are characteristic to a given HP or 

chiller, but do not !have any physical meaning Important, of course, is the @ty of the fit, that means the 
I 

'small' differencesbelwcen measured and computed aciencies. Repeated computations on these HP and 

chiller plant data, on the one hand, and discussions of the results of the c w e f i t s  with HP specialists at Sulzer, 
I ETHZ and EPFL, on the other hand, allow to state with confidence that the exergetic efficiency of heat pumps 
I 

as defined in (1) d?es represent a reliable field-characteristic (Fig 4). 

In Figure 4 are I 

show a general 

characteristics v 

representedboth the measured E (dots) and the fitted E (web) performed on a Hater-Hater HP. Its 

ly/satisfying correlation between both magnitudes over the whole working range. Similar field- 

veie obtained for the other plants. 



The exergetic efficiency as a HP field-characteristic 

Measured points 
and fitted curve 

Exergetic 
efficiency (-) 

Temperature at evaporator (Deg C) 
at condensor (Deg C) 

30 -10 

Fig. 4. The exergetic efliciency o f a  HPforms afield-characteristic 

3. Deviations of acquired data fiom the characteristic 

This paragraph presents graphically the deviations bemen the measurements (steady-state values over a given 

period) and the field-characteristic computed by the method described previously. 

3.1 ESH Plant (air-to-water HP) 

Figure 5 shows the absolute relative difference ( E ~ - E ~ ) / E ~  betv.een computed and measured e5ciency. The 
computed values represent values of the field-characteristic b e d  upon the steady-state measured temperatures. 

Fig. 5. Absolute relative diflerence (q-&2,/b2 between computed and measured efliciency 
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Deviations of no mbre than 13% were noticed. These relative small differences show that the field- 

characteristic represents correctly the performance of a HP plant working under ' n o d  conditions. 
! 
I 

3.2 EINEV Laboratory plant (water-to-water HP) 
I 

This laboratory water-bwater heat pump was tested over its full working range (Tevaporator from -lO°C to 

+lS°C and Tcondeasor from 30°C to 60°C). Each measured point in the graphs represents a stable (steady- 

state) condition. ; 
Figure 6 shows thelcomparison between measurements and the fitted field-characteristic 

I 
I 

I Computed vs measured efficiency 
on a water-water laboratory heat-pump 

1.00 , 

I Fig. 6. Visualisation ofthe comparison between meusuremenls and characIerisiic 

(same values as wed  in fg. 4) 

Figure 7 shows the relative deviations between the measured values and the EINEV-HP field-characteristic: 
I 

0.90 

0.80 

0.70 

Differensel botwoon computed 
and rnaaevred otfisiencic. 

I 
I (Compued eRciency =a +b 'CarnotsRciancyl 

I 

These  measuremans 
are going m b e  vcri5cd 

20.0% 

i Cornpued ERciency 
0.60 ! i 

0.50 1 I / 

Fig. 7. Computed vs. measured eficiency ( E I - E ~ , / E ~  on the EINEV hear pump 

i 
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Besides 2 exceptions, deviations of less than 5% were observed This good agreement shows that the field- 

characteristic also represents correctly the performance of this water-to-water HP plant. 

3.3 CANMET Laboratory plant (chiller) 
gure 8 show a comparison between computed and measured efficiency values: 

Fig. 8. Computed vs. measured eficiency on the CANMET chiller 

A very good correlation could be observed. This good agreement shows that the field-characteristic also 

represents correctly the performance of a chiller plant. This result was expected, since a HP and a chiller are 

built on a similar thermodynarmc basis. 

Figure 9 show the deviations between the measured values (steady-state values over a given period) and the 

exergetic field-characteristic at the CANMET plant: 

Fig. 9. Absolute relative diference (&1-&2,/&2 behwen computed and measwed eficiency 
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Deviations of less t k  8% were observed, which show that the field-characteristic represents correctly the 

performance of a chller plant working under 'normal' conditions. 
I 

4. The exergehc field-characteristic as a fault detector 

CANMET made d l a b l e  to the JEA Annex 25 participants 2 sets of data: one set of 'normal data' containing 
I 

operating magnitudes of a chiller working under normal, or non-faulty, conditions, and one set of 'faulty data', 
I 

containing operatidg magnitudes of the same plant under 'abnormal' working conditions. 

The first set of data was used, in this study, to determine the field-characteristic ofthe CANMET plant (see 

3.3). This characte&tic was then applied to the 'faulty dald to evaluate the pertinence of this field- 

characteristic to detect the specific faults. 

Figures 10 to 13 prLsent graphically the results ofthe comparison. The 6rdinate in the graphs represents the 

absolute ratio be&n the 'faulty' exergy and the 'normal' exergy £ram the field-characteristic as computed 
I 

earlier (3.3). A shok discussion of the results is presented at the end ofthis paragraph. 

I 

4.1 March 24th hata 

Figure 10 shows the detection of an abnormal performance of the chiller in the first part of the data set. 
I 
I 
I 

Detection of abnormal performance 
March 24th. 1995 

normal performance 

---- - *- --- 

 id. 10. An abnormalper/onnance war detected in thefirstpart ofthe data set. 

4.2 March 26th data 

Figure 11 show the detection of a minor abnormal performance of the chiller (maybe due to start-up). 
I 

Detec t ion  o f a b n o r m a l  per formance  
March 26th. 1995 

I I 
I 

Fig. 11. A minor abnormalperformance was detected in thefirstpart ofthe data set. 



4.3 March 28th data 

Figure 12 show the detection of an abnormal perfomance in the first part of the data set 

Detection of abnormal performance 
March 28th, 1995 

g 4 t  ninor? abnormal performance 

normal performance 

? ' I i ' ' ,  

Fig. 12. A minor? abnormal perlonnance was detected in the first part ofthe data set 

4.4 March 29th data 

Figure 13 show the detection of an abnormal performance in the middle of the data set 

Detection of abnormal performance 
March 2% (a), 1995 

r t - O O O O N m m r t - O O O O N m m  O O ( D ~ N Y ) ~  
m  - N C m m m m t m t o m o Z 2 ~ ~ ~ ~ ~ m m m  

O z z ~ ~ m t t m m m m ~ ~ m m m O O - - N N m m t t m  - - . - - - - - - - - -  
I 

Fig, 13. An abnormalperfonnonce was detected in the middle ofthe data set. 

4.5 Discussion of the r e d s  (CANMET 'faulty data') 

Figures 10 to 13 show that the field-characteristic based upon the exergetic efficiency of a heat pump or a 

chiller (computed with normal operation data, see 3.3) detected several abnormal operating conditions in the 

'faulty' data files. Giving an explanation of the cause of these 'hulty' mnditions was not part of this detector, 



I 
I 

but is rather part of the functionality of a separate diagnosis module, developed and presented earlier [I], nhich I 
was not linked to the detection module for this study. 

5 .  conclusion I 
This paper s h o w  the results of an investigation in the area of fault detection at heat pumps and at chillers. It 

I 
couId be demonstrated that the exergetic e5ciency of a HP or of a chiller does form a field-characteristic 

I 
capable of monitoring the performance of a that partlcuIar equipment over its full wurking range. Using this 

field-characteristic Llom to detect quite easiIy any lack performance. Coupled to an appropriate diagnosis 

module, one ohmid an e 5 c i e n  energy-management and preventive maintenance tool. 
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FAULT DIRECTION SPACE PLUS F-THEN METHOD FOR ON-LlhT FDD 
JN AIR-CONDITIONING SYSTEM 

Yi J i ang  8 Qianghua Zhou 
Tsinghua University, P. R. China 

ABSTRAm 
This paper is basic research for on-line Fault Detection and Diagnosis (FDD) in air-conditioning 

system. Fault Direction Space plus if-then(FDS+) method is presented. The idea of FDS+ method is to 
avoid the system performance identikition and prediction process as in n o d  fault detection procedure, 
and try to make the dragnosis praedure in more standard way. The Fault Direction Space is connructed 
by some Character Parameters (CPs) which are structured from measured data basing on the physical 
model of the components to k studied. The CPs are such selected that it can be expressed by the m c t u r e  
of the component so that the d u e  of CPs should be constant during operation within a normal range for 
component fault fiee state. When a big change in CPs is observed, a fault is happened in components. The 
change of C R  b m e s  an indicator of fault. There can be a number of C R  in a system. Different typ  of 
h l r s  may cause each CP change into different direction. All above phenomena can be expressed in Fault 
Direction Space: a bult free slate becomes a point or a small region in the FDS &ch is called normal 
region; when there is a component fault happen, CPs is out of the normal region into abnormal region: 
different kinds of fault will be in different directions in the FDS, therefore the type of fault cart be 
dininguished by comparing the measured direction of CPs with the standard fault directions. Since FDS 
method is based on component model and some faults for the air-conditioning system is difiicult to be 
detected by this method, if-then method is presented to detection and diagnosis system faults. 

MTRODUCrION 
DDC control system for air conditioning is getting popular. It becomes very important to make full use 

of the computer of the DDC system. One of potential applications is on-line Fault Detection and 
Diagnosis(FDD). Discovering the malfunction of air-conditioning system can be helpful for maintaining 
the system at good performance and avoiding extra energy consumption. General procedure of on-lined 
fault detection can be divided into tw steps: fir$ predicting the system performance for fault less state 
and wmpanng the forecan output with measured data Symptoms can then k obtained from the 
differences. s a n d ,  determining possible faults from the symptoms by a reasoning p r a w .  Physical 
models, i4RMAX models and neural network models can be wed for on-line prediction in firn nep. while 
a logical tree or Fuzzy match may be adopted for the reasoning procedure. 

There are still some problems in practices. First of all, model on-line identL5cation is nerdsay to 
predct the system performance. Howver the identification dws need measured dam from the objed over 
meren t  u ~ r k i n g  states as the standard d a q  while &termining\r.Int dam is sandard is the work of FDD. 
There exist some conflicu k w n  the m k  of FDD and the p r w s s  of FDD, thus the FDS- muhod is 
presented to solve this problem. 

Without complete information of the performance of each component, it is impossible to determine 
h c h  one is in normal condition and which one is in fault. Howver. what w really want to how is if 
there is a great change on the performance of a wmponent. If the system was accepted kfore  and there is 
no great change in the performance, it should k acceptable at least , although there may be a hit at a 
small scale for a long time. From this point, the FDS+ procedure is put m m  anention on the detecion of 
the change of performance of each wmponent. A set of CR(Character Parameter) is selected lo express 
the component or system structure which the performance is dependent on. The FDD procedure can then 
base on the d x e ~ n g  the variation of CPs. When a big change in CPs is observed. a fault happn in 
components. The change of CPs becomes an indicator of fault. There can be a numkr of C R  in a system. 
Different ryp of faults may cause each CP change into drfferent direction. Take a uater-air hear 
exchanger for example(fipure 1): 

heat balance equation: 



KF -- l m - l d  - = CP, 
GC, ( ~ m . - f w n ) - ( f M - r - f )  

! . i - lwo  In - 
l m - 1 - ;  

When there exist faults in water-air heat 
coil, different C R  will change in different 

- - .  
happen at 7500 sec., CPs change a lot and have different direction in different Wts. CP, bgomes 

direction as figure 9. At the f i a  pan of the 
priod, there is no fault, it can bzen seen that 

larger and CP2 becomes larger when fan speed decrea; CP, becomes smaller and CP, keeps constant 
when mil scale; Cp, keeps canstant and cp, becomes smaller when pressure of water system decrease. 

If taking the change of C R  as axes to c o m n  a fault d i ra ion  spaoe(FDS), the above fault symptom 
can be demibed conveniently in FDS. A fault fiee aate beannes a point or a small region in the FDS, 
which is called n o d  region; when there is a component fault happened, whether fan speed decreasing 

Figure 1 the heat lransfer prcezs(leaf exchanger) 

CPs chanees within a small m e :  when h d t s  

Since F3S method is based on component models 
d e  some system %ults such as chilled water temperature too high or window opening can not be 
detecled by this methcd, if-then method is presented to detpl and &ag.nosis system faults. Therefore 

coil scale increasing or hot water system pressure 
decreasing C R  is out ofthe normal region and into 
the abnormal region; different kinds of fault will 
change in Merent directions in the FDS: when fan 
speed decrease, the direction of CP is in the fim 
quarter, when coil scale, the direction of CP is in the 
negative side of vertical wis; when hot water system 
pressure decrease, the direction of CP is in the negative 
side of horizontal a-ris(see figure 2). Therefore the rype 
offault can be distinguished by comparing the 
measured direction of the ACP with the standard fault 
directions. 

FDS+ is presented by combining FDS method with if-then method d&tingcomponent faults by FDS 
method; detecting system %ult by if-then method. 

Howver, to put tlus method into real engineering application, there are nil1 a few problems vmich 
need to be solved. 
1. How to define a set of C R  to construct the FDS. The success of this p r d u r e  is highly dependent on 

the definition of the CPs 
2. How to set the size of normal region in the FDS. Due to the d y m m c  influence, non-linear effect and 

sensor errors in the real system, C R  vary within a small region rather than slay as constants even in a 
%ult fiee state. To distinguish fault and normal stare. it is necwary to define the normal slate regon. 

3. How to determine the direction of different faults in the FDS. .Me1 the FDS fora typical component 
has been determined, does it suitable for all this kind of component? What is the universality of the 
FDS. 

A C P  
A fananspeed 

> 
A CP, 

P i p r e  2 Fault D~rection in FDS 



H'C. tU-t, - - CPI GC. t - . j - two  

When there exist faults in wter-air heat 
coil, different C R  will change in ditferent 
direction as figure 9. At the first pan of the 
priod, there is no fault, it can been seen that 
CPs changes within a small range; when faults 
happen at 7500 sec., CPs change a lot and have Merent direction in different faults. C f ,  becomes 
larger and Cp, becomes larger when £an speed denease; CP, becomes smaller and CP, keeps constant 
when coil scale; Cp, keeps constant and Cp, becomes smaller wben pressure of water system decrease. 

If taking the change of CR as axes to mnstrun a fault direction space(TDS), the above fault symptom 
can be demited mveniently in FDS. A fault 6e m e  becomes a p in t  or a small region in the FDS, 
&ch is called normal region; wben there is a mmponent fault happen4 wbether h~ speed decreasing 
coil s a l e  increaing or hot water system pressure 
decreasing CR is out of the n o d  region and into 
the abnormal region; different kinds of fault will 
change in different directions in the FDS: when £an 
speed krease .  the direction of CP is in the first 
quarter, when mil scale, the direction of CP is in the 
negative side of vertical zxis; when hot water system 
pressure decrease, the direction of CP is in the negative 
side of horizontal wis(see figure 2). Therefore the tp 
of fault can be distinguished by comparing the 
measured direnion of the ACP with the staqdard fault 
direniom. 

Since FDS method is based on commnent models 

pressure of water f decrease 
systemdecrease i / p  

I coil s~al; 

Figure 2 Fault Direction in FDS 

vhile some system faults such as chilled water temperature too high or window opening can not be 
detected by this method, if-then method is presented to detect and diagnosis *em faults. Therefore 
FDS+ is presented by combining FDS method with if-then method. detecting mmponent f a d s  by FDS 
method; detecting system fault by if-then method. 

Howver, to put ttus method into real engineering application, there are still a few problems &ch 
need to be solved. 
1. How to define a set of CPs to construct the FDS. The success of this prcredure is highly dependent on 

the definition of the CPs. 
2. How to set the size of normal region in the FDS. Due to the dynamic influence, non-linear effect and 

sensor errors in the real system, CR vary within a small region rather than nay as mnslants even in a 
fault 6ee m e .  To distinguish fault and normal m e ,  it is necessary to define the normal m e  region. 

3. How to determine the direction of Merent faults in the FDS. After the FDS for a typical component 
has been determind, ddws it  suitable for all this kind of component? What is the u~venali ty of the 
FDS. 



4. , The judgeability of the procedure. B m  of dynanuc intluenoe, non-linear effect and sensor error. 
the W t  vector do not remain in the same direction wen in the same hdt, but in a range of direction. 
Furthermore, direction range of different bult vectors may werlap,:thus it is imponant to & h e  the 
classification ability of R)S. 

STRUCTURE C P s  
Finding a suitable set of CP is the key to make the FDS suawful. The mc tu re  o f CP should k: 
i t  can be deduced from the physic model of component in air-conditioning system; 
it is expressed by the suuaure of components. thus it is in mnnant over the whole working range; 
it can be calculated from the m m e d  dm, 
it should include complete f%dt information so chat each type of W t  will appear in different 
direction in the FDS. 

According to these principles. Cps for some components in air-conditioning system have been 
determined as shown in table 1. 

Table 1 the selection of CPs 
No. 

1 

3 

fn-Y 
CP2 = - 

f 6 ( c )  
5 cc-moving dampers I , ,  - I",, 

s l m h ~ ~ c x h ~ ) f 9 ( ~ l )  ( f w - l m i s ~ ~  

4 

Components 
water-air heat 

exchanger 

steam sprayer 

C R  
KF 

q l = z =  ( t d - t . J - ( t ~ - t d )  

KF h d - h ,  
cp l= - -  

G f , ( c )  - (hd-h-.)-(h,-h,)  
hm-h". Ln- 
hm - h,  

c-f,(=) . 1- p, f , ( r )  
Cp, = e - 7  = - - e m. 1- (Po 

W 
cp -- 

I - G f 4  ( c )  

steam -air heat 
exchanger 

I 

"3 l , - I -  cp --= 
I - G C ,  . l u + l d  

I n - -  
2 

1°C" - cp h,  - h.  

G f g ( c J  ( l - o - l t i ) f 8 ( ~ ~ )  
~ote: f , (c)  is a correction term of C R  for the open ratio of valves and it can k learned dudng opemion. 



A FDS can be easily constructed for any system by adoptlng above CR, but there are some procedure 
to process when CPs are calculated on h e .  First, The CPs created is based on the static physic model of 
the system ot components. However, the data to structure the CP are mawed from real system in a 
dynanuc process and include some variation due to sensor error. Moving average method is applied to 
decrease the effect. Sewnd, what does the change in CPs mean or how to calculate the ACPs? It can be 
considered ar the average change between the present pericd and the la% so thaf it can be de6ned ar: 

Z P  
j -7 

ACP = '-' 
1 r - T  (1) 
- j ~ ~ d r  
T r - l r  

T-Integral time 
Figure 3 show the change of CP when a fault happen in 11; figwe 4 show the change of ACP. 

Figure 3 the change of CP Figwe 4 the change of ACP 

NORMAL REGION M FDS 
Although moving average methcd improves a lot for obtaining a stable CP. CP still changes within a 

region rather than stay at one value during a fault less state. This is due to dynarmc influence, non-linear 
effect and sensor error in real system. Therefore it is necssary to d e h e  the normal state region(NSR). If 
the CP changes within this region. it can be considered ar a fault Iw state. 

Take a FDS of a water-air heat exchanger for example: 
KF I--!& - cp '- GC,  (fe-lwo)-(tm-fti) 

I e - f w o  
In- 

I--!., 

Simulation is carried out by HVACSIM+ to discover the range of NSR Figure 10 show the range of NSR 
for the FDS of heat exchanger at ditferent faultless worlung state. It is clear thaf the NSR is operation 
state dependent. T h s  makes the FDS methcd difficult to be u s 4  in practice. To avoid this an uniformed 
NSR is needed to be develooed. 



AD/., AD[. .. AD/, is the variationcaused by above influence. appm*;rriai:k%&C&-*-. 
AD/, = AD I .  . get the variation of CPs in ditrerent working state as fo;l:WI.r,.--- . . 

1, . I", I ". L..??; .. A .c.q 
20°C 24OC 80°C 79°C O.OSADI. O.13A0la 
22°C 24OC 80°C 79.S°C 0.16AD1. C..?.?.;:...n 

Thus CPs should be uniformed as: 

The uniformed NSR is shown in figure 1 1 .  I t  is less operation state dependent. 
There is no clear boundary between fault and faultless sate  in mon of the cases. The serious level of 

fault can be irom f, tnar is iaulr iess stare, to very heavy, 
what ue more interest about the sensitivity is to known 
what level of fault can be disaxered by the FDS+ 
procedure. Since there are many uncertainty influence 
such as error of sensors, d y n m c  influence as well as 
non-linear effect, the sensibility of the FDS+ prccedure 
is the probability o being discovered for acerlain level of 
fault. Figure 5 is an example of the probability of effect 
against the level of fault for an air heater when the fault 
is air flow rate decreasing. It can been seen that when 
the air flow rate decreased 10%. the probability of being 
discovered is only 3 1%. Howver when it decreased to 
15%. in 90% cases it can be discovered 

FdtLevel 
Figure 5 the probability of fault detenion 

FAULT DIRECTION IN FDS 

A CP, 

The a@e b e w e n  the measured ACP'and the standard fault ACPI can be calculated as follouing 
during on-line process: 

yl=DA 
Where D is the matrix of standard fault direction, A is thevector constructed by the measuredACP' as 

Since CPs are deduced from physic model of components, the direction of fault can be get by 
analysing the physic process of fault. Also take heat exchanger for example. the directiorl of faults show 
on figure 2. The value of /3 can be deduced easily by analysing the physical process of fan speed decrease 
and ,O is equal to 4S0. The i n f o m i o n  of fault direction can be store in the way of a vector Hith the same 
dimensions as the number of CP: 

A CP; A CP; 
fan speed decrease 
heat coil scale 

0.71 0.71 
-1 0 

water system pressure decrease 0 -1 
Since what we pay great attention is the direction of the vector, CPs can be normalised to construct fault 
knowledge d a t a h e .  



Each element in y, is the cosq of the angle between the measured A and the relative standard fiul: 
direction. When cosyl=l, the direction of the measured ACP' is exactly the same as the relative standard 
fault direction. 

Due to the following reasons, the same rype of fault in merent  operation stares or al ditierent levels 
can not be always a1 one direction in the FDS, but in a range and range of different faults may overlap. 
that is to say there exis a fuzzy zone and a clear zone in FDS for clars~fy~ng m e r e n t  faulls(see figure 6). 

*the error caused by sensor can make the measured dam deviate from the real state; 
*the non-linear behaviour of the fault may cause the &rectir;n change when different level of fauh 

occur; 
*the non-linear behaviour of the component m y  a h  cause the direction change when it is in 

merent  working state: 
*the dynamic influence is another contribution to the &viation of the fault direction. 

' 
1 fault A clear zone 

Dl 

- .... '. '.\. 

fault B 
-. - fuzzy zone 

'.. D clear zone of fault B 

fault drection do no[ fault direction overlap 
overlap 

Figure 6 range of fault direction 

cosy,,,is produced in fault state simula~ion to represent the range of fault brection. If c0Sp 

this rype of fault do not happen, however since fuzzy zone exist, if cosy,>cosy,,, it might not mean 
this £41 happew, it may be another fault. It is necessary to define the fuzzy region and clear region of 
different Wts to finish the classification. The bound.ary angle of fuzzy zone and clear zone is get by 
different fault simulation. The membership in fuuy zone is describe as folioGng 

T u ( relationship of fault m) 

cosy,l cosy,, cosy, 
Figure 7 membership of fuzzy zone 



I O cosp < cosyl, 

cosq, -cosq, 
.u(cosp) = cosp, 2 cosp < cosp, 

cos p2 - cos yl, i 1 

(2) 

cosyl, 2 cosyl  

u -relationship of fault m 
9,-boundary angle of fault m's fuzzy zone 

9,-boundary angle of fault m's clear zone 

GENERAL PROCEDURE OF FDS+ METHOD 
The general process of FDD is divided &to off-line study and on-line procedure. The whole procedure 

of FDS method is i n n o d u d  through an example(= figure 8). m e r e n t  FDD system is set up in 
different working mode to detect and diagnosis & I t  respectively. Take the one working mode for 
example: dehumidify and cooling mil on, heat exchanger oft steam Sprayer off minimum fresh air. 
1. &--line- 
1)seleaion of C R  

w , c w  - h,.- h, 
cP1= G f , ( c d -  ( r , - td f , ( a )  

KF hi-h, - 
q= = G/,(c,) - (hd-h,)-(h,-h,) 

h.d-h, f ,w 
In- 

h,-h, 

Figure 8 reference system 

h , = h ( r , . d 4 ) . h , = h ( ~ 3 , d l ) . / ~ , i =  h (~ i . d ,~ ) . h~~= i l ( l p . d , , ) .  
pi=r/~(t2.d4),p.,= r h ( i 3 . d 2 ) , ~ u , = ~ 7 , 1 ~ o  = I #  

where h,; saturated air's enthalpy under input water temperarure and h,, saturated air's enthalp under 
output water temperature 
2) fault fie state simulation. Uniformed NSR 0.9 is oblained through simulation. 
3) fault matrix is se t  by off-line mdy (off-line analysis plus simulation validation): 



Table 2 clarsification information 
fault fault 3- - integrate integrate clear "S+'- integrate Dm funy 

level COSP- COSP,, mne mne 

A CP; A CP; A CP; 

20% (.70,.48,-32) .98 
hspeed 25% (.71,.47.-.52) .99 (.73,.46,-SO) 0.72 decrease 

0.04 (0.72.1) not exist 
30% (.76,.43,-.48) .75 

m l i n g  20% (0.-.71,.7l) .I6 
coil scale 25% (0,-.71,.71) .I3 (0.-.71,.71) .I3 .80 (30.1) (. 13.30) 

30% (0.-.71,.71) .15 
-r's 20?? (-46,-.26,.85) .92 
Pressure 25% (-.40,-.21,.89) .94 (-.41,-.23..88) .90 .90 (.90,1) not exist 
fall 30% - 3 6 - 2 . 9 1 )  .97 

a 3- -uniformed standard hit vector. 
b. ~sp--minimum angle between the direction of state vector and standard fault vector. representing 
the region of this fault in FDS. 

c. i n t e g d d m -  uniformed standard M t  vector in different fault level. 

=D 
h s p d  decrease 
cooling wil scale 

d integrate cosp,-- minimum angle between the direction of m e  vector and nandard fault 
vector(inc1ude different fault level), representing the region ofthis M t  in FDS. 
e. integrate wsp--- maximum angle &meen the direction of state vector in other Fault m e  and 
standard h l t  w o r ,  representing the boundary of clear mne for this Fault and shoving classification 
ability of this fault in FDS. 

0.73 0.46 -0.5 
0 -0.71 0.71 

5) rule set is set up through system structure analysis. There exist two system faults: building cool load 
high and temperature of cool water high. Under these W t  state, state vector remain in NSK that is to say 
FDS method can not detect these fault  and a set of rules is applied to deal with these faults: 

pressure in cool Hater system £41 . -0.41 -0.23 0.88 

The rules for building cool load high and cool water temperature hgh are the same, thus cool water 
temperature predictor is adopt to cla~slfy these two faults. Until now. FDD system has been set up off line 
and on-line FDD procedure will be simulated to verify the FDD system. 
1. on-line detection and diaegosis. 

Also in this mode, cool coil scale at 7500 sec. In on-line FDD. the variation of CPs are calculated 
firstlflsee f i g r e  12). then this variation is picked out by Function l(see figure 13). mod of uniformed state 
vector is found out of NSR in 8100 sec.(see f ig re  I?). A fault is detected and diagosis procedure 
processes successively. Fault matrix multiply operation is doing. 

4)fault state simulation. Classification information is get in the simulation. 

Table 3 rule set for system faults 
fault type 
building cool load high 
cool water temp. high 
a. 10 set rwm temperature 

load of cool coil 
m. 
max. 

room temp. 
tX0 
t>tO 



CONCLUSION 
The main character of the FDS method are: 
1. The on-line identification of component or system model as required in mon of the fault detestion 

p r o d u e  is not needed. CP is used to play the rule of models instead. The work of madel 
identification is replaced by the off-line CP determination. 

2: The Fault Direction Space is used to replace the if-then logic tree used in mosr of fault diagnosis 
procedure. Although it may. also be consider as a kind of logic tree, the representation of the FDS in a 
computer is in a m y  of a m m x  rather than a group of rules and match can be done by a simple 
multiply operation rather than searching along the fault tree as it does in a if-than logic tree 
procedure. Funhermore, FDS method not only give the fault type but also give the relationship ofthis 

type 

fao speed decrease 

0x1 coil scale 
m e r  pressure fall 

openth ofvalve. damper 
specific heat of aater 
output air humility 
input air enthalpy 

heat t d e r  ooe5cient 
heat uansfer powr 

input air temp. 
input Hater temp. 

input air wet bulb temp. 
Hater flow rate 

input air relative 
humility 

heat transfer we5cient 
for w h i n g  room 

( A  CP; ,A  CP; .A CP; )  is the normalised ( A  CP, .A  CPl .A CP3)  and xl. x2. x3, x4 represent the difference 
t e w n  the direction of state vector and standard fault direction. 

In fault sale  there exin normalised state vector (0.0144, -0.18638. -0.00367). after above matrix 
multiply get ~ 2 4 . 6 9 ,  fault is in fwry zone according table 3. relationship is 0.84(function 2). Of course 
in this example the other state vector show xZ>O.S. 0x1 Hater scale fault is clearly diagnosed. 

0.73 0.46 -0.5 

0 -0.71 0.71 
-0.41 -0.23 0.88 

* 

NOMENCLATURE 
(-) ca specific heat of air 

Odflrg"c) 4 input air humility 
@w'@W air) G air flow rate 

m'V&) 'LO output air enthalpy 
@cW/mZ.T) F heat transfer area 

@cw) S flow resistance coefijcient 
("C) la output air temp. 

("'3 I-- output m e r  temp. 
("C) ts, output air w t  bulb tekp. 

k ' s )  pi input air relative humility 
(-) r time 

(-) f , ( c )  correction term for the 
openth of valve or damper 

A CP; 
ACP;  
A CP; 
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1 INTRODUCTION 

Some faults in HVAC equipment don't occur instantaneously, they grow until they reach a level where the 
system performance becomes unacceptable or where the system breaks down. The period between the first 
indication of the system's performance deterioration to the system failure, i.e, the fault's time constant, can be 
minutes to months. Defect detection aims at detecting faults in an early phase so that preventive maintenance can 
be carried out before the system's breakdown. 
The terms defect, fault and failure have been defined within the preparation phase of IEA Annex 25 [ I ] .  They 
represent different phases of what is generally called afault. The defect is the earliest phase of a fault. 
Different approaches to detecting faults in vapor compression equipment have been investigated within the IEA 
Annex 25 1e.g. 2, 31. Most of them use steady state models and so only certain faults can be detected and 
diagnosed. The method presented in this paper tries to take the system's dynamics into account so that faults 
leading to uansient states can be detected as early as possible. 

2 FAULTS 

When a system tends to faulty operation, the system's behavior is changing. The transients caused by the faults 
have characteristic time constants. Faults with long time constants must be regarded as (quasi) steady-state 
conditions, whereas faults with short time constants are causing uansients. Shon time constants in the context of 
HVAC equipment stands for the duration of minutes up to hours. Faults causing significant transients in HPs are 
P I :  

Refrigerant floodback 
0 Expansion valve faults 

Refrigerant leak 
Refrigerant line flow restrictions . Compressor faults 

Performance indices (PI) are used to detect the changes in the system's behavior as mentioned above. Pls are 
discussed later in section 3.2.1. 
The method for defect detection as presented in this paper is not able to detect every possible defect; because it 
can only detect transients and their related defects. The work carried out until now was concentrated on the 
faults listed above. If a fault occurs, however, it must be possible to classify it, so that normal operation can 
definitely be distinguished from faulty operation. For this reason the models used must not only represent faulty 
operation, but also normal operation. This way, if a situation occurs, for which no model is implemented, then 
normal operation can be excluded and the defect detection system can inform the user about an unknown fault, 
that has been detected. 



3 METHOD 

3.1 CONCEPT 

A performance index (PI) is a steady-state model of the corresponding system or component It's a suitable 
indicator for the system's or component's current operation. The expectable range of such a PI is usually known 
from the system'slcomponent's manufacturer andlor from laboratory experiments. Thus an expert is able to 
judge the system's condition by a suitable PI. A certain PI will not have the same value over the whole operation 
period. It will change due to changes of the operation set point of the system or due to a fault. Defect detection 
as presented here makes use of this fact. The system's dynamics make PIS change and these changes are used as 
indicators for defects. 
The basic idea is, to choose suitable PIS for the system andlor its components, to determine characteristic 
patterns of normal and faulty operation based upon the PIS, to monitor the system's current PI patterns and to 
classify them by comparing them with the predetermined patterns. Defect detection thus makes use of the 
system's dynamics without actually simulating it dynamically, which is known to be very complex for systems 
like HVAC equipment. 
Figure I shows a block diagram of the defect detection process. It is mainly divided into the preprocessing and 
the classification phase according to [21. On the real system the necessary data points are measured in order to 
compute the operation patterns (OP) for each PI. The computation of the OPs will be descibed in section 3.2.2. 
The system's current OP is then compared with the predetermined ones (Pattern I to 3 in Figure 1)  and the 
corresponding residuals are transmitted to the classification block. The predetermined OP most similar to the 
system's current OP, i.e. the OP with the smallest residual, will indicate the operation state (normal or faulty) 
with the highest probability. 

Figure 1: Defect detection preprocessing and ckassijication 

3.2 PREPROCESSING 

The preprocessing part of the defect detection process consists of two main phases, the mining phase and the 
operation phase. During the training phase the operation pattern database is set up. Data series of normal and 
faulty operation must be acquired from the HP in question, so that the OPs can be computed. This set of OPs 
then forms the knowledge database. The training phase must be run through only once. During the operation 



phase the necessary data points are measured and the system's current OP is computed and classified. However. 
the OPs are always computed the same way. 

3.2.1 Performance Indices 

Before the preprocessing training phase can be started the PIS must be chosen. In general the PIS must be chosen 
according to the faults to be detected. So for each component affected by at least one fault one PI is chosen and 
one PI is added for the overall system. In the case of vapor compression equipment and considering the faults 
listed in section 2. the following PIS are suitable for defect detection purposes: 

Heat exchanger efficiency [6]: 
t',-t", 

@'= 
t',-t', 

Compressor volumebic efficiency [6]: 

Chiller/HP exergetic efficiency [6]: 

Chiller: Heat Pump: 

fA TO Qc Tc 
Ec = - and Ecc = - EH = - and EHc = - 

p., T-To 4, T -To 

The more PIS are taken into account, the more accurate the defect detection can be. Of course, every additional 
PI slows down the defect detection process. In addition every PI needs a certain number of sensors, in order to 
compute it. Sensors are expensive so the less sensors are needed the better. The number of PIS should be as small 
as possible to minimize sensor and control system cost and great enough to meet a satisfactory accuracy and 
detection speed. 

3.2.2 Operation Patterns and Signal Processing 

The computation of the OPs includes the following steps: 

I .  Measurement of the required data points 
2. Computation of the PIS h a d  upon the measurements 
3. Computation of the power spectral densities (PSDs) via FFT 

The PIS that have been chosen determine the required data points. For the above listed PIS in a HP the following 
data points are needed: 

Evaporaror/Condenser: 
Primarylsecondary circuit inletloutlet temperatures 

Compressor: 
Refrigerant circuit suction/liquid line pressures 

System: 
Compressor electric power consumption 
Condenser secondary circuit inletloutlet temperature 
Refrigerant circuit evaporatorlwndenser temperature 

All the other values required to calculate the PIS are constants and can be ohrained from manufacturer 
information or from experimental knowledge. 
The measurements are then carried out at a specific sampling rate. The choice of this rate is important, because 
the cut-off frequencyL and thus the frequency range and the frequency resolution Af of the PSDs are depending 
on it according to [4] 



1 
f =- and Af = - 2 f ,  
' 2T N 

where T is the sampling interval and N is the number of samples within the time window. The relations between 
hequency resolution, sampling interval, cut-off hequency and time window width are summarized in Table 1 
for N = 1024 samples. 

1 S 

1 min 

1 h 

1 d 

1 W 

Time 
constant 
of defect 

Table I :  Data acquisition and s i g ~ l  processing parameters 

To be able to detect defects that have time constants of about one day a sampling interval of about 40 seconds 
would be needed; with N = 1024 samples the time window would be 43200 seconds (12 hours) wide. The 
highest frequency shown in the corresponding PSD is 0.01 19 Hz corresponding to a wavelength of 84 seconds. 
The time window width is the second imponant parameter for the later frequency analysis, because the wider the 
window is at a constant sampling rate, the better the frequency resolution will be. 
Based on the measured data the PIS and the PSDs can be computed. The PSD S, is given as the square of the 
Fourier lransformed PI signal Y according to [4] by 

Time window 
width 
W [s] 

where N is the number of samples and U is a normalization factor. Y is computed using FFT [S]. 
The preprocessing phase results in diagrams like Figure 2. 

Normal operation 

Sampling 
interval 

T [s] 

3.MEQ2 - - 
3.WEQ2 - * 

2.50EQ2 - 
5 2.WE42 - 

1.50EQ2 - 
l.WEQ2 - 
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Frequency 

Figure 2: PSD example of normal operation based on the aergetic eficiency of a HP 

Cut-off 
frequency 

f, [Hz] 

To simplify matters the PSDs or periodograms will be called operation patterns (OP). OP examples of a HP's 
normal and faulty operation are displayed in Figure 2 and Figure 3 respectively. An OP can be represented as a 
n-element column vector or as a point in a n-dimensional feature space. This view of the OP will be used to 
illustrate the classification process (cf. section 3.3). 

Frequency 
resolution 

Af [Hz] 



Faulty operation A 
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Frequency 

Faulty operation B 

5.WE42 < " 
I 

0 5 10 15 20 25 30 35 40 45 50 55 €4 
Frequency 

Figure 3: PSD examples of faulfy operation bared on the exergeric eficiency of a HP 

3.2.3 Training Phase 

During the training phase the defect detection system has to learn about the supervised process, in this case 
about a HP or chiller. Until now the training phase must be carried out once for each system, because it is not 
known yet, if and how far this method can be generalized. Training includes data acquisition of the system's 
normal and faulty operation, so that the required OPs can be computed based upon the PIS that have been chosen 
before. One OP per fault to be detected and at least one OP for normal operation is required to set up a useful 
knowledge database. After the training phase the defect detection system is ready for operation. 

3.2.4 Operation Phase 

In the same manner as during the training phase the supervised system's OPs are measured and computed. It is 
important, that the same measurement parameters (sampling interval, time window width, etc.) are used as 
during the training phase, so that the resulting OPs are comparable. Again the resukof the preprocessing phase 
are the PSDs of various PIS, and again every O P  is a n-dimensional column vector and can be represented as one 
point in a n-dimensional feature space. 



3.3 CLASSIFICATION 

The result of the classification is the assignment of an OP to its corresponding fault. Classification is here carried 
out in two steps: 

I. Classification of the system's current behavior 
?he defect detection system classifies the OP with respect to its time frame and makes a statement 
concerning the conditions the HP is currently in. It computes a ranking list of the faults with decreasing 
probability. 

2. Prediction of the system'sfuture behvior  
?he defect detection system bies to predict the system's future behavior. After each defect detection run 
changes in the system's current behavior and in the fault probabilities are judged. The fault with the greatest 
probability gain becomes the most probable future fault. 

The classification is based on the concept of the OPs representing points in a n-dimensional feature space. For 
the further discussion the following assumptions are made: 

I. The feature space is 2-dimensional, the corresponding features are F, and F, 
2. The OP database consists of N = 3 OPs representing normal operation (b,) and the faults A (b,) and B (b,) 
3. The OPs in the knowledge database and the current OP are represented as points (B,, B,, B, and 6 ) in the F,- 

F, plane 

Figure 4: Classification feature space 

3.3.1 Current Behavior 

Classification of the current OP B is mainly a pattern recognition problem. In this care the OPs or feature 
vectors are classified by means of the distances between their ending points. If b, is one known feature vector 
(OP) with ending point B, and b̂  is the current feature vector with ending point l? , then b, and 4 are the i-th of 

n elements of these vectors and the distance dh between B, and is given by 



A 2-dimensional example is given in Figure 5. The known OP with the smallest distance to the current OP 
indicates the system behavior (normal or faulty) with the greatest probability, and the smaller the distance d, is, 
the higher the probability for the system behavior corresponding to OP B,. 

i------ Feature F, 

Figure 5: Classification ojthe system's current behavior 

Although it would be possible to do so (cf. [7]), the statistical probabilities of the different OPs themselves are 
not quantified. A different probability quantity called relative probabilify is given instead. The relative 
probability pJB,), is a measure for the similarity of the current OP B to one particular known OP B,. p, (B,) is 
given by 

This similarity measure is called relative probabilify. because the sum of all p, is always 1 (100%) and the 
relative probability of OP  B, is 1, when it is identical to the current OP B . The distances between the current 
and the known OPs in Figure 5 and their corresponding relative probabilities are displayed in Table 2. 

0.70588 (70.6%) 

Table 2: Distances and relative probabilities (cf: Figure 5 )  

If there is a total of N OPs in a defect detection knowledge database and v OPs represent normal operation and cp 
OPs represent faulty operation then the sum of the v normal or cp faulty operation relative probabilities are 
indicating the overall relative probability for normal or faulty operation respectively. 



3.3.2 Behavior Prediction 

Under ideal normal conditions the point representing the system's current OP B will keep its location. In reality 
it will not exactly do so; the point will move due to noise in the measured data or due to transients in the 
system's behavior. Transients can be caused by normal changes of the operation set-point or by faults. However. 
the current OP's point b will move away from one normal OP's point towards an other normal or towards one 
of the faulty OP's points. The movements of the current OP's point can be used to predict the systems future 
behavior. 
To avoid false alarms, movements due to noise must be distinguished from movements due to transients in the 
system. As can be seen in Table 1 the hequency range of a PSD for defects with a 1 day time constant is 0 to 
0.01 19 Hz, which is a relatively narrow band of very low frequencies. The relevant hequency components for 
defect detection are thereby in the lower half band of this range. Noise on the other hand lies in the higher half 
band and above and the corresponding frequency components are small. Tests with experimental data have 
shown, that normal OPs measured at different times have distances in the range of 1 to 1.5 from each other. 
Distance changes in this range are obviously caused by noise. Faulty OPs have distances of 40 to 60 from 
normal OPs. So noise can be neglected, because it is low compared with the distances between normal and faulty 
OPs. If noise is too high, then adequate filtering methods should be applied. 
Figure 6 shows the original situation of the example from Figure 5 at time t, and a new situation at time 
t, = 1, + At. 

I 

Feature F, 

Figure 6: Prediction of the systern'sfurure behavior 

The relative probabilities at t, have changed but still normal operation is most probable (B,) .  However, normal 
operation is less probable at I, and the faults A (B,) and B (B,) have become more probable that before. Behavior 
prediction will now compute a ranking list of OPs which have become more probable, i.e. with relative 
probability gains. The OP with the highest gain denotes the most probable future behavior of the system. 

Table 3: Changes in relative probabilities used for behaviorprediction 



Tbe distances and relative probabilities at t, and t, are summarized in Table 3. Normal operation has a relative 
probability loss of 22.2%. Among the OPs with relative probability gains fault A (B,) has the highest gain 
(14.6%). So at the moment it is most probable that the system is tending to fault A. 
m e  analysis of different possible system behaviors has shown, that for the user a relative probability threshold is 
required so that the importance of the relative probabilities and their gains can be interpreted more easily. For 
three known OPs sensible results could be obtained with a relative probability threshold of 0.5 and a relative 
probability gain threshold of +0.1; these thresholds have been found heuristically. However, the thresholds must 
be determined according to the number of known OPs. m e  more known OPs there are, the lower these 
thresholds will be. 

4 VALIDATION 

So far the defect detection method has been developed theoretically and the main statements could be verified 
with experimental data obtained from a laboratory chiller system. A more detailed data acquisition campaign is 
currently being done on a laboratory heat pump system. Tbe main issues expected from this campaign are: 

Determination of signal processing parameters 
List of possible faults to be detected by the defect detection method 
Limits of the method (accuracy, sensitivity, robustness, etc.) 

5 CONCLUSIONS 

m e  analysis of experimental chiller data has shown, that the three basic conditions for defect detection on behalf 
of OPs are satisfied. i.e. that 

1. OPs representing normal operation are similar to each other 
2. OPs representing normal and faulty operation are significantly different from each other 
3. OPs representing different faulty operations are significantly different from each other 

'Ibis means. that the behavior of vapor compression equipment can be modeled with OPs as presented in this 
paper and that different OPs can be distinguished from each other. In addition to the preprocessing method 
implied by the OPs a method for classification and behavior prediction has been presented and verified with 
experimental chiller data. Further verification is currently being done to point out the limits of defect detection. 
No statements about the applicability of the OPs obtained from one system to another system of the same type or 
even of a different type can be made so far. 
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Abstract 

Automatic fault detection and diagnosis (FDD) is important process which bas been ignored but has great effect to 

realize energy w~lsewation in Heating, Ventilating and Air<onditioning (HVAC) system. Present paper introduces 

a trial of FDD in the thermal storage conml system by the pattern recognition method. It has been recognized that the 

temperature profdes is a proper indices of the thermal storage system performance. Mapping process based on the 

statistical theory with significant parameters derived from the Fourier Analysis of the temperature profiles showed a 

high performauce of FDD for the two kinds of control faults using fault simulation data. 

1. INTRODUCTION 

Ihe faulty phenomena observed in the b m a l  storage tank are affected not only by its proper faults but also by faults 

at any part of HVAC system. At the same time the thermal storage faults affects operational performance of HVAC 

systan and the building environment. Experiences show that a peculiar control fault around the thermal storage tank 

gives a characteristic tramition of the temperam profiles of the la&, which somhow provides an information on 

the existence of some kind of faults. 

Nakahara, one of the authors, reported in [I] [2] the simulation results of two k i d  of control faults for eighty+ne 

cases using the dynamic storage simulation program The combination of significant factors was determined by the 

design of experimenh. The fault simulation results suggested that the cases which showed the typical temperature 

profde vvariations wereonly a pan, and that more than a half of them showed uncertain. The result obtained from one 

kind of fault was sometimes similar to the result obtained from another kind fault. 

Then, it becomes necessary that certain numeric indices to identify the faults should be developed. Resent paper 

repons a successful resllt for idenrification of simulated w m l  faults using Fourier Transform combined with a fault 

mapping. 



Table 1 Estimation table of thermal storage tank efficiency of the mult iso~ected complete mixing tanks 

type 

Note: The haaaniomat the right side is the wrrectvn pan of the proincipal effects due to the non-linear relatiom among factors. 

For example. if the first kvel of the B factor and the third level of the D factor are chosen, the integrated effect is calculated as 

+2.853.83+5.73. 

Figure 1 Simplified Tbmd Storage Reference System Diagram 



2. THEFNAI-, STORAGE SYSTEM AND STORAGE EFFICIENCY 

The reference thermal storage system was introduced at the meeting for Annex 25, ECBCS, JEA 131. of which 

simplified diagram is shown in Figure 1. The esimation of the sorage efficiency, composed of the significant factors 

only, is dorm in Table 1. %e thermal sorage tank efficiency is defined as the actually available heat of storage with 

the Limitation of maximum temperature rise at the delivery water tank over the nominal chiller outlet temperature to 

the nominal heat of -rage in the water volume with constant temperature difference determined by the weighted coil 

design knqmmm difference at the peak load. %e significant factors were anal@ and reduced into estimation tables 

[1][2] as shown in the table, for example, for the multi-coonected complete mixing tanks type. 

3 FAULT SIMLnATION 

3.1 SIMULATION ALGORITHM 

The simulation algorithm of this type of tank was introduced elsewhere [I] by the author. Each tank is thought as 

having complete mixing characteristics and connected in a series. 

3.1.1 Control algorithms 

lie principal control strategy is as follows. All the control loops were thought to have the PID action controller and 

no dynamic property was taken into account. 

I )  The V1 is manipulated to maintain constant chiller output temperature. 

2) lie capacity control of the chiller such as by the inlet vane is due only to the input power of the driver, not to the 

outlet temperature. 

3) The maximum fall of the chiller inlet temperature below the designed temperature is determined as one of the 

p a r a !  called a the limited temperature difference ratio at the primary circuit, factor E, which is not significanl. 

4) The maximum rise of the chiller outlet temperature over the designed temperature should also te determined by 

the parameter called as the limited temperature difference ratio at the secondary circuit, the factor F. 

5) The V2 is a temperature control valve due to the mom air temperature, the outlet air temperatureof the air handling 

unit (AHU), etc. Either two way or three way valves are used according to whether the variable water volume (VWV) 

system or the constant water volume (CWV) system are used. The factor B,C and D are concerned. 

6) The valve V3, to which the factor C is concerned, is manipulated to maintain the delivery temperature to AHU in 

CWV sysem at a predezennined highest temperature, which are for keeping tener storage performance. This control 

should not be used to VWV systems according to an expert knowledge. 

3.1.2 Room temperature variations(RW) and the heat exclusion rate(HER) 

Simplified dynamic algorithm was introduced. The original program was developed to design an optimal storage 



capacity at the given design conditions on the d m d i h  
w 

coolig load and h e  W A C  sysem and control 

design, so that it did not include the room 

model, and the mom temperatllre was supposed 

to kept constant. It is correct as long as the 29 t 3 t  40 ' C  
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water temperature for cooling is kept proper F i  2 S i i M c d  salcuMirm of R N  and EXR 

due to the premise of optimal design with nG- 

fault operation. In order to make it possible to 

simulate the faulty condition, where the water 

temperature is expected to reach abnormal 

condition in which the heating andlor cooling 

load to keep the room temperature nearly constant cannot he excluded sufficiently, an simplified calculation model 

of the dynamic behavior was introduced as shown in Egure 2. 

At the peak c o o l i  condition the ~ t u r a l  room temperature without any heat exclusion was supposed as 37" C in 

conbask to the normal cooling condition, that is 27" C. The RTV is hen calculated in proponion to the ratio of he  

HER, whichis calculated by the static coil model, to that of the peak one. When the load is not at the peak condition, 

the RTV is supposed as proportional to the HER ratio to the peak. 

This model is not correct enough to simulate the RTV and HER themselves but precise enough to acquire the 

knowledge data for fault simulation based on the temperature profde mansition. 

3.1.3 Determination on optimal capacity and initial state for the fault simulation 

Two days of simulation was supposed enough to determine the seady state and the limit temperature rise of the lowest 

temperahlre tank is examined if it reached the value just as predetermined[l]. The calculation is iterated using a kind 

of Newton Raphson Mehod until he error becomes within an allowable value. 

Afta an optimal capaciry of the tank is decided, two kinds of designated faulty conditions are given at the initial stage 

of simulation, that is at 0:00 in the morning, and the fault simulation begins only for one day for both conditions. The 

calculation results for each case are listed as follows. 

a) optimal capacity 

b) storage efficiency 

C) temperature profiles for the normal condition 

d) temperature profiles for two kinds of faulty conditions 

e) RTV and HER for each faulty condition 

f) inlet and outlet water temperatures across the chiller and the cooling coil 

The fault simulation was carried out for the p k  load day and a half load day in order to obtain wide range of 

knowledge data for annual operation. 



3.2 FAULT CONDITIONS 

'Ex more a factor has a s imcan t  factorial effett, the more significant effects r e d t  when the factor goes out of order. 

The present paper pays attention to the importance of contT01 shategies, because they have stTong relations with the 

effecls of these significant factors. Referring Figure I and Table I, two kinds of faulty conditions are selected for 

examination as follows. 

1) 'Ihe valve V 1 malfunctions to f u  its position as sucking all of water hom the last tank to which chilled water return 

from AHU coils and no water flow from the initial tank. This fault is the typical control fault in the primary circuit 

and called as Fault a in the following chapters. 

2) Both the valve V2 for VWV system and V3, when it is provided, for the CWV system went out of order or 

installed another way by misake. It was supposed, as the redf that the two way valve worked as if it was a Uuee way 

valve and that the V3 did not work to bypass flow from the last taak. This is the typical fault in the secondary circuit 

and called as Fault @ in the following chapters. 

3.3 SIMULATION RESULTS 

'Ihe temperature profiles obtaieed horn fault simulation for three cases among eighty one cases are shown in Figure3 

for the normal and two faulty conditions which are illustrated in both two dimensional and three dimensional 

coordinates The time increment is shown as the parameter in the two dimensional graph, hut it is shown on the third 

axis in the three dimensional graph. The most symptomatic phenomena for each fault are observed as follows. 

33.1 Normal operation 

In normal operation very few temperam profiles intersect each other. The peak temperature point of each profile 

is fixed at the position of the return tank, or the last tank. The highest temperature of the initial tank during a day is 

limited at the point of limited temperature rise following the design conditions. 

33.2 Faulty operation @ 

In the fault a condition the profiles waves and the peak temperature poinls gradually move, so thst the profiles 

mtersa% each other. 'Ibu$ the initial tanktwperature rises as the peak point moves over the design condition. These 

symptom do not always appear very clearly . When the design temperature difference for the primary side, i.e. the 

chillerside, and the secondary side, i.e. the AHU side, are similar, the symptom becomes unclear. So is the r ~ u l l s  

when the CWV system load overwhelms the VWV system load. 

Moreover, if the remperature rise in the initial tank appears in the evening when the cooling load profile is much alike 

triangle, that means small cooling load in the early morning and late evening, the faulty phenomena Qes not affect 

the nxrm temperature as long as it is the fim day of the faulty operation. If the fault is not detected and recovered, the 



Figure 3 Temperature profiles d the tank in two and three dimensions 
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Figure 4 Temperature profiles of the tank in two and three dimensions for partial load 



room condition will become vilal in the following days. 

3.3.3 Faulty operation@ 

In the fault @ condition the profiles become rather flat, resllting the tanperature rise over the designated limited value 

in the inirial rank 'Ibis is because the elevated temperature of return water at the partial load higher Lban the designed 

value, which is a typical phenomena of the VWV control using two way valve, does not appear. Again, it is obvious 

that the phenomena will not appear clearly if the cooling load has a flat pattern. 

3.3.4 Partial load condition 

In order to make sure the availability of the FDD measure during all seasons, a partial load (50%) condition was 

assumed and the same kind of fault simulations were executed. Some examples of the results are shown in Figure 4 

for the same cases as shown in Figure 3. The storage capacity is large enough for partial load operation. The panem 

of the mperanue profies are principally maintained for each kind of faulty case, though the temperamre rise at the 

suction tank for the cooling coil is not high enough and the heat exclusion is almost fulfilled. 

4. TWO DIMENSIONAL REAL FOURIER TRANSFORMATION 

As seen in Figure 3 and Figure 4, the characterisics of the f r e q m y  and phase of the temperature profie panem seem 

to have decisive factors to discriminate a fault from the other or from the normal. In order to quanti@ them the 

tanperamre profiles were analyzed into Fourier transformation. Two dimensional Fourier transform is expressed as 

Equation (1). 

'Ibex isthe temperature of the tank water [' C] and it was supposed to be two dimensional real periodic function with 

the time and number of tanks as variables lEe C and S are sine and cosine components. The figure 5 shows the three 

dimensional temperature profdes for three cases of hansformed r e d l  for the same cases of simulated profies in 

Figure3, the explanation how to read the figures is shown in figure 6. The horizontal plane has degrees of sine and 

anine components in X and Y axis, while the vertical axis is the Fourier value. The horizontal plane are divided into 

four zones each of which is dedicated to display the product of sine (S) and cosine (0 components shown as CkSI, 

for example, corresponding to Equation (I). 



resllts shows Lhat composition of both the sine and cosine components are different behueen the n o d  the faulty 

for the identical cases but that the difference is not so large in Case 18. The difference mainly exists in the value, 

dihbution and (he degree of the sine and cosine components 'Ibis suggests a possibility of quan[ification using rhese 

factors as parameters for FDD. 

5. PARAMETERS FOR QUANTIFICATION OF FAULTS 

As show above, factors describing (he variation of the frequency and phase of the temperature profdes of the thermal 

storage tank a~ the value of sine and cosine components, their dishibution and degree of the frequency of Fourier 

bansform. Quantification h i d  using these factors were conducted as follows. 

I I I '  . I I . . I 
[case181 N o d  Fault O Fault @ 

I I 

I I I I 

[case491 N o d  Fault O Fault @ 
I I I I 

I I I I 
[case351 Normal Fault @ 

Figure 5 Graphical display of two dimensional Fourier Transformation 

.. . . 
(a) 3-D Time domain 

1 
(b) 3-D Fourier domain 

Figure 6 Understanding of the graph in Figure 3, Figure 4 and Figure 5 



5.1 PARAMETERS 

The twenty thee parameters composed from real values as well as the Fourier values were supposed to check the 

significance for RID. Ihe quantity of the parameters was reduced by checking the internal correlations and statistical 

significance. F i y  two significant parameters was derived as the most valuable for recognixing difference of panems 

between the normal and the faulty ones. One of the significant characteristic parameters is a maximum component 

value of a part of the mabir F and mother is the maximum of a converted matrix which is chosen as shown in 5.1.1. 

l%e on@ two dimensional Fourier real transformation mabir F used here is composed of four zones, each of which 

corresponds to the graphical display shown in Figure 5, except for using N and M instead of NI2 and MI2. 

5.1.1 Maximum value of Fourier transform 

The difference among the normal and the faulty was observed especially at the CLSI zone in Figure 5. Then, the 

maximum value of the components of the zone defined as described in Equation (2) is selected as one of the 

parameters. 

5.1.2 Maximum value of frequencies over threshold along the X, the space, axis 

It is observed that the profiles along the X axis, that is the space axis, varies considerably, if compared with the normal 

one, especially in the fault @ cases. ?herefore. the maximum value Flof the frequencies over a cenain threshold value 

along the space axis was selected as a candidate of the significant parameter as shown in Equation (3) and (4). 

l%e componaus F w  of the converted mafrix Fa ari calculated by filtering with the threshold value b from the original 

Fourier mabix F and has the value of either k, k-NR or 0 depending on its magnitude as shown in Equation (4). 

5.2 MAPPING DATA FOR FDD 

?be frgure 7 and Figure 8 show mapping results of all the data oblained fmm fault simulation on two dimensional 

planes using &parameters described above, for 76 cases at peak cooling day and a half load day, respectively. The 

horizontal axis of it is Fm and the vertical axis is FI. Both of them are normalized using the mean values of all the 



cases in order to make applicable to any partial load conditions and to any design conditions. 

The digributions of the mordinater among n o d  cases fault a cases and fault @ cases are expect& to be different 

each other, which means successful FDD. 

6. THE RESULTS AND PERFORMANCE OF FDD 

How to group the data on the map for each normal and fault case is the next question ' he  performance of FDD 

depends upon the quality of grouping method Two kinds of grouping was compared ' 

Figure 8 Mapping and Grouping results of Characteristic parameters for a Half Load 
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Figure 7 Mapping and Grouping results of Characteristic parameters for Peak Load 



6.1 RECTANGULAR AREA GROUPING 

Tbe simplest way of grouping for such clear cases as seen in Figure 7 and Figure 8 for localizing faulty cases from the 

n o d  cases is to group with rectangular area on the plane by hand [4]. The area was decided to include all the data 

belonging to the same ldnd of case, that is, for the normal, for the fault a and for ihe fault @case. Overlapping 

among three areas is clearly seen and it seems difficult to classify each other among two kinds of faults in that 

overlapped zone. However, tbis method is very simple and has sufficient performance in the fault detection only as 

shown later. 

6.2 MAHALANOBIS' GENERALIZED DISTANCE 

W bivariate n o d  disnibution N( p , a 3 was supposed for a h  three group data. The center of the distribution and 

LIE pmbability ellipse are calculated from ihe enough volume of the sampled data, every group of which has more than 

seventy data. The Mahalanobis's distance D is calculated by the following equation (5) and (6). 

Tbe ellipses shown in these figures were drawn for a half of the standard deviation a . The most pmbable answer of 

gmuping for any data is the one that ihe Mahalanobis' distance is the shortest. 

6.3 COMPARISON OF THE PERFORMANCE OF FDD 

6.3.1 Effect of the threshold value b 

Tbe results of the performance obtained from the two grouping method for the pak load day data, shown in Figure 

7, is compared in Table 2 for four cases of threshold value b in equation (4). that is, 0.1,0.3,0.5 and 1.0. The fault 

@ is discriminated hom the n o d  on the mapped area with more than 99% probability of fault detection 

nohvithstaoding 



the b value for the Mahalanobis' distance method and more than %% for the rectangular area method. 

Table 2 Performance of FDD for the Peak Load 

In case of the fault a the probability of detection reduces a little. Anyway it was disclosed that the FDD based on the 

Mahalanobis' g e n e r a l d  distance gives a better performance, because it has the statistical background 

l k s h o l d  

0.1 

0.3 

63.2 Effect of the load ratio on the performance of detection 

m e  difference of the performance k t i o n  due to the grouping method becomes clearer when the heat load is partial, 

as shown in Table 3. As it is clear from Fgue 8, the reason is because the normal data in this case much more widely 

scaaers on the map. However, the Mahaknobis' disance method shows almost complete detection in case of the fault 

@ and about 85 % successful even in the case of the fault a, while the rectangular method has a very poor 

performance. 

Rectangular 

Fault a 
Mahalambis' 

0.92 0.59 

0.91 0.93 

Table 3 Performance of FDD for a half load 

7. CONCLUSION 

Fault @ 

In order to identify selected thermal storage operation faulu, mapping data using appropriate parameters based on 

Fourier bansform on the two dimensional plane and grouping by the statistical principle have proved fairly effective 

in detecting and localizing faults as follows. 

Rectangular 

0.97 

0.96 

1)Two kindsof the mntrol faults, one is malfunctioning of the three way valve at the primary circuit called as fault@ 

Mahalanobis' 

1.0 

1.0 



and the other is malfunctioning of the two way valve at AHU and the three way valve for the CDT control in W 

system called as fault @, were supposed to take place at 0 o'clock after normal operation. 

2)Dynamic fault simulation of a reference thermal storage system was carried out and data for FDD was acquired. 

3)Variationsof the phase, frequency and amplitude was analyzed by way of two dimensional real Fourier h;lnsfom 

4) In order to quantify the tanperature profiles for FDD, two si&cam parameten composed from Fourier value were 

reduced after checking twenty three palameters with the internal corkation and the statistical significance. 

5)Two kind of grouping mahods of data map were proposed and the performance of FDD was inspected. One is the 

simple rectangular area method and the other is the stalistical method supposing the normal distribution. 

6)The threshold value for the second parameter did not affect the performance for fault detection but it did affect and 

had a optimal value for localizing between the fault a and fault @. 
7)Classifying by the Mahalanob'is' generalized distance on the pmbab'ity ellipse showed a satisfactory results of FDD 

compared with the simple rectangular gmuping method. 

8)The probability of FD from the normal was almost complete for both peak and a half load, if the Mahalambis' 

distance method is applied, except for the fault a at a half load. 

9)The pmposed method is only applicable to those faults which clearly affect the temperature profiles of the thermal 

storage tank. However, it is believed that most of thermal storage faulls affect the temperature pmfdes, so that the 

pattern recognition method based on the temperature profdes is considered powerful. 
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APPLICATION OF CLASSIFICATION FUNCTIONS TO CHILLER FAULT DETECTION 
AND DIAGNOSIS 
Meli Stylianou, Research Engineer, EDRL-CANMET 

Abstract 

This paper describes the application of a Statistical Pattern Recognition Algorithm (SPRA) to fault 
detection and diagnosis of commercial, reciprocating, chillers. The developed fault detection and 
diagnosis module has been trained to recognize five distinct conditions, namely, normal operation, 
refrigerant leak, restriction in the liquid refrigerant line and restrictions in the water circuits of the 
evaporator and condenser. The algorithm used in the development is described, and the results of 
its application to an experimental test bench are discussed. 

Experimental results show that the SPRA provides an effective way of classifying patterns in multi 
variable, multi-class problems without having to explicitly use a rule-based system. 

Introduction 
Vapour compression refrigeration systems constitute the largest portion of commercial and industrial 
refrigeration capacity, accounting for an important portion of energy consumption in these sectors. 

Chilled Water 
Circuit I Chiller 



In large office buildings for example, it is estimated that 10% to 25% of the total electricity 
consumption can be attributed to cooling systems alone (Huang, Akbari, Reiner and Ritschard, 
199 1). Moreover, these percentages can be significantly higher if a cooling system is operating at 
low performance levels due to the presence of faults (Herzog and LaVine, 1992). 

Fault detection systems for commercial chillers currently focus primarily on preventing mechanical 
failures, which is generally achieved through the use of switches that cut out the unit when 
temperatures andlor pressures exceed preset limits. Generally, these systems do not provide direct 
information as to the "health" of the chiller prior to its shutdown, resulting in unexpected periods of 
unavailability. In addition this luck of information leads to extended periods during which the unit 
operates under faulty conditions that lead to premature equipment failures and excessive energy 
consumption. However, as chillers become better instrumented, advanced lowcost fault detection 
and diagnosis modules become increasingly more attractive. 

Fault detection and diagnosis in refrigeration equipment has been discussed previously in 
Grimmelius et al(1994), Rossi and ~ r a u n  (1995) and Stylianou and Nikanpour (1996). The present 
paper describes a method that uses a statistical pattern recognition algorithm to identify a number 
of conditions commonly encountered in commercial chillers. 

Test Unit 
Experiments for the development of the SPRA were carried out on a refrigeration test unit, shown 
in Figure 1. It is based on a commercially available reciprocating chiller using refrigerant R22 with 
a cooling capacity of 17.6 kW (5 RT). 

The chiller components include a twc-cylinder semi-hermetic compressor, a cleanable shell and tube 
type condenser with water circulating through the tubes, and a direct expansion shell and tube 
evaporator. The chiller is equipped with a thermal expansion valve. 

The test conditions for the chiller are achieved using a single storage tank and two three-way mixing 
valves serving two PID controllers. In order to have a controlled set point temperature at the inlet 
to the evaporator and condenser, the three-way valve supplying the evaporator mixes warm water 
from the storage tank with return water, while the valve serving the condenser mixes city water with 
storage tank water. 

Instrumentation and Data Acquisition System 
The instrumentation of the test bench is composed of eleven platinum Resistance Temperature 
Detectors (RTDs), four pressure transducers and two flow meters as given in Table 1. 

With the exception of the RTD which measures the crankcase oil temperature (TE107), dry surface- 
mounted RTDs are used. This type of installation was chosen not only to avoid problems with 
refrigerant leaks, but also to duplicate the most likely way RTDs would be installed in the field. 
Pressures are measured using optical pressure transducers, mounted in the manner usually employed 
for pressure gauges, and as close to the desired point as conditions would allow. Flow rates are 
measured using positive displacement flow meters. 



Data acquisition is carried out using a microcomputer-based system which enables the user to 
establish sampling frequencies of up to 1Hz. The output data files can be stored on the PC serving 
the test unit and can also be transferred to other platforms with specialized software applications for 
further analysis. 

Table 1 Measured variables 

Sensor 
TElOl 
TE102 
E l 0 3  
E l 0 4  
E l 0 5  
TE106 
TE107 
TE108 
TE109 
TEllO 
TEl 1 1 
PTlOl 
PT102 
PT103 
PT104 
m101 
m102 

Measurement Precision 
Discharge temperature, OC 
High pressure liquid line temperature, "C 
High pressure liquid line temperature (before filter dryer), "C 
High pressure liquid line temperature (after filter dryer), 'C 
Low pressure liquid line temperature, "C 
Suction line temperature, "C 
Crankcase oil temperature, "C 
Evaporator entering water temperature, "C 
Evaporator leaving water temperature, "C 
Condenser entering water temperature, "C 
Condenser leaving water temperature, "C 
Crankcase oil pressure, kPa 
Discharge pressure, kPa 26.5 kPa 
Suction pressure, kPa 
High pressure liquid line pressure, kPa 
Condenser water flow rate, Ys 
Evaporator water flow rate, Ys 

EXPERIMENTAL METHODOLOGY 

The unit was used to map the normal range of operating conditions for commercial chillers and to 
simulate selected faults. The normal operating envelope of the unit was mapped by changing the 
setpoints for the entering water temperatures at the evaporator and the condenser, simulating 
different cooling and chilled water return conditions. These conditions included varying the cooling 
water temperature from 22°C to 3 4 T ,  and the chilled water entering temperature from 10°C to 
15OC. The flow was set at 1.0 Ys for both the condenser and evaporator for all experiments. 

A study (Stylianou and Scott, 1993) identified the most common faults occurring in commercial 
vapour compression units. Of these four were chosen to demonstrate the SPRA and are shown in 
Table 2. 



Table 2: Fault Types 
I I 

I Fault Simulation 
I I Refrigerant leak I Removal of refrigerant 
I 

Refrigerant line flow restriction Throttling of line after condenser 
(Plugged filter-drier, obstructions in the 

Condenser water side flow resistance 
(Pump fault, fouling, etc.) 

Chiller Reference Model 

Reduction of water flow 

Evaporator water side flow resistance 
(Pump fault, fouling, etc.) 

The SPRA uses a statistical chiller model to predict the temperatures and pressures at different points 
in the refrigeration circuit (Table 3). This model is developed as a set of bilinear equations each 
representing a variable of interest. The set of equations is developed using operating data and fitting 
them using multiple linear regression. 

Reduction of water flow 

This set of regression equations is of the form 

where y, is the calculated reference value for the dependent variable, P, P, and P2 are the regression 
coefficients. Estimates for Po, P, and P2 were calculated using a multivariate least-squares method 
(Jenrich, 1977a). 

Table 3 Dependent Variables 

1. TElOl Discharge temperature, "C (OF) 
2. TE102 High pressure liquid line temperature, "C (OF) 
3. TE105 Low pressure liquid line temperature, "C ("F) 
4. TE106 Suction line temperature, "C ("F) 
5. TE109 Evaporator leaving water temperature, "C ("F) 
6. TE111 Condenser leaving water temperature, "C ("F) 
7. PT102 Discharge pressure, kPa (psi) 



The results of the regression analysis are shown in Table 4 

Table 4 Results of Regression Analysis 

Variable Adjusted R' Std. Error of 
Estimate 
0.1 1280 
0.03416 
0.63781 
0.1053 1 
0.01872 
0.01969 
0.5 1470 
0.11641 

Derivation of classification functions 

In order to prepare the data for the derivation of the classification functions, the difference between 
the predicted and measured values for each of the variables in Table 3 is computed. These 
differences, also known as innovations, are the input to the SPRA and are used to generate the 
patterns which identify the appropriate faults. 

Stylianou and Nikanpour (1996) have developed a pattern recognition module which used a rule-base 
as a means to recognize these patterns, but this approach was shown to have limited success in 
correctly classifying patterns resulting from small faults. This was primarily due to the "heuristic" 
nature of the discriminating functions. 

In order to improve the performance of the module, the rule-based pattern recognition approach was 
replaced with a statistical one. This approach allows, under certain conditions, the optimal 
placement of the discriminant functions resulting in improved performance. The SPRA used is 
based on the Bayesian Decision Rule which states that for a set of classes whose a priori probability 
is q, a measurement vector x belongs to class (or fault) j if and only if: 

where pix) is the conditional probability that x belongs to class j. 

In order to determine the proper classification, the SPRA uses the statistical parameters of training 
data to derive a family of classification functions. The parameters extracted are 



1. The mean vector for the s variables of each condition c 

XC = (X':l,. . . , X,Lr ) 

2. The covariance matrix 

where w is the number of conditions 
n is the total number of samples 
nc is the total number of samples for condition c 

The statistical properties of the training data, defined by equations (3) and (4). are used to define a 
set of five classification functions, one for each condition of interest. The set of classification 
functions may be derived as follows: 

Let dj, be the hyperplane which separates class j from class k. For normally distributed data, this 
hyperplane is (Anderson, 1958): 

If the a priori probabilities q are known, x is classified to the class j if 

In the case where the a priori probabilities are equal, the right-hand side of the inequality (7) reduces 
to zero. x is then classified to the class with the highest a posteriori probability p(x). 

An alternative approach would be to let individual scoring for each class determine the appropriate 
classification. The classification functions that are used to estimate the scoring of each class are 
derived as follows. As a first step, djk is separated into two linear components: 

From equation (7), 
d j k ( ~ ) = ( d j ( ~ ) - d k ( ~ ) ) > l ~ g ~ ,  k=l; . . ,m;  k f j  

qj 
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Therefore, if the a priori probabilities are assumed equal, x is classified to the classification 
function with the highest score. From equations (6) and (S), the score for class j is calculated as 

There is therefore a one-to-one correspondence between the classification functions and classes. 
These classification functions, shown to be a complete set (Jennrich, 1977), are therefore equivalent 
to the more conventional set of discriminant functions described by equation (6). 

Experimental Results 

Figure 2 displays the monitored values of the entering water temperatures at the condenser (TE108) 
and the evaporator ( E l  lo), as well as the compressor discharge temperature (TE101) for a test 
during which the chiller was operating under normal conditions. The data from this test for each of 
the measurement points identified in Table 3 are the inputs to the Fault Detection and Diagnosis 
Module which, using a steady state detector (Stylianou and Nikanpour, 1996), extracts the samples 
identified as "steady state." These points are subsequently compared to the predictions of the 
statistical chiller model and the differences between the two are used as the input to the SPRA. 

The input to the SPRA is shown in Figure 3, while the input's statistical properties are shown in 

Table 5 Statistical Pro~erties of h u t  to SPRA 

Mean Min hiPl  Std.Dev. Skewmas Kvnsb 
ERlOl -.046489 -2.61190 1.155498 ,477772 -2.54940 11.26872 
ERlO2 -.026796 -2.59W7 ,958786 ,460570 -2.93833 13.31798 
ERIC6 -.034628 -2.47138 ,838622 ,493388 -2.94957 13.25960 
ERIM -.012320 -2.38847 ,821476 ,457748 -2.81272 12.57438 
EM09 -.028462 -2.43343 1.146987 459913 -2.46436 10.62305 
ERlll  -.047151 -2.48689 1.284156 459586 -2.45818 10.76554 
FTlO2 -.M3986 -2.48689 .745764 .443109 -2.93600 13.16193 
FT104 -.M7563 -258546 1.132615 .425915 -2.71624 13.23883 

Table 5. Since the chiller is operating in a normal mode, the input to the SPRA is expected to be 
white noise resulting from measurement and modelling errors. As indicated in Table 5, however, 
the distribution of the data deviates from this expectation as well as from the normality assumptions 
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of the classification functions. 

Where as typically normal distributions are symmetrical, the distribution of the input data appears 
to deviate from this symmetry as indicated by the skewness values. In addition, the values for the 
kurtosis identify the shape of the distribution as "sharper" than in the ideal curve. These deviations 
from the normality assumptions, however, do not appear to affect the performance of the 
classification functions as shown by the classification of this test in Figure 4. 

Figure 4a displays the scores for each of the classification functions, while Figure 4b displays the 
equivalent probabilities, always under the assumption that the a priori probabilities for each of the 
conditions are equal. This assumption, however, biases the probabilities in favour of the faulty 
conditions resulting in some misclassifications (4.7%). This bias may be compensated for by 
including an appropriate threshold limit incorporating the a priori probabilities q of each of the 
conditions as shown in equations (7) and (8). 

Figure 5a shows the result of applying the classification functions to test bench data generated when 
the chiller is operating under low refrigerant charge. As can be seen the SPRA correctly identifies 
the fault as refrigerant leak by assigning to it the largest classification function score, and the highest 
a posteriori probability (Fig. 5b). As expected the SPRA assigned the next highest probability to 
the fault class for restriction in the refrigerant line, and in some cases it misclassified the samples 
(1 1.3%). 

The difference in magnitute of the probability between the two classes was significantly increased 
when a measure of the liquid line subcooling was included in the pattern. This measure, in the form 
of a third pressure measurement, placed after the condenser, increased the discriminating power of 
the SPRA and allowed the clear differentiation between faults caused by refrigerant leak and those 
caused, for example, by blocked filterldryer. The impact of the additional pressure measurement is 
shown in Figure 6. As can be seen in this figure the probability (Fig. 6b) and the classification 
function scores (Fig. 6a) identify refrigerant leak as the faulty operation from where the samples 
were extracted. 

The influence of the additional pressure measurement is also demonstrated by the performance of 
the SPRA when a gradual restriction in the refrigerant line is introduced. As seen in Figures 7 and 
8, this gradual increase in restriction is reflected in both the case where the measure of subcooling 
is included and in the case where it is not. It is clear, however that in the case where the subcooling 
effect is taken into account, the probability assigned to the correct fault class is significantly higher 
than when it is not. 

In addition to the above-mentioned faults, the SPRA is also capable of identifying water circuit 
problems in the cooling and chilled water circuits. Figure 9 demonstrates the gradual decrease in 
the flow rate across the evaporator. In this case the classification function score is steadily increased 
until it becomes the highest value. Similarly, Figure 10 displays the classification scoring for a 
decrease in the flow of water across the condenser. In this case it is the score for the fault associated 
with water flow problems at the condenser that increases until it surpasses all the other ones. 



Figure 6a: Low Rehigerant Charge: Classification Scorer with additional pressure mcaruremcnt 

Figure 6a: Low Refrigerant Charge: A pmteriori Robabililics with additional p r a m  mesuremen1 
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Figure 9: Restriction in the Chilled Warn Circuit: Clasificauon Scores 
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Conclusions 

The SPRA described above provides an effective way of classifying patterns in multivariable, multi- 
class problems without having to explicitly use a rule-based system. This approach makes a number 
of assumptions including the normality of the distributions of the data. This assumption, as 
discussed above, is not strictly held. However, the experimental results show that its violation in this 
case does not affect the results significantly. 

One assumption, however, that is made which cannot be verified and which could have a critical 
impact on the performance of the SPRA is the assumption regarding the a priori probabilities of each 
of the normal and four faulty operating conditions. These values are generally unknown and 
estimations are not based on the equipment in question, but rather on the experiences of the person 
or organization consulted. 

For the experimental work discussed above, each of the five conditions was allocated equal a priori 
probability. This biases the results against the conditions that are known to generally occur more 
often, namely the normal operation and the refrigerant leak. 

The impact of this bias is softened by the effect of the visualization of the results using the scores 
of the classification functions. These graphics offer an insight into the secondary patterns present 
in the samples which are not clearly evident in the case of the probability plots. Evidently the 
information content in the data for both the classification functions and the probability calculations 
is equivalent. However, in the case of large number of data points, it is helpful to have the advantage 
of effective visualization. 

The above formulation of the chiller fault detection and diagnosis problem considers only five 
conditions: normal operation and four faults. The small number of faults detectable by the SPRA 
as described above, limits the applicability of the approach. However, it is possible to include a 
larger number of faults by identifying their specific patterns. In such a case if several faults exhibit 
similar patterns, additional measurements may be required to correctly diagnose them as was the case 
with the refrigerant leak and the restriction in the refrigerant line. Further work is required to justify 
the addition of more faults and to define their patterns. 

The SPRA approach relies on the availability of training data for normal and faulty conditions. This 
requirement may pose difficulties if this is done while the unit is installed. However, it may be - - 
possible that patterns may be generated by the manufacturer and downloaded to the Building Energy 
Management System at the time of installation. The types of faults in such a case would be limited 
to faults that are intrinsic to the unit and which are notinfluenced by the surrounding plant. The four 
faults examined provide such a set, however, more testing is necessary to establish the applicability 
of the patterns to other, similar chillers. 
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Chiller Condition Monitoring Using 
Topological Case-Based Modeling 

Hiroaki Tsutsui Kazuyuki Kamimura 

ABSTRACT 

To increme energy esjeiency and economy. commercial 
buildingprojec6 now ofien utilize cennaiized s b e d  source 
o/hear&ch as district hearing and coding (DHC) systems. 
To maintain egieiency, precise monitoring a d  scheduling o/ 
mainrenance/or chillers and heat pumps is usenrial. Low 
performonce opa l ion  ruuifs in energv lars. while u m e t -  
sary mainrenonce is expensive and waslefll. 

Plant supvisors me' retponsible /or scheduling and 
supemising mainreme.  Modeling system tint assist in an+ 
lying system deterioration ore o/grea~ benejirfor these tasks. 

Topologicai case-based modeling (TCBh$ (Tsu6ui et al. 
1993; Tsu~sui 1995) is an geefive t w l / o r  chiller peqlor- 
mance deterioration monitoring. This paper dermibu TCBM 
and its mplication to this task using recorded historical per- 

' -"odd output) Model Inputs) 

INTRODUCTION 

For large planusuch as DHCs, whichthemselves consist of 
many subunits, it is difficult to precisely determine the system 
state underdynamically changing conditions. In isolatedabsorp- 
tion chillus, for example, the relationship between steam output 
and fooling duty is linear, but when the chiller unit is embedded 
in a DHC system, its inpur/output relationships no longer follow 
the characteristics specified by the manufacturer, due to the 
dynamic n a m  ofthe synem. Under these conditions, n is diffi- 
cult to correctly determine the system state. 

Usually, chiller performance is measured by a coefficient of 
performance (COP), which shows the ntio between input and 
output energy. However, as the COP is sensitive to changes in 
the enema1 environment (such as the m m a l  temperam) and 
to various system states, the COP itselfdoes not corrmly reflect 
the performance of the chiller. Subxquent discussion will 
demonmate that change of the COP ratio is, however,a useful 
memc for performance. 

To ovmome these problems, m,odels ak conmu>ed that 
describesystem changes through the relationships between a set 
of input variables and the output. For chiller performance moni- 
toring, the output is the COP and the input variables are factors 
of the output. 

When a model built for normal operation is used for perfor- 
mance monitoring, unit performance is characterized as the 
difference benueen the measured outputvalue and the model 
output for the same inpuu (Figure 1). 

If the system includes third- am, subunits or is 

Unit Cmdirimr - 
Figure I Model-based unitper/ormance monitoring. 

. . 
already in use, it is difficult to generate ideal data for 
modeling. while it is often impossible to obtain complete 
andrepmentativehinoricaldatah systemsactually in 
use. When such incomplete historical data are convened 
to model parameters, n is difficult to determine whether 
observed differences between the measured and the 
model output for the same inputsare due' to modeling 
errorsor iftheyrepmentareal change in system behavior 
(Figure2). Asthemeasuredoutput doesnot alwaysreflect 

; real system changes, it is difficult for plant supervisors to 
determine the nature of the real system changes and to 
choose appropriate maintenance p e r i d  (Tsuuui 1993). 

Hiroaki Tsutsui is with the Advanced Technolop Center. Yamamkc-Honc)?vcll Co. Ltd.. Yokohamq Japan. Kazuyuki Ksmimura is with 
the Building Systems Division of Yamauke-Honeywell Co. Ltd.. Toky. lapan. 
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. ~ ~ d ~ l i ~ ~  data =,,dition) defmes an absolute size for the input space neighborhood that - Actual In uvOutput relatiorship providesthe q u k d  closeness of output. A measure of similar- -..- lnput/O&ut Model ity beoveen these input caxs is defmed, and a quantization-scal- 
a Reliable the ing method (the neighborhood s p e m  s h o w  in Figure 3) is used a estimation by the model to match new cases against historical data h m  the case base. 

TCBM'S Iodized f&malim of cases makes the approach - highly dcsaiptive. Input variablesm w l a e d t o  guarantee local 
Input (factor1 . tactor2. ...) linearity of globally nonlinear behavior, and local formalism 

provides a mistance to local data fluaytions that is not present 
Figure 2 lnput/Oupur relatiom modeled by historical ,,,odeling' techniques based on global formalisms. ~~~~l 

&fa. calculations exploit a weighted integration using the outputs of 
similar input caxs againn new input cases (Tsuoui et al. 1993; 

This paper mpares theac~uracy  ofTCBM with a conven- Tsuuui 1995) Figure 3). 
tional linear multiple regression model using the same set of TCBM mats historical data as a compressed case base 
input v&ablesforanabsorptionchillerprfomancemonito~g . according to the required closeness of the output, and estimates 
application and demonmates the advantages of TCBM over the the output associated with new input cases using the following 
standard model in an experimental situation. case-based reasoning (CBR) procedures: 

TCBM PERFORMANCE MONITORING 
. Record the past experiments @roblems/answers) in the 

case base. 

TCBM Overview Search in the case base for pr6blems similar to the new 

TCBM Outline In TCBM, it is assumed that input/output 
data are extracted 6om a system involving a cmain continuous 
functional relationship (of which TCBM does not r equk  
explicit description).. The concept of a topological continuous 
mapping is uwd to define a synrm of neighborhoods in the input 
space that map neighborhoods in the output space with the 
desired precision. 

For a given neighborhood in the output data, a locally 
continuous mapping is defmed into a corresponding neighbor- 
hood in the input data. Using these neighborhoods, TCBM 

problem. 

Modify the answer of similar problems to obtain an answer 
for the new problem. 

Afierrenuningtheanswer tothe new add the new 
care to the case base. 

Conventional CBR OARPA 1989) techniques defme the 
neighbofiood that provides the needed measure of similariry 
between c&es using he-consuming ad hoc methods, with a 
difficulty of defmition dependent on the application domain. In 

Figure 3 TCMB overview 



contrast, TCBM defies the neighborhood theoretically,'based 
on the assumption that the inputloutput relationship is locplly 
continuous. 

Advantnges of TCBM TCBM diffen in s e v d  character- 
istics @m general black-box modeling techniques. These 
differences are detailed here. 
1. TCBM defines the input spaceneighbohood a d i g  tothe 

specified output accuracy by topological continuous m a p  
ping. The neighborhood system, which is generated by res- 
d i n g  ("zooming")the definedneighborhoods, can show the 
local relative relationship (similarity) between a new input 
case and recorded cases. The more the neighborhood has 
been scaled up, the more the infemd output becomes uncer- 
tain. Therefore, the zooming degree is a novel assurance 
index for inferred output aceording to the input situation. 

2. TCBM regulates only inpuVoutput variables, without for- 
malizing global inpuvoutput functional relationships. 

3. TCBM stores data as cases-hiiorical data are not con- 
verted to model parameten. 

4. TCBM can identify the cases that are used for infaencing 
the new situation's output according to each new siuation's 
input. Csses similar to the new input situation may be 
exnacted 60x11 the case base u i n g  the neighborhood system. 

5. Output estimation is performed locally by emacted cases 
u i n g  the neighborhood system. 

These chaiacterinics show advantages over general black-box 
modeling: 

G e n d  bkk-boxmodelsmurroutputcertainrybyasingle 
narisrical value, such as mean q m  error, which docs not 
cctlsiderthe inputshation. lfthe current input sinmion data 
arenotused formodelig,the inferredoutput isuncemin. On 
the other hand, TCBM can evaluate output ceminry accord- 
ing to the input situation (by no. 1 above) (figure 2). 

. TCBM can check the basis for inference, showingthe cases 
thacareused for inferencingandtheircloseness by zooming 
degree (by nos. 1;3, and 4). 

TCBM can construct complex nonlinear models without 
investiga.ting inputloutput tiansfer function parameters or 
networks (by nos. 2 and 3). 

TCBM earily incorporates new cases or model improve- 
menrs, facilitating simple online modeling (by no. 2). - TCBM issuitable formodeling nonlinear systems @y no. 5). 

Mathematical Basis of TCBM 

Tocomct thecaxbase , the  input space is fmpartitioned 
into finite s n s  of input cases and quantized. The number of parti- 
tions is selected to give an output distribution for the same input 
case with the specified closeness. A single case is generated by 
conveningthe input historical data to a single integer input case. 
Here, forC'n" inpuls with partitioning number "m," a single input 
case is symbolized in an m-adic manner. 

Case-Bare Structure (Input variables are XI. . . ., Xn; the 
output variable is Y, the number of recorded data that belong to 
the same input care is k). 

Input case (Xi)(i = I , .  . ., n) 

Same input case number k 
k 

Average value of output for same input case: Y = Z Y j / k  
j =  I 

Avenge value of output differentiation for same input case: 

This equation is an approximation to simplify on-line calcula- 
tion. The "r" in the equation is a rime stamp. 

Topology, Closeness and Neighborhoods 

Topology In this paper topology is a concept that ensures a 
continuous relationship tetwrm input and output spaces and facil- 
itates the definition of a concept of closeness for both input and 
output sparer. The sn of values w i t h  a givm closeness of a point 
c o d m e s t h e  neighborhood ofthat point with the given cloxness. 

Continuous Mappings A mappingj X t Y is continuous if 
and only iff '(2) is in a neighbhood o fX for all z in the neigh- 
bomood of Y. 

From this definition, given aneighborhwd ofa given close- 
ness in Y and the existence of such a coniiuous mapping$ X r 
Y, it is possible to obtain the corresponding neighborhood in X. 

In terms of TCBM, X correspondr to the set of input case 
data and Y to the set of output data. 

The absolute size of a single neighborhood in X (the input 
space), which is a statistical value according to neiehborhwds of 
the specified closeness in Y(interpreted in TCBM as p u l a r i r y  
in Y), isaKakrquanrityusedasameasureofthe local correlation 
between the particular variables in question. A smaller value of 
this measure corresponds toa higher correlationbenveenXand Y. 

The neighborhood system is generated by increasing or 
decreasing the quantization number of each variable of the 
neighborhood and is used to c h w w  the cares that are used for 
inferencing, as described in the following section. 

lnferencing Procedures TCBM's inferencing consists of 
three phases. 
Phase 1: SearchineNew input cases are compared with those 
stored in the case base to determine similarities, usingthe neia-  . 
borhood system. Ifthe system has n-inpuls and one output, n+I 
cases are selected. These n+I cases can be represented by a local 
space of n+l dimension. 
Phase 2: Significant Weight Calculation-The weight of the 
selected cases for the new situation is calculated as follows. 
(There are two equations to calmlate'the weight; however, infer- 
encing performance is almost same.) 



1. Using Topological Distance: 

Topological distance, L = t + i .  \xi' - x A .  Xz* is a new sin- 
ation ofXi i = 1  

((i = Ri/ 2 Ri, where Ri is a correlation coefficient 
between A G ~ Y  ). 

Significant weight: w = nrp (4) 
2. Using neighborhoods: 

w = w(xl, ..., xn) . . 
-1/2(,1~/~~1~+ ,.. +x"./.,,"-) = ~ / ( ~ ) ~ . l / ( o x l ,  ..., ozn).e 

mi: the Satistical distribution, xi, is q - xiR to the specified 
closeness in Y. 
q - xi: the neighborhood ofxi. 

Phase 3: InfamcineThe selected n + I cases are ued for infer- 
cncingthe new < i o n  P h m  the new input set X i  ,. . .., Xn*. 

(aYj/aXij). (Xi' -xi,) 

where 
X = value of hh input variable forfi selected care, 

= recorded value of output forjth selected case, 

aYjaXtp d e d  value of output diffmtiation forfi 
selected care, and 

xj = significant weight off l  selected case for new 
situation. 

Updating the Caw Bate The update procedure is adaptive 
and utilizes an oblivion panmeta as described below (updating 
procedure of aYlaXi is the same as this procedure): 

where 
Y(new) = 

~ ( 0 1 4  = 

Y = 
k = 

a = 

revised output, 
recorded value in the case base, 
new output, 
number of the sameinput caie, and 
oblivion panmeter (determined from the system 
change me; default value is I). 

Note: For the performance monitoring and fault detection 
problems, the updating function is not used. 

Characteristics of TCBM for  
Perfonnance Monitoring 

Performancemonitoringproblems offerthe following chal- 
lenges: (!)Many variables must be considered to fully p p  the 
unit's characteristics. (2) Nonlinear modeling techniques are 
needed, with careful determination of the nonlinear arpects of 
the system. (3) It is necessary to determine whether differences 
between the measured output value and h e  model output for the 

same inpu.~ are due to modeling error or to real system changes. 
It is imponant to undemand how much of the system's a&al 
Sate-space has been recorded and can be used for modeling. 

TCBM offers the following solutions to these problems. 

TCBM u e s  many variables simultaneously . . 

TCBM is applicable for modeling nonlinear systems 
tecaw output estimation is performed locally. 

A TCBM neighborhood can show the local relationship 
(similarity) between new and recorded cases. TCBM can 
eliminate estimation error by the use of a real input care that 
is identical in some xnx (see "Estimations Only Using 
Quantized Caxs" subsection) to the new input because in 
this situation stored historical data are ued  to generate the 
outpuS mher than the input from a global approximation 
such as would mult from the w of, for example, a conven- 
tional linear regression model. 

CHILLER PERFORMANCE MONITORING MODEL 

Model Variables 

Model variables w a r  selected through statistical analysis 
and through knowledge of the mechanical principles involved in 
the system. Absorption chillers work as shown in Figure 4. 

The water coming from uers flows inside a thermally 
conductive pipe. The cooling water removes heat from this 
pipe and returns chilled water to the u e n .  

The vaporized water is absorbed by the sorbent (L i r ) .  

The heat of the vaporized water is discharged by cooling 
water, which is also affected by external temperatures. 

When the sorbent becomes sanuated, it is heated to exaact 
the water as steam. 

Therefore, the higher the concennation of the sorbent 
(LiBr), thehertheabsorption performance. However, absorp. 
tion chillers are affected by external temperatures because the 
cooling water is in contact with the swrounding environment. 
Considering these interactions, the model variables were 
selectcd as follows. 

Model Output 

The COP (see introduction) war selected as the model 
output. The COP is calculated from historical data using the 
following equation: 

COP = Q,/Q, 
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Figure 4 Absorption Chiller. 

where 

Q, = (cooling quantity) =flow rate x ( t e m p t u r e  of 
water returned from user - temperature of chilled 
water) I lOG0 [Gcah  ( 4 2  GJh)]  

,Q8 = (steam quantity)= steam flow rate x 489.46 11OG0 
[Gcah  ( 4 2  GJh)]. 

Model Inputr 
Five input variables were selected considering the chiller 

mechanism and the need to cover a wide range of chiller perfor- 
mance. The five selected input variables were temperature of 
cooling w a r  input to chiller, temperature of cooling w a r  
output from chiller, tempaanm of water mumed from user, 
temperature of chilled water, and steam flow rate. 

h i d e  the chiller, the steam discharges its heat and becomes 
a mixtuR of liquid water and vapor. In this condition, the pres- 
sure should be considered as the pressure of saturation P. We 
assume the mistance benveen the chiller and the steam is R. The 
following equation is then satisfied: 

(Lg is steam flow rate. Po is a constant). 

The relationship between the temperature of the saturated 
steam, T. and iu  pressure is approximately linear under u u a l  
conditions. Thus, 

(k is a coef ic ien~ To is a constant). 

Combining the above nvo equations gives the following 
result: 

where o and b are constants. Therefore, Lg can be used in 
place of T. 

External temperarure was not selected ar a model input 
because it is correlated with the five input variables. The coefi- 
cients of correlation (COR), using standard regression analysis, 

between the external temperature and each of the five selected 
input variabl~were: 

COR (enemal tempaature, tempvarure of cooling water input 
to chiller) = 0.76 

COR(extemal tempaature, t e r n p a a m  ofcooling water output 
frorn chiller) = 0.83 

COR (external tempaanm, temperam of wata  mumed from 
w r )  = 0.87 

COR (external temperature, temperam ofchilled water) = 0.27 
COR (external temperature, steam flow rate) = 0.82. 

Data P rocess ing  

Historical data recorded every 5 minutes were averaged 
every 30 minutes. As the hiiorical data were recorded fiom a 
chiller actually in operation, they contained various kinds of 
noise, including local no& caused by the measurement equip 
ment itself and global noise c a w d  by the poor condition ofthe 
equipment being monitored. 

For global noise elimination, all data ouuide of three stan- 
dard deviations from the avenge were discarded on the arsump 
tion that the noise d i b u t i o n  followed a normal distribution. 
This eliminated m i e m  ermneous data caused by temporary 
sensor failures or system failures. 

For local noise elimination, all spike noise, regardless of 
noise frequency, was eliminated by funy data smoothing tech- 
niques, which facilitare data smoothing similar to human intui- 
tive judgment (Tanaka 1992). This preprocessing provided a 
more a c m e  data xt for subsequent analysis. 

Finally, as deviations due to real changes in system perfor- 
mance remain, data were averaged over 24-hour periods to 
provide a continuous set of data and reduce the effect of 
unknown (not measured) disturbances. 

The fuuy data smoothing and averaging processes serve to 
filter different noise bequency specna, and together provide a 
data set reprerentative of process performance to the analysis 
protedures that follow. 

These procedures are necessary to make a precise model to 
detect the variances caused by subtle system changes such ar 
deterioration. Note: If TCBM were to be applied to the problem 
of fault detection rather than performance monitoring, then this 
24-hour averaging would not be applied. The unknown factor 
should be investigated and should be considered as the input of 
the model. 

CHILLER PERFORMANCE MONITORING 

Data  f o r  Evaluation 

Historical data were recorded from July 1992 to May 1994. 
Data recorded fiom July 1992 to April 1993 were used for 
modeling, while data recorded from May 1993 to May 1994 
were w d  for performance monitoring. 

The TCBM system war wined once usingthe first data set. 
The modeling data contained a whole year's environmend 
changes and chiller operation patterns, and are thus taken to cover 



the entire normal opraring range of the chiiler. The . -d n14 --- Mean aror = 0.8414439% 
monitoring results show chiller performance 
changes ~JWI May 1993 to May 1994 bared on the 

1.7 . 
condidonofthechillafrom July 1992toApd 1993. 1.6 , 
Model Precision 

Thedagmrdedfrom July 1992toApd 1993 
were dividedevay two and one-halfhounto gener- 
ate two dm seu, which were then uwd to confmn 
model precision and j u d j  vaMble selection. P 1rm um 

SCYmk N. 
Figure 5 shows the mults of linear modeling 

a textbook linear -ssion model Figure 5 Llneor model results. 
using the same set of input variables as the TCBM 
model. Figure6 shows the results of TCBM. In this 
case, TCBM searches for only one similar case withiin the case 
base and indicates the COP of the similar input case. 'lhese 
results demonmatethaL in this case, TCBM was twice as precise 
as a standard linear multiple regression model on the basis of 
comparison of error averages over the entire data set. 

Note: The sample numben in Figures 5 through 8 represent 
the data seu after off-line and sensor failure intervals were 
moved .  Thus there is not nMsarily a linear relationship 
between sample number and calendar time. 

Model Estimation a n d  Monitoring 

~singthesemodels,the COPs 6um May 1.993 to May 1994 
were estimated. The estima!ions 6um each model are shown in 
Figum 7 and 8. For TCBM, the atimation p ~ '  is the same 
as that hi in the "Model Recision" subsection All data 
h m  July 1992 to April 1993 were,.ud formodeling. 

Cnnparing these estimations with the model precisions in 
the "Model Recision" subsection, the difference between the 
estimatedresults and the model precision shows the actual 
changes in chiller condition. With the linear model, the mean 
difference between estimated results and the measured COP 
(-2.24%) is 2.5 times the precision of the model (-0.841%). In 
TCBM, the mean difference between the estimated results and 
the measured COP (-7.38%) is about 20 times themodel preci- 
sion (-0.352%). 

There is a large difference between the results of the linear 
model (2.5 times) and TCBM (20 times). This difference 
demonstrates the differences beheen the modeling tech- 
niques--the linear model decides the model 

between the linear model's output and the actual COP becomes 
smaller than the actual difference, although the chiller perfor- 
mance has changed. 

The results given in this section do not always show the 
difference (for the same input) between the estimated and real 
values. Therefore, it is difficult to evaluate theoutput difference. 
TCBM can show the difference between the estimated and 
actual valuesonly when the same input situation has c c c ~ m d  in 
the case base that shows the fact in the pan. because TCBM can 
judge whether or not the same input siruation that shouldbe esti- 
mated isued formodeling. Figure 12 showstheresult usingthis 
procedure. lnthi figure., the output diffmces have beentreated 
as the ratio ofthe a d  value tothe value estimated by TCBM. 

Explanation of Modeling a n d  Monitoring 

Modeling Figures 5 through 8 show that the range of COPs 
over the whole year was 1.3 to 1.8. An output accuracy of 1% 
waschosen tomakeaprecisemodel. Fromthis,therangeof each 
variable in the input space was divided into 10 regions and quan- 
tized, as required by TCBM (see the "Mathematical Basis of 
TCBW section). In this example, 10 regions are the minimum 
satisfying the required accuracy. These neighborhoods in Figure 
10 were ued  for the testing represented in Figure 6. 
Performance Monitoring 

Estimation Using Neighborhoods The defined neighbor- 
hoods and quantization of input space in Figure 10 are used ro 
estimate the current situation based on the previous year's condi- 
tions. These results are shown Figure 8. 

paiametenof the hyperplane to fit the whole year's COP -d nh. --.rukbq~ Mean ator= 0.3527189% 
data, and the mimated value must lie on this hyper- 
plane. On the other hand, the value enimatedby 1.1. 

TCBM is that of the most similar input ease that 
shows the fact in the past. 

~ & a r  modeling is a statistical method and its 1.5. 
hyprphne fits to the area of most eequent occur- 
rence tominiiizemodelingemn. However, ifthe 1.4, 
area of most 6equent occurrence has changed due 
to system changes, the linear model may become 0 KII l@n 1bn 
very imprecise (Figure 9). When these cases are k t  Ho. 

used for estimation, the reported difference Figure TCMB 



COP - a c d  value ....... model ourpul 
Estimations Only Using Quantized C u e s  

The results given in the "Model EstLnation and 1 . 1 , .  

Monitoring" section do not always show the differ- 
1.6 . a c e s  for the same input, so comparison with quan- 

tized fates is used, as shown in Figure 12. lnput 1.5 . 
variable ranges are quantized in 10% intervals. 

1.4 . Values within each of these regions are mnsidered 
as the same case. 1.3 1 

C h a n g e s  in C O P  Ratio 

In Fiw 12' COPwios of lmityimply that the Figure 7 Linear model resrrlrs [Dfirence benwen model and acrual: 
chiller aar at the previous year's performance level. 7 ~ A I A ~ Q O L I  *. 
Ratios greater than unity reprrrent pdormance 
i m p v e d  h the past year. Conversely, ratios of 
l e r s m  miry represent diminished paformance. In the figure, the 
modeling data are derived from a prior paid, and monitoring data 
show changes of COP for the same inputs (as described above). 

Figure 12 shows that the COP ratio improves 10% after 
maintenance. The positive effects of maintenance are revealed 
when the chiller is used continually. After 6equent use, chiller 
performance deteriomes. These results demonmate the charac- 
teristic pdormance changes of this absorption chiller. 

More p i w l y ,  the COP ratios fluctuate locally. These fluc- 
tuations wan to be due tothe intennitrent use of the chiller. In faq 
performance also decreases after long periods of nonuse. The 
masons for these changes are under investigdtion, but there wan to 
be two possibilities: that long-term nonuse acrually does cause a 
paformauce mop, or the chiller is stopped for setpoint a d j m e n t .  

TCBM provides a practical method for monitoring absorp 
tion chillers, with an accuncy much higher than conventional 
modeling techniques. For practical applicarion to performance 
monitoring, a threshold wuld be set, beyond which deterioration 
was considered to have occurred. Such a threshold should be set 
considering the cost benefits under each system's sirnation. 

TCBM is a fast, efficient technique; its database of cases is 
compact enough for real-world applications (the application 
presented here required a case base of about 30 kbytes to store 
one year's data), and the methodology is robust enough not to 
require continual attention kom operators. 

The authors are now investigating the application of this 
technique to the analysis ofother heat sources and air-condition- 
ingunitsthat arealsodifficult tomodel, with thegoalofsimilarly 
observing the effects of w n m l  and operational changes on 
system performance. 
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CONCLUSIONS 
ox -actual value -----.model outpu~ 

I n 

Compmd withasimple reference tableofinput 1.7' 
and output valuer, TCBM provides the wncepts of 
neighbohoods and closeness inmduced in the 
"TCBM Performance Monitoring" section. 1.5 
Together, thew concepts provide powerful deterrni- ,.,, 
nation of modeline, accuracy and valuable informa- 
tion regarding t h e - m n s  f& the model's behavior. 1 8 1  , 

This m e r  has demonstrated that for ex~eri-  0 1ml am smr 
v w  ' 

mn . . - 
mental application to the problem of absorption a l e  Ydor 
chiller performance monitoring, TCBM clearly 
outperformed stand& linear regression ,,,odeling Figure 8 TCBMresulrs [Dference benveen model and acrual: 7.3 759-15%]. 
techniques. 



Figure 9 Model-based error estimate and system changes. 
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ABSTRACT 

The objective of this study is to describe the application of artificial neural networks to the 

problem of fault diagnosis in an air handling unit. Initially, residuals of system variables that can 

be used to quantify the dominant symptoms of fault modes of operationare selected. Idealized 

steady-state patterns of the residuals are then defined for each fault mode of operation. The 

steady-state relationship between the dominant symptoms and the faults is learned by an artificial 

neural network using the backpropagation algorithm. The trained neural network is applied to 

experimental data for various faults and successfully identifies each fault. 
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FAULT DIAGNOSIS OF AN AIR HANDLING UNIT 

USING ARTIFICIAL NEURAL NETWORKS 

ABSTRACT 

The objective of this study is to describe the application of artificial neural networks to the 

problem of fault diagnosis in an air handling unit. Initially, residuals of system variables that can 

be used to quantify the dominant symptoms of fault modes of operation are selected. Idealized 

steady-state patterns of the residuals are then defined for each fault mode of operation. The 

steady-state relationship between the dominant symptoms and the faults is learned by an artificial 

neural network using the backpropagation algorithm. The trained neural network is applied to 

experimental data for various faults and successfully identifies each fault. 

INTRODUCTION 

Modem buildings are being designed with increasingly complex operating systems that have 

seemingly limitless capabilities for monitoring and controlling the conditions in the building. 

Unfortunately, building operators are not always able to monitor and process the enormous 

amounts of data that are generated. Hence, there is a need for robust fault detection and 

diagnostic tools that can be used to assist the building operator and ensure that the system is 

operating in the manner in which it was designed. The benefits of a properly operating building 

system are numerous, including improved energy efficiency, improved occupant comfort and 

health, and longer equipment life. 

In a companion paper Lee et al. (1995) describe methods for fault detection in an air 

handling unit (AHU). One approach used in that study is to define residuals which represent the 

difference between the existing state of the system and the normal state. Residuals that are 

significantly different from zero represent the occurrence of a fault. If the system that is being 

monitored is not too complex, the building operator should have little trouble isolating the source 

of the fault after the initial fault detection. However, for complex systems, isolating the fault can 

be very challenging and diagnostic tools are needed. This paper describes the use of artificial 



neural networks (ANNs) for this purpose. 

Several studies that examine the use of ANNs for fault diagnosis appear in the literature. 

Watanabe et al. (1994) and Fan et al. (1993) used ANNs for fault diagnosis of chemical 

processes. Watanabe et al. (1994) proposed a two-stage multilayer ANN. In the first stage the 

faults were diagnosed and in the second stage the degree of the fault was estimated. The study of 

Fan et al. (1993) was based on steady-state operating conditions. Koive (1994) reviewed studies 

that utilized ANNs for fault diagnosis and control and summarized the architectures most widely 

used in practice. The paper also summarized steady-state and dynamic fault diagnosis and 

control for a paper making machine. 

Fault diagnosis can be thought of as pattern recognition and ANNs are well suited to this 

task. For example, ANNs using the backpropagation algorithm can be used for character 

recognition (Ananthraman 1995; Demuth and Beale 1992). The input patterns are matrix 

representations of the dark (1's) and light (0's) pixels of the 26 characters of the alphabet, and the 

output patterns are 26 bit strings of 1's and 0's that represent the various characters. A similar 

approach can be applied for fault diagnosis. Normal and fault modes of operation typically have 

operational signatures or distinguishing patterns for each mode of operation. ANNs can learn 

and exploit these patterns to diagnose the current operational mode of a system. The objective of 

this study is to describe the application of an ANN to the problem of fault diagnosis in an AHU. 

As an intermediate step, a,second ANN is used as a process model for a cooling coil valve 

subsystem. 

The first two sections of the paper provide a brief description of the AHU and the residuals 

used in the fault diagnosis. The eight faults and their corresponding symptoms and dominant 

residuals are then described. Next, a brief description of ANNs and the backpropagation 

algorithm is provided. Applications of ANNs to the development of a model of the cooling coil 

valve subsystem and fault diagnosis are then discussed. Finally, results of the fault diagnosis are 

presented and conclusions and recommendations for future work are discussed. 



AIR HANDLING UNIT 

A schematic diagram of the variable-air-volume (VAV) AHU utilized for this study is shown 

in Figure 1. The same system was used for a companion paper on fault detection (LIX et al. 1995). 

The AHU consists of fans, dampers, a cooling coil, sensors, and controllers. The static pressure in 

the main supply duct is maintained at a constant setpoint value of 249 Pa (1.0 in. of water) by 

sensing the static pressure and controlling the rotational speed of the supply fan. The supply air 

temperature is controlled by modulating the cooling water control valve to maintain a constant 

setpoint value of 14.5"C (58.0°F). The air flow rate difference between the supply and return air 

streams is controlled by the variable speed return fan to maintain a constant setpoint value of 0.472 

m31s (1000.0 ft3lmin). A PID algorithm is used to controi the cooling water valve and PI 

algorithms are used to control the supply and return fan speeds. Although not shown in Figure 1, a 

personal computer (PC) and data acquisition system (DAS) are used for purposes of computing 

control signals and logging data. The sampling period for control and data collection is ten 

seconds. 

RESIDUAL DEFINITION 

The approach used in this paper relies on the ability to identify patterns of residuals that can 

be used as signatures for various faults. Through laboratory testing it was determined that seven 

residuals are needed to identify the eight faults considered here (described in the next section). 

The first three residuals represent the difference between actual and setpoint values of the supply 

air temperature, supply air pressure, and the airflow rate difference between the supply and return 

ducts. The residuals are given by 

where 

R = residual value 

TS = supply air temperature 



PS = supply air pressure 

QD = airflow rate difference in the supply and return ducts 

TS,SP = setpoint value of T s  

Ps,sp  = setpoint value of Ps  

QD,sp = setpoint value of QD. 

The cooling coil valve control signal can provide valuable insight into the operating status of 

the AHU. A residual is defined for the operation of the cooling coil valve and is given by 

R~ = UCC - UCC,EV 

where 

UCC = actual control signal to the cooling coil valve 

U c c , ~ v  = expected value of U c c .  

UCC is determined by the PID controller for the supply air temperature, however, there is no 

obvious way to specify UccPEV.  In this study Ucc,Ev is determined using an ANN model of the 

cooling coil valve subsystem. The model for U c c , ~ v  is described in a later section. 

Residuals for the operation of the supply and return fans are given by 

where 

NS = measured value of the supply fan speed 

NR = measured value of the return fan speed 

US = control signal for supply fan 

UR = control signal for return fan. 

The final residual is based on a comparison of the actual cooling coil valve position and the 

expected value based on the actual cooling coil control valve signal. The residual is given by 

where 



"P = two-way cooling coil valve position. 

Residuals such as Ru require the comparison of measured values to model values and can 

cause difficulties arising from the use of models. The most obvious problem is model error. 

Even if the model is accepted as being an accurate representation of the physical process, it may 

require the identification of parameter values specific to each physical system. In addition, the 

characteristics of the system can change over time and require that the parameters be identified 

periodically. However, these models and the residuals based upon them contain the underlying 

physics of the process(es) involved. They provide information on state variables, such as the rate 

of heat transfer from a coil, that can not be (easily) measured directly. Thus, it is not practical to 

think that such model based residuals can be eliminated. As stated previously, and as will 

become more apparent in the next section, Ru is a symptom of several of the faults studied here. 

Hence a reliable model of the operation of the cooling coil valve under normal operating 

conditions is needed and part of this study is devoted to a discussion of the use of an ANN for 

this purpose. 

FAULT DESCRIPTION 

Faults are typically classified as belonging to one of two categories, namely, faults due to a 

complete failure of a component or system and faults due to performance degradation. The main 

factor used in categorizing faults is the rate at which they occur. Complete failures typically 

occur abruptly, although they may be due to factors such as equipment wear that take place over 

years of use. Faults involving performance degradation evolve over periods of time that are 

typically measured in weeks, months, or years. Faults of this nature are difficult to detect in their 

early stages because only subtle changes occur in the component or system performance. The 

faults considered in this study represent complete failures of components of the system. 

Complete failures are considered because they can be easily introduced in a laboratory system 

and the fault symptoms can be observed almost immediately. Simulation studies are more 

appropriate for faults caused by performance degradations. 

Eight faults representing complete failures of various components in the AHU are described 



in the ensuing paragraphs. The dominant symptoms of each fault are also described. The faults 

are introduced when the system is operating at normal, steady-state conditions and the dominant 

symptoms correspond to the steady-state conditions after a fault has occurred. With the 

exception of the pump fault, all faults are simulated in the laborato~y AHU by either sending 

faulty control signals from the PC to an actuator, or by overwriting sensor signals that are logged 

by the DAS with faulty values. In each case, the faulty control or sensor signal is equal to its 

minimum possible value (usually zero). The pump fault is introduced manually by reducing the 

pressure of the cooling water supplied to the cooling coil. 

Fault #1 is a failure of the supply fan. During normal operation the supply fan is controlled 

to maintain a static pressure of 249 Pa (1.0 in. of water) in the supply air duct and the return fan 

is controlled to maintain a flow difference of 0.472 m31s (1000 ft3lmin) between the supply and 

return air ducts. The fault causes the supply fan rotational speed to decrease to zero, the supply 

air pressure to decrease to zero, and the control signal to the supply fan to increase to its 

maximum value in an attempt to offset the decreasing supply air pressure. The control signal for 

the return fan decreases to zero in an attempt to maintain the flow difference between the supply 

and return air ducts at the setpoint temperature, however, this condition can not be achieved due 

to the fault. Because there is no air flow, the supply air temperature gradually increases with the 

resultant effect of increasing the cooling coil valve control signal to its maximum value. Thus, 

the dominant residuals for fault #1 are Rp, RQ, Ru, and RNS. 

Fault #2 is a failure of the return fan. The fault causes the return fan rotational speed to 

decrease to zero, the flow difference between the supply and return ducts to increase, and the 

control signal to the return fan to increase to its maximum value in an attempt to offset the 

increasing flow difference. Thus, the dominant residuals for fault #2 are RQ and RNR. 

Fault #3 is a failure of a chilled water pump. It is assumed that more than one pump is used 

to deliver the chilled water to the AHU and, therefore, the fault causes the water flow rate to 

decrease, but not to zero. The decrease in the flow rate of cooling water causes the supply air 

temperature to increase initially. This causes the cooling coil valve signal to increase, thus 



opening the valve. By opening the cooling coil valve it may be possible to bring the supply air 

temperature back to the setpoint value; however, the control signal to the cooling coil valve will 

be different from the normal condition. The dominant residual for fault #3 is RU. 

Fault #4 is a stuck cooling coil valve. After the fault is introduced, near normal operation 

continues and the residuals remain near zero until a disturbance occurs that calls for a significant 

change in the valve position. As an example, a load decrease in a zone causes the damper of the 

VAV box for that zone to close, thus increasing the static pressure in the supply duct. This 

causes the supply fan speed to decrease to bring the static pressure back down to the setpoint 

value and, consequently, the supply air temperature decreases. In an attempt to compensate for 

the decreasing supply air temperature, a signal is sent to the cooling coil valve to close further. 

However, because the valve is stuck, the position does not change. Over time, the integrator 

portion of the control algorithm causes the cooling coil control signal to decrease to its minimum 

value. The dominant residual for fault #4 is RV. 

Fault #5 is a failure of the supply air temperature thermocouple. A thermocouple failure 

typically results in a voltage signal that varies randomly between large positive and negative 

values. If the sensed value of the supply air temperature is outside of the range of normal 

operating conditions (0 to 40°C, for example), the temperature could be automatically set to zero 

so that the residual RT would not fluctuate. This type of failure is simulated by overwriting the 

sensed supply air temperature with a value of 0°C. A zero supply air temperature signal causes 

the signal to the cooling coil control valve to decrease to its minimum value and thus close the 

valve in an attempt to raise the supply air temperature. The dominant residuals for fault #5 are 

RT and RU. 

Fault #6 is a failure of the supply air pressure transducer. When this failure occurs, a zero 

reading is obtained for the supply air pressure (by overwriting the actual value). This causes the 

control signal to the supply fan to increase to its maximum value in an attempt to increase the 

supply pressure. The supply air flow rate increases for a short period of time (until the VAV 

boxes respond) and this makes it necessary for the cooling coil valve to open further to maintain 



the supply air temperature at the setpoint value. The return fan control signal also increases for a 

short period of time in order to maintain the flow rate difference between the supply and return 

ducts at the setpoint value. The dominant residual for fault #6 is Rp. 

Fault #7 is a failure of the supply fan flow station. When this fault occurs a zero reading is 

obtained for the supply flow station (by overwriting the actual value) and the return fan controller 

believes that there is no flow in the supply duct. Thus, the control signal to the return fan is 

decreased to its minimum value in an attempt to maintain the flow difference between the supply 

and return ducts at the setpoint value. However, the measured flow difference can only approach 

zero and does not reach the setpoint value because this would require a negative flow of 0.472 

m31s (1000 ft3lmin) in the return duct. The dominant residual for fault #7 is RQ. 

Fault #8 is a failure of the return fan flow station. When this fault occurs a zero reading is 

obtained for the return flow station (by overwriting the actual value) and the return fan controller 

believes that there is no flow in the return duct. Thus, the control signal to the return fan is 

increased to its maximum value in an attempt to maintain the flow difference between the supply 

and return ducts at the setpoint value. However, the measured flow rate difference is unchanged 

by this compensation due to the presence of the fault. The dominant residual for fault #8 is RQ. 

ARTIFICIAL NEURAL NETWORKS 

Introduction 

The ANNs used in this study have a multilayer feedforward network structure and are trained 

using a backpropagation learning rule. Multilayer feedforward networks consist of an input layer, 

an output layer, and one or more hidden layers. A schematic diagram of a multilayer feedfonvard 

network with one hidden layer is shown in Figure 2. The inputs to the ni input units are denoted xj ,  

x2, ... xni, the outputs of the no output units are denoted y j ,  y2. ... y,,,, and outputs of the nh hidden 

layer units are denoted h j ,  h2. ... h,,,,. The non-shaded units are bias units whose inputs are set equal 

to unity. The connections between the units of different layers of the network are weights and 

biases. The variable names assigned to particular weights and biases are given in Figure 2 and 

correspond to the dotted line connections in the figure. The ANN is trained to learn the functional 



mapping of inputs to outputs using inputloutput training pairs. The output training data are referred 

to as the target output of the ANN. The goal is to train the network until the output of the ANN is 

suitably close to the target output (Hertz et al. 1991). 

Consider initially the forward pass through the network. For a specific input pattern (set of 

input values), the output of the jth hidden layer unit is given by 

where 

f = activation function 

ji = strength of connection from ith input unit to jth hidden layer unit 

b j  = bias value for jth hidden layer unit. 

The output of the kth output unit is given by 

where 

wkj = strength of connection from jth hidden layer unit to kth output unit 

b k  = bias value for kth output unit. 

The backpropagation algorithm uses a gradient descent algorithm to update the weights and, 

therefore, the activation functions must be differentiable. The activation functions used for the 

ANNs in this study are 

where the functions given by Equations (10a) to (10c) are referred to as the pure linear function, 



the log-sigmoid function, and the tan-sigmoid function, respectfully. The result of the forward 

pass is the output pattern y l ,  y2, ... yn,. 

As stated previously, training is continued until the output patterns are suitably close to the 

target patterns. Mathematically this is achieved by minimizing the sum of squares error (SSE) 

given by 

where 

f k ~ ~  = target value for the kth output unit of the pth pattern 

ykp = actual value for the kth output unit of the pth pattern 

"P = total number of training patterns. 

From Equation ( 1  I ) ,  SSE is computed by summing over all no output values for all np training 

patterns. 

The ANN is trained by updating the weights using a backpropagation leaming rule. The 

change in weight wj i  is based on the gradient descent rule and is given by 

where 

r7 = learning rate. 

A more complete description of ANNs and the backpropagation algorithm is given by Hertz et al. 

(1991) .  

Application of an ANN to the Cooling Coil Valve Subsystem 

To compute residual Rp a model is needed to determine the expected value of the cooling 

coil valve control signal UCC,Ev An ANN can also be utilized for this purpose. Curtiss et al. 

(1993)  described the modeling of a heating coil using a neural network where the objective was 

to determine the load on the coil for the next time step. For this study the goal is to determine the 



current value of Ucc for normal operating conditions. A schematic diagram of the cooling coil 

and the cooling coil valve subsystem is shown in Figure 3. TM and #M are the mixed air 

temperature and relative humidity, respectively, QS is the supply air flow rate, and TwI is the 

temperature of the cooling water at the inlet to the cooling coil. The other variables retain their 

previous definitions. 

The ANN used to model the cooling coil valve subsystem has a single hidden layer with 10 

units. Knowledge of the physical process and extensive training and testing of different 

combinations of input variables and network topologies were utilized to identify the inputs to the 

ANN. As discussed later in this section, the inputs represent a tradeoff between performance of 

the ANN under normal and faulty conditions. The input and output variables for training are: 

InDuts Qs(i), Qs(i-I), Tdi) ,  Tdi - I ) ,  T d i ) ,  T d i - I ) ,  Tw,(i), Tw,(i-I), 

# d i ) ,  # d i - I ) ,  Q d i )  [ T d i )  - Tdi ) ] ,  Qs(i-I) [ T d i - I )  - T d i - I ) ]  

U c d i )  

where (i) refers to the current discrete time value and ( i - I )  refers to the previous value. Inputs of 

the form Q d i )  [ T d i )  - TS(i)] are measures of the load on the coil at a particular time. The ANN 

is trained in a batch mode (off-line) using experimental data obtained as the system operates in a 

normal mode. The training data consists of 2271 inputloutput patterns and training proceeds 

until the average error for each training pattern is approximately 0.0015. A tan-sigmoid 

activation function is used for thehidden layer and a pure linear activation function is used for 

the output layer. A commercial ANN software package is used for the training (Demuth and 

Beale 1992). 

The actual value of Ucc and the ANN model value of UCC.cV are plotted as a function of 

time (denoted t) in Figure 4 for a stuck valve fault (fault #4). The fault and a load decrease are at 

t = 1800 s. The load decrease at 1800 s causes Ucc to decrease to its minimum value (1 V in this 

case) in an attempt to bring the supply air temperature up to the setpoint temperature. UccPEv 

also shows a decrease at t = 1800 s, however, this is due to the decrease in the supply air flow 

rate that occurs when the load decreases. A distinct difference in the two signals is observed and 



this difference is used to compute RU. This plot demonstrates that the ANN model responds to 

normal system changes in the appropriate manner; however, the model does not respond to the 

changes caused by the fault. 

For all testing, the supply air temperature inputs to the ANN are replaced by the supply air 

temperature setpoint. This is done to try to avoid contaminating the ANN inputs with faulty data. 

In addition, Qs(i) is monitored so that if its value goes to zero, the input to the ANN model is 

modified so that Qs(i) is equal to its average value from the previous 20 time steps. Hence, 

faulty data associated with the supply fan fault (fault #1) and the supply fan flow station fault 

(fault #7) has only a minimal effect on the computation of the expected value of the cooling coil 

valve control signal, Ucc,Ev. 

In general the ANN model is susceptible to faulty input data, as would any model that uses 

real data as input. This is a key issue in the development of the h W  model because the goal is 

to predict the operation of the valve for normal conditions, not for fault conditions. For the latter 

case, a sufficiently well trained ANN would simply track the faulty control signal and the 

residual RU would not indicate the presence of a fault. In this study this was avoided by not 

using past values of Ucc as inputs to the ANN model. 

The input training data does not exhibit a great deal of variation for TwI, 4M, and TM and, 

therefore, the ANN can only be used reliably for a relatively small range of these variables. 

Future effort will be devoted to collecting data over a wider range of conditions; however, the 

current set of training data is sufficient to demonstrate this application of ANNs. The need for a 

large training data set that covers the complete range of operating conditions for the process is a 

practical consideration that must be overcome to implement this model. 

Application of an ANN to Fault Diagnosis 

To utilize an ANN for fault diagnosis, the ANN must first be trained using data that is 

representative of the normal condition and of the various fault conditions. The inputs are seven 

normalized values of the residuals in Equations (1) to (7) and the outputs are nine values that 

constitute a pattern that represents the normal mode or one of the eight fault modes of operation. 



Hence, nine input/output patterns are used to train the network. Actual measured data for normal 

operation may be available from historical databases or can be obtained as the system operates. 

However, this may not be the case for fault conditions. Introducing a fault to the system so that 

fault data can be collected may not be possible due to concerns for occupant comfort. Hence, an 

alternative method for obtaining patterns of residuals during fault modes of operation is needed. 

In this study, idealized training patterns are specified by considering the dominant symptoms 

of each fault. Following the discussion in the section entitled FAULT DESCRIPTION, examples 

of dominant symptoms/residuals for several faults are: 

IF Supply fan failure 

IF Return fan failure 

IF Pump failure 

IF Cooling coil control 
valve failure 

THEN Supply fan RPM is zero. 
Supply air pressure is zero. 
Supply fan control signal is maximum. 
Flow difference between supply and return 
ducts is zero. 

THEN Return fan RPM is zero. 
Flow difference between supply and return 
ducts increases. 
Return fan control signal is maximum. 

THEN Cooling coil valve control signal changes. 
Cooling coil valve position changes. 

THEN Cooling coil valve control signal changes. 
Cooling coil valve position does not change. 

Using this type of reasoning it is possible to construct a pattern of dominant training residuals for 

each fault. The matching of dominant residuals to the various faults is depicted in Figure 5. 

The residuals are normalized so that the dominant symptom residuals have the same 

magnitude for the different fault cases. A dominant symptom residual is assigned a value o f f  1 

depending on the sign of the residual, and all other residuals are assigned a value of 0. The 

idealized input/output training patterns for the normal mode of operation and the eight faults are 

given in Table 1. The input patterns are based on conditions that are expected to exist after the 

system has reached steady state. Each output training pattern consists of eight values of 0 and 

one value of 1. The normal mode has a I as the output for the first unit, fault #1 has a 1 as the 



output for the second unit, and so on. 

For testing of actual data, a normalized residual is obtained by dividing a residual from 

Equations (1) to (7) by the absolute value of the maximum value obtained for this residual from 

measured fault data. Thus, the maximum value of the absolute value of RT obtained for a 

particular fault is used to normalize the supply air temperature residual for all the considered 

faults. The normalized residual for the supply air temperature is: 

where subscript "max" denotes maximum. 

The ANN architecture is 7 ~ 5 x 9  where the first number is the number of inputs (residuals; 

ni), the last number is the number of outputs (normal mode plus eight fault modes; no), and the 

middle number is the number of units in the hidden layer (nh)  A log-sigmoid activation function 

is used for both the hidden and output layers. The network is trained until the sum of squares 

error is less than 10-6 or until the number of training epochs exceeds 5000. A commercial ANN 

software package was used for the training (Demuth and Beale 1992). 

The methodology described above is one example of how ANNs can be used for fault 

detection and diagnosis. Model-based approaches are a second example of the use of ANNs for 

this task. Model-based approaches compare ANN models of normal and faulty system or 

subsystem operation to the actual system operation. Diagnosis of the current state of the system 

is based on determining which model has the greatest degree of similarity to the actual system 

operation. The model-based approach is not used in this study. 

Network Topology and Training 

The selection of the appropriate number of hidden layers and the number of units in a layer 

is problem dependent and typically requires considerable engineering judgment (Schalkoff 1992). 

As is the case for most numerical algorithms, a tradeoff between accuracy and computational 

requirements may exist. For instance, by adding more hidden units and layers to a network, the 



agreement between the actual and target outputs may be improved, but at the cost of increased 

training time and memory requirements. In addition, if too many hidden units are used, 

overfitting of the training data may occur and the generalization to new input patterns may be 

very poor. This is similar to the effect seen when curve fitting with too many free parameters 

(Hertz 1991). 

Hecht-Nielson (1990) provides guidelines for training and testing ANNs. The basic 

approach is to divide the available data into a training and a testing set. Both sets should include 

data that covers the full range of operating conditions. The amount of training required to yield a 

sufficiently accurate ANN is also problem dependent. For most ANNs there exists an optimum 

number of training epochs which minimizes the error for thetesting data. Additional training 

epochs will most likely yield lower training errors; however, the errors for the test data may 

increase. This phenomenon occurs commonly for ANNs trained with the backpropagation 

learning mle and is known as overtraining. Overtraining can result in an ANN that exhibits poor 

generalization because the ANN simply memorizes the input training patterns. In most cases, the 

appropriate network topology and number of training epochs can only be determined through an 

extensive trial and error process. 

RESULTS AND DISCUSSION 

Faults in the AHU are diagnosed by inputting residual vectors to the trained ANN. The 

residual vectors are obtained by introducing faults in the laboratory AHU and recording the 

subsequent response of the system. The system response is input in a batch mode to the trained 

ANN model of the cooling coil value subsystem to compute U c c ~ v .  This computation could 

also be done on-line. Residuals are calculated using steady-state values of the system variables 

measured 900 s after a fault is introduced. Residuals for the normal and eight fault modes of 

operation are given in Table 2. Normalized residuals computed using expressions such as 

Equation (13) are given in Table 3 and are used as input to the ANN for fault diagnosis. 

A more systematic approach to determining the steady-state residual values would be to 

develop and implement a steady-state detector. One possible method for detecting steady-state 



conditions would be to use regression techniques to obtain linear equations that characterize the 

responses of variables such as Ts, Ps, and QD. Steady-state conditions would be indicated if the 

slopes of these lines were less than the threshold values defined for each signal. A steady-state 

detector such as this would be necessary for on-line implementation in a real system because the 

onset of a fault is not known a priori. 

Results of the fault diagnosis are given in Table 4. From the training patterns in Table 1, a 

perfect diagnosis would yield values on the diagonal of unity, and all other values would be zero. 

The values on the diagonal in Table 4 are near unity (underlined), indicating that the ANN 

successfully diagnosed each condition. Thus, although the training was based on simple, 

idealized relationships between the symptoms and faults, the ANN accurately discriminates 

between the various faults and the normal condition when actual data is used. Because of their 

ability to generalize and to filter noise, ANNs appear to be useful tools for fault diagnosis. For 

the set of faults and the associated symptoms considered in this study, fault diagnosis methods 

based on IF-THEN rules, or pattern recognition techniques such as the nearest neighbor 

algorithm (Schalkoff 1992) are also expected to be effective. As the number of faults increases, 

however, implementation of the IF-THEN rules may become cumbersome. Extension of the 

ANN method for fault diagnosis to include other faults is expected to be straightforward. The 

major computational requirement for ANNs occurs during training (which can be performed off- 

line) and this is not expected to present a problem during on-line operation. 

It should be noted that the success that was achieved for this set of data is not guaranteed in 

general. Because training is based on a small set of idealized data, generalization problems can 

occur when actual data is considered. This potential difficulty is easily envisioned for 

normalized residuals with values near f0.5, as for fault #3 in Table 3. Although this fault is 

correctly diagnosed, this set of residuals could also have been identified as a normal operating 

condition. In this case the problem is linked to the severity of the fault. That is, a more severe 

pump fault would produce a larger value of Ucc and, therefore, a larger value of RV This would 

improve the likelihood of a correct diagnosis. 



A second case where generalization may be imperfect relates to the state of the system when 

the fault occurs. As an example, consider the stuck valve fault. If the valve sticks in a position 

where it is roughly half open and the value used for normalization is based on the maximum 

possible difference between the actual and expected position, the corresponding normalized 

residual Rv will again be near k0.5. Thus, the same kind of generalization problem as cited 

previously could be encountered. 

The reliability of the ANN for diagnosing imperfect input data patterns can be improved in 

two ways. First, the input training data set can be extended to include patterns that account for 

less severe faults and faults related to the state of the system prior to the occurrence of the fault. 

For instance, the training patterns for the pump fault and valve fault could be extended as shown 

in Table 5. This kind of extension of the input training data is rather straightforward to envision 

once the patterns for the severe faults have been established. A second way in which the ANN 

can be taught to generalize more accurately is by training the network with noise added to the 

idealized input patterns. For instance, random noise that is normally distributed with a mean 

value of 0 and a variance of 0.1 can be added to the input patterns in Table 1. The training data 

then consists of the original idealized input patterns and the noisy patterns. Additional noisy 

input patterns with a different values of the variance can also be added to the training data set. 

Both approaches are currently being investigated to improve the robustness of the diagnosis. 

It is also possible that the input to the ANN will represent a fault mode of operation for 

which the ANN was not trained. In fact, it seems very probable that this will occur occasionally 

and, therefore, must be accounted for in an actual implementation of the method. The most 

desirable output in this scenario would be a warning that the system is operating in some 

unknown fault mode. However, because the training data does not include this type of input, the 

output may be erroneous. Although this may appear to be a drawback of the ANN method, the 

reality is that this scenario is likely to cause problems regardless of the method used for fault 

diagnosis. 

The diagnosis of experimental faults is based on steady-state or near steady-state conditions 



and dynamic conditions are not considered. Further study is needed to determine how the 

method can be extended for use when dynamic conditions exist. 

CONCLUSIONS AND RECOMMENDATIONS 

The objective of this study was to describe the application of ANNs to the problem of fault 

diagnosis in an AHU. Initially, residuals of system variables were selected that could be used to 

quantify the dominant symptoms of fault modes of operation; Idealized steady-state patterns of 

these residuals were then defined for each mode of operation studied. The steady-state 

relationship between the dominant symptoms and the faults was learned by an ANN using the 

backpropagation algorithm. The trained ANN was applied to experimental data for various faults 

and successfully identified each fault. 

An ANN was also used successfully as a model for a cooling coil valve subsystem. The 

output of the ANN was the expected value of the cooling coil valve control signal. Although the 

agreement between the actual and predicted control signal during normal operation was not 

perfect, the ANN model was adequate for identifying normal and fault modes of operation. The 

agreement for normal operating conditions could be improved by changing the inputs to the 

ANN, however, this may lead to a model that tracks the operation of the valve during fault 

conditions, rather than providing an estimate of the normal operation of the valve under normal 

operating conditions. 

This study demonstrates the feasibility of using ANNs for diagnosis of faults in HVAC 

systems. Eight fault modes of operation were considered and all faults were of a severe nature. 

Hence, the symptoms of these faults are relatively easy to distinguish. Nonetheless, it is 

anticipated that, because of their abilities to learn complex, nonlinear relationships and to 

generalize, ANNs will also be effective for less severe faults. 

The method can be extended in a straightfonvard manner to consider additional faults such 

as damper faults in the mixing box. It is likely that this will require the introduction of additional 

residuals to the analysis. As the complexity of the system and the number of faults considered 

grows, it may be desirable to develop separate ANNs for various subsystems and to use a 



preprocessor to identify the appropriate subsystem to examine for the existence of a fault. 
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Table 1 Normalized patterns for AHU fault diagnosis used in ANN training. 

Table 2 Measured residuals for normal operation 900 s after the occurrence of a fault. 

Net Inputs 

RP RQ RT RU RNS RNR RV 

0 0 0 0 0 0 0 

-1 -1 0 1 -1 0 0 

0 1 0 0 0 -1 0 

0 0 0 1  0 0 0 

0 0 0 0 0 0 1 

0 0 -1 -1 0 0 0 

-1 0 0 0 0 0 0 

0 -1 0 0 0 0 0 

0 1 0 0 0 0 0 

Net Outputs 

1 0 0 0 0 0 0 0 0  

0 1 0  0 0 0 0 0  0 

0 0 1 0  0 0 0 0 0 

0 0 0 1 0 0 0 0 0  

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 1 

Fault 
Diagnosis 

Normal 

#1 Supplyfan 

#2Returnfan 

#3Pump 

#4 Cooling coil valve 

#5 Thermocouple 

#6 Pressuretransducer 

#7 Supply flow station 

#8 Return flow station 

R~ 

-0.004 

-0.249 

0.004 

-0.004 

-0.003 

0.002 

-0.249 

0.005 

-0.001 

Fault I System Operation 

#1 

#2 

#3 

#4 

#5 

#6 

#7 

#8 

Normal 

Supply fan fault 

Return fan fault 

Pump fault 

Cooling coil valve fault 

Thermocouple fault 

Pressure transducer fault 

Supply flow station fault 

Return flow station fault 



Table 3 Normalized ANN input for fault diagnosis. 

- 
Faul - 

#1 

#2 

#3 

#4 

#5 

#6 

#7 

#8 

System Operation 1 
Normal 

Supply fan fault 

Return fan fault 

Pump fault 

Cooling coil valve fault 

Thermocouple fault 

Pressure transducer faulc 

Supply flow station faull 

Return flow station fault I 

System Operation 

Table 4 Diagnosis results for the data in Table 3. 

Normal 

Supply fan fault 

Return fan fault 

Pump fault 

Cooling coil valve fault 

Thermocouple fault 

Pressure transducer fault 

Supply flow station fault 

Output Pattern 

Return flow station fault 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 



Table 5 Additional training patterns for select faults. 

0 0 0 0 0 0  I 0 0 0 0 1 0 0 0 0 #4 Cooling coil valve 

0 0 0 0 0 0 0.5 0 0 0 0 1 0 0 0 0 #4 Cooling coil valve 

Net Inputs 

RP RQ RT RU RNS RNR RV 

0 0 0 1  0 0 0 

Recirculation 
Air Damper Controller 

Net Outputs 

0 0 0 1 0 0 0 0 0  

Exhaust Air Flow Return 
Damper Station Fan 

Fault 
Diagnosis 

#3Pump 

- 

Figure 1 Schematic diagram of a variable-air-volume air handling unit. 
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Figure 2 Two layer feedforward network. 
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Figure 3 Schematic diagram of the cooling coil and cooling coil valve subsystem. 
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Figure 4 Actual and predicted cooling coil valve control signals. 
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ABSTRACT 

This paper describes the use of a two-stage artificial neural network for fault dagnosis in an 

air handling unit and discusses the use of an estimating equation to identify a failed temperature 

sensor. The stage one neural network is eained to identify the subsystem in which a fault occurs. 

The stage two neural network is mined to diagnose the specific cause of a fault at the subsystem 

level. A regression equation is derived to recover an estimate of the supply air temperature when 

the sensor measurement is determined to be erroneous. The estimated value is used for fault 

diagnosis and as a feedback value for cone01 purposes. The regression equation and two-stage 

artificial neural network are tested successfully using simulation data. 

Keywords: air handling, classification, maintenance, modeling, monitoring, sensor recovery 



INTRODUCTION 

The presence of faults and the influence that they have on system operation is a real concern 

in the heating, ventilating, and air-conditioning (HVAC) community. A fault can be defined as an 

inadmissible or unacceptable property of a system or a component. Unless corrected, faults can 

lead to increased energy use, shorter equipment life, and uncomfortable and/or unhealthy 

conditions for building occupants. 

Faults are not a new problem in the HVAC industry; however, technological advances have 

helped create both a need and an avenue for the development of fault detection and diagnosis 

tools. The need has been created by the ever increasing complexity of the HVAC systems and 

conaol saategies that are being installed in present day buildings. In many cases the complexity 

of the systems exceeds the understanding of the building operator. When this occurs, faults may 

go undetected or, perhaps worse, may be "corrected" by inaoducing changes to the system that 

compensate for the fault rather than eliminating it. The latter scenario could lead to energy waste 

and possibly to subsequent faults that are related to the initial (and still existing) fault. 

Technological advances have also made it possible to monitor these complex systems, thus 

providing the information that is needed to characterize and understand the current operating 

status of the systems. Fault detection and diagnostic methods can provide a bridge between 

possessing information and understanding its meaning. 

One of the main purposes of fault detection and diagnosis is to detect failures of actuators 

and sensors that are used in the conaol systems. To improve the operational reliability of systems 

in general, it is necessary to validate measured sensor data, isolate failed sensors, and recover the 

failed measurement. Hence, sensor recovery is an important aspect of comprehensive fault 

detection and diagnosis methods. 

In previous papers Lee et al. (1996a and 1996b) describe methods for fault detection and 

diagnosis in a variable-air-volume (VAV) air-handling unit (AHU). One approach used in those 

studies was to define residuals that provide a measure of the difference between the existing state 

of the system and the normal state. Residuals that are sigruficantly different from zero represent 



the occurrence of a fault. Lee et al. (1996b) described the use of a single artificial neural network 

(ANN) nained on idealized residual panems to diagnose faults in various subsystems of the AHU. 

Training a network such as this, which accounts for all considered faults, can require extensive 

computational resources due in part to the number of inputs, hidden neurons, and outputs 

necessary to discriminate each particular pattern. In addition, if a new fault is added to the 

existing set, it is necessary to renain the ANN because the knowledge stored in the network 

(values of weights and biases) is probably not adequate to discriminate the new fault. 

The objective of this paper is twofold. The first objective is to describe an architecture for a 

two-stage ANN for fault diagnosis that can alleviate, to a certain degree, the problems discussed 

in the previous paragraph. The second objective is to describe the use of regression equations for 

sensor recovery of failed temperature sensors. 

The first sections of this paper provide a brief description of the AHU, simplified models of 

the components of the AHU, the residuals used in the fault diagnosis and the faults under 

consideration. The two-stage ANN and the regression analysis used to develop estimating 

equations for temperature sensors are then discussed. Results of the fault diagnosis are then 

presented, followed by simulation results for the proposed sensor recovery approach. Finally, 

conclusions and recommendations for future work are presented. 

AIR HANDLING UNIT 

A schematic diagram of the VAV AHU used for this study is shown in Figure 1. The same 

system was used for papers by Lee et al. (1996a and 1996b). The AHU consists of fans, dampers, 

a cooling coil, sensors, and connollers. The static pressure in the main supply duct is maintained 

at a constant set point value of 249 Pa (1.0 in. of water) by sensing the static pressure and 

connolling the rotational speed of the supply fan. The supply air temperature is connolled by 

modulating the cooling water control valve to maintain a constant set point value of 14S°C 

(58.0°F). The air flow rate hfference between the supply and return air snearns is controlled by 

the variable speed return fan to maintain a constant setpoint value of 0.472 m3/s (1000.0 ft3/min). 

A PID algorithm is used to connol the cooling water valve and PI algorithms are used to control 



the supply and return fan speeds. The sampling period for control and data collection is ten 

seconds. 

SIMPLIFIED AHU MODELS 

The AHU model is a simplified dynamic model based on steady-stale characteristic equations 

and approximate first order dynamics. Models developed in IEA ANNEX 17 (Wang, 1992) have 

been modified to fit the ANNEX 25 reference system using experimental data. 

Cooling coil characteristics 

The air temperature at the exit of the cooling coil Tao is obtained by combining a steady-state 

model of the cooling coil with approximate first-order dynamics. The response of Tao is 

approximated by 

where Taos is the steady-state value of Tao, T is the process time constant, and ~d is the process 

delay time. To determine Tao,, it is first necessary to compute the steady-state value of the moist 

air enthalpy at the exit of the cooling coil ha,,, which is given by 

where hai is the moist air enthalpy at the inlet to the cooling coil, hwi is the moist air enthalpy at 

the inlet chilled water temperature, and E is the effectiveness of the cooling coil. Too, is then 

calculated from the expression 

where cpa is the specific heat of dry air, cp, is the specific heat of water vapor, wai is the humidity 

ratio of the air at the inlet to the cooling coil, and hgtO is the enthalpy of saturated water vapor at 

a reference temperature To. For a single pass crossflow heat exchanger where the fluid having the 

minimum capacitance (air in this case) is mixed and the water is unmixed, the effectiveness is 

given by (Incropera and DeWin, 1985) 



E = I - exp (- c;' {I - exp [- C,  ] } ) (4) 

where Cr is the heat capacity rate given by 

and NTU is the number of transfer units given by 

h'TU = UA I Cmin 

As stated previously, Cmin and C,, are the capacitances for air and water, respectively. UA is 

the overall heat transfer coefficient of the coil. 

Damper characteristics 

The airflow rates through the exhaust, recirculation, outdoor and VAV box dampers are 

given by: 

Q = K Z  (7) 

where K  is a resistance coefficient, Q  is the volumetric airflow rate, and AP is the pressure drop 

across the dampers. The resistance coefficients are determined from least-squares regression of 

the experimental data for varying damper blade angles. The resulting third order polynomial 

equations are of the general form 

where e is the damper angle. Assuming the air density is constant throughout the system, 

conservation of mass yields 

QFEC = QFET - QEXH (9 )  

QFEC = Qs - Qom (10) 



where subscript REC denotes recirculation air, RET denotes return air, EXH denotes exhaust air, 

S denotes supply air, OUT denotes outdoor air, and VAV,i denotes airflow through the ith VAV 

box, and where n is the total number of VAV boxes. 

Sensor model characteristics 

Sensors convert physical signals into elecwic signals. The response of the elecwic signal may 

exhibit a time delay from the change of the physical value. The sensor response is simulated using 

a first order model with a simple time constant, that is 

Fan characteristics 

Fan performance is characterized using the following dimensionless coefficients: 

where Q is the volumetric airflow rate of air through the fan, D is the fan impeller diameter, N is 

the rotational speed of the fan, AP is the pressure rise across the fan, and p is the density of air. 

The dimensionless parameters in Eqs. (13) and (14) are related by the polynomial expression 

where the coefficients ai (i = 1 to m) are determined from least-squares regression. 

Air filter characteristics 

The airflow rate and pressure drop across the air filter and the duct, including the coils, are 

related by 

Qf = Kf rn (16) 

where Kf is a friction coefficient that is weated as being constant. In real systems Kf will vary due 



to fouling of the filter and the coils. 

SOLUTION PROCEDURE 

The simplified model equations are solved by considering the pressure and flow equations 

independently of the equations that characterize the cooling coil response. Initial values of the 

damper positions, valve positions and fan speeds are selected first. The pressure and flow 

equations are then solved simultaneously to determine the pressure and airflow rates throughout 

the system. Next, the equations governing the cooling coil are solved to determine the supply air 

temperature and the inlet and exit cooling water temperatures. The supply air temperature and 

pressure, and the volumetric airflow rate difference between the supply and return air seeams are 

then used to compute the coneol signals to the fans and the cooling coil valve. Finally, the 

coneol signals are converted to new values of the supply and return fan speeds and the cooling 

coil valve position. The solution procedure is then repeated. The simulation requires solving 15 

equations (12 for the pressure and flow characteristics, 3 for the cooling coil) for 15 unknowns. 

RESIDUAL DEFINITION 

The fault diagnosis method described by Lee et al. (1996b) identifies patterns of residuals 

that can be used as signatures for various faults. An ANN is eained with these patterns and then 

used to diagnose the status of the AHU for actual experimental data. The set of residuals used in 

this study is slightly different from Lee et al. (1996b). The residuals used here are: 

where R denotes residual, T is temperature, P is pressure, Q is volumetric airflow rate, U is 

cone01 signal, and V is valve position. Subscript M denotes mixed air parameters, D denotes 

volume matching parameters, CC denotes cooling coil parameters, SP denotes setpoint values, 



and EV denotes estimated values calculated using regression equations. 

FAULT DESCRIPTION 

Eleven faults of various components in the AHU are described in the followed paragraphs. 

The dominant symptoms of each fault are also described. The faults are introduced when the 

system is operating at normal, steady-state conditions and the dominant symptoms correspond to 

the steady-state conditions after a fault has occurred. 

Fault #1 is a failure of the supply fan. The fault causes the supply fan rotational speed to 

decrease to zero, the supply air pressure to decrease to zero, and the control signal to the supply 

fan to increase to its maximum value in an attempt to offset the decreasing supply air pressure. 

The connol signal for the return fan decreases to zero in an attempt to maintain the flow 

difference between the supply and return air ducts at the setpoint temperature. The dominant 

residual for fault #1 is RpS. 

Fault #2 is a failure of the return fan. The fault causes the return fan rotational speed to 

decrease to zero, the flow difference between the supply and return ducts to increase, and the 

connol signal to the return fan to increase to its maximum value in an attempt to offset the 

increasing flow difference. The dominant residual for fault #2 is RQD 

Fault #3 is a failure of a local feed water pump. The fault causes the water flow rate to 

decrease, but not to zero, since the main supply pumps continue to operate normally. The 

decrease in the flow rate of cooling water causes the supply air temperature to increase, with the 

resultant effect being that the cooling coil valve opens further. By opening the cooling coil valve 

it may be possible to bring the supply air temperature back to the setpoint value; however, the 

control signal to the cooling coil valve will be different from the normal condition. The dominant 

residual for fault #3 is RTSp 

Fault #4 is a stuck cooling coil valve. A load change occurring after the innoduction of the 

fault will cause the control signal to the cooling coil valve to saturate at either the minimum or the 

maximum voltage because the valve is unable to respond to the control input. The dominant 

residual for fault #4 is RVCC. 



Fault #5 is a complete failure of the supply air temperature sensor. A temperature sensor 

failure typically results in a voltage signal that varies randomly between large positive and 

negative values. If this occurs, the temperature is automatically (and instantaneously) set to zero 

so that the temperature residuals given by Eqs. (17) and (18) do not fluctuate. Setting the supply 

air temperature signal to zero causes the cooling coil control valve to close in an attempt to raise 

the supply air temperature. The dominant residuals for fault #5 are RTSI and RTS2. 

Fault #6 is a second type of failure of the supply air temperature sensor. In this case, the 

sensor drops from its supporting harness onto the floor of the duct, giving an incorrect 

temperature reading. Because the air duct surface is assumed to be at a temperature that is 5°C 

higher than the air flowing through the duct, the controller attempts to compensate by opening the 

cooling coil control valve. The supply air temperature at time i is given by 

Ts (i) = Ts ( j )  + 5 (1 - exp(-[i - j] 1 1 OO)]  (23) 

where TS(j) is the supply air temperature at time j when the fault occurs and the time constant for 

the response is assumed to be 100 seconds. The dominant residuals for fault #6 are RTSI and 

R ~ ~ ~ .  

Fault #7 is a third type of supply air temperature sensor failure and is due to sensor drift. 

This type of failure is classified as a performance degradation rather than a complete fault and 

would be diff~cult to detect in its early stages. To sirnphfy the discussion for this fault, the period 

of time over which the sensor degrades is not considered. The fault is simulated by introducing an 

instantaneous decrease in the supply air sensor reading of 1°C. The cooling coil valve controller 

attempts to compensate for this fault by closing the control valve. After some transient period, 

the sensed value of the supply air temperature reaches the setpoint value, although the actual 

temperature is approximately 1°C higher than the setpoint value. The dominant residuals for fault 

#7 are RTS1 and RTSZ 

Fault #8 is a failure of the supply air pressure transducer. When this failure occurs, a zero 

reading is obtained for the supply air pressure. This causes the control signal to the supply fan to 



increase to its maximum value in an attempt to increase the supply pressure. The dominant 

residual for fault #8 is Rps .  

Fault #9 is a failure of the supply air flow station. When this fault occurs a zero reading is 

obtained for the supply flow station and the return fan controller decreases the return fan speed to 

its minimum value in an attempt to maintain the flow difference between the supply and return 

ducts at the setpoint value. The dominant residual for fault #9 is RQD. 

Fault #10 is a failure of the return fan flow station. When this fault occurs a zero reading is 

obtained for the return flow station and the return fan controller increases the return fan speed to 

its maximum value in an attempt to maintain the flow difference between the supply and return 

ducts at the setpoint value. The dominant residual for fault #10 is RQD. 

Fault #11 is a failure of the mixing box damper linkage. The fault causes a discrepancy 

between actual and expected values of the airflow rates for the air streams entering and exiting the 

mixing box. The discrepancy in the airflow rates leads to discrepancies in the actual and expected 

temperatures at the exit of the mixing box. It is assumed that the recirculation damper is closed 

when the fault occurs. The dominant residual for fault #11 is RTM 

TWO-STAGE ARTIFICIAL NEURAL NETWORK 

To use an ANN for fault diagnosis, the ANN must fust be trained using data that represents 

the normal condition and the various fault conditions. Lee et al. (1996b) used a single ANN to 

class* the operating status of the AHU. Nine possible modes of operation were considered, 

namely, the normal mode and eight separate fault modes. Training a network such as that, which 

includes patterns for all considered faults, requires fairly extensive computational resources. In 

addition, if a new fault is added to the existing set, the ANN must be retrained because the 

knowledge stored in the network (values of weights and biases) is not adequate for discrimination 

of the new fault. To lessen or eliminate such problems, an architecture for a two-stage ANN is 

proposed here. Stage one is used to classify the subsystem where a fault is occurring. Stage two 

is used to diagnose the cause of a fault on the subsystem level. Using this architecture, less 

information is required for diagnosis at a given stage. In this study the subsystem classifications 



are the cooling coil subsystem, the pressure control subsystem, the flow control subsystem, and 

the mixing box damper subsystem. Figure 2 shows the subsystem classification of the faults and 

Figure 3 shows a block diagram of the proposed two-stage network. Although four subsystems 

are considered in this study, stage two ANN results are presented only for the cooling coil 

subsystem. Hence, reference to stage two ANN parameters or results throughout the remainder 

of this paper will imply those of the cooling coil subsystem. 

Idealized patterns of residuals are specified for training by considering the dominant 

symptoms of each fault (Lee et al., 1996b). Residuals are normalized so that the dominant 

symptom residuals have the same size for the different fault cases. A dominant symptom residual 

is assigned a value of 1 or -1 depending on the sign of the residual, and all other residuals are 

assigned a value of 0. The idealized input/output training patterns for the stage one ANN are 

given in Table 1, and training patterns for the stage two ANN to diagnose faults in the cooling 

coil subsystem are given in Table 2. The input patterns are based on conditions expected to exist 

after the system has reached steady state. Each output training pattern consists of four values of 0 

and one value of 1 for the stage one ANN. For the stage two ANN, each output training pattern 

consists of six values of 0 and one value of 1. 

To use the two-stage ANN for fault diagnosis, residuals obtained from test data must also be 

normalized. Normalization is performed by dividing each residual by the minimum non-zero value 

of this residual for all faults. One notable exception to this rule is that the residual value used for 

normalization must be significantly larger than the largest value obtained during normal operation 

of the system. This will reduce the possibility of a false a l m .  Thus, with the cited exceptions, 

the minimum value of the absolute value of RTS2 obtained for all faults is used to normalize this 

residual for all faults. Stated mathematically, the normalized value of RTS2 is 

where subscript "mi< denotes minimum. Normalized residual values greater than unity are set 



equal to unity. 

The stage one and stage two ANN architectures are 4 ~ 5 x 5  and 3 ~ 5 x 7 ,  respectively, where 

the first number is the number of inputs, the last number is the number of outputs, and the middle 

number is the number of neurons in the hidden layer. The networks are trained until the sum of 

squares error is less than 10-6 or until the number of training epochs exceeds 5000. A commercial 

ANN software package was used for the training (Demuth and Beale, 1992). 

SENSOR RECOVERY OF THE COOLING COIL VALVE SUBSYSTEM 

When a critical sensor reading is found to be erroneous, it is necessary to estimate its true 

value using correlated measurements. A simple approach is to have one estimating relation for 

each sensor reading that needs to be recovered. Given the normal operation data set, the training 

is straightforward. 

To identify an erroneous value of TS and to compute residual RTSI, a model is needed for the 

expected value of the supply air temperature. For this study, a regression equation is used to 

estimate the current value of TS for normal operating conditions. A schematic diagram of the 

cooling coiland the cooling coil valve subsystem is shown in Figure 4. TM and qM are the mixed 

air temperature and relative humidity, respectively, QS is the supply air flow rate, and TWI is the 

temperature of the cooling water at the inlet to the cooling coil. The other variables retain their 

previous definitions. 

The input and output variables for the regression equation are: 

Inputs Qs(i), Qs(i-I), Qs(U2, Qs(i-I)z 

TM(i),  T d i - I )  

Twl(i), Twl(i-1) 

$M(i), $MU-])  

Ucc(i), Ucc(i-1 ), U ~ c ( i ) ~ ,  Ucc(i-I? 

QsW T M ( ~ ) ,  Qs(i-1) T d i - 1 )  

Output TSEv(i) 

where (i) refers to the current discrete time value and (i-1) refers to the previous value. 



The coefficients of the regression equation are computed using simulation data obtained as 

the system operated in a normal mode. The training data consists of 1,000 points. A model for 

the expected value of the mixed air temperature TMEV is obtained in a similar manner. 

The actual value of TS and the regression model value for TSEv are plotted as a function of 

time in Figure 5 for a pump failure (fault #3). A load increase and the fault occur at t = 1000 s 

and 2,000 s, respectively. At normal conditions, it is seen that the regression equation estimates 

Ts sufficiently well. Since the fault is a failure of the local pump, the water flow rate decreases, 

but not to zero. The decrease in the cooling water flow rate causes the supply air temperature to 

increase initially. This causes the cooling coil valve signal to increase, thus opening the valve. By 

opening the cooling coil valve it is possible to bring the supply air temperature back to the 

setpoint value; however, the control signal to the cooling coil valve will be different from the 

normal condition. The change in UCC causes a change in TSEv, while the real value of TS returns 

to the setpoint value after a transient period of approximately 100 s. From Figure 5 a distinct 

difference in the two signals is observed and this difference is used to compute RTSI. 

Figure 6 shows the case in which the temperature sensor fails completely at t = 2,000 s. The 

value of the sensor measurement is set to zero. Since the control of the cooling coil valve is based 

on this sensor measurement, the control valve is closed to make the supply air temperature 

increase. This action causes the actual supply air temperature to increase. The estimated value 

follows the actual value closely at normal conditions and relatively closely after the sensor failure. 

Although the agreement between the actual and estimated value during faulty operation is not 

perfect, the estimated value is sufficiently close to recover the sensor output and can be used 

when the sensor fails. It is conceivable that the regression equation could provide more accurate 

estimates of the supply temperature for fault conditions if data for those conditions are collected 

and used to calculate the regression coefficients. 

SIMULATION RESULTS AND DISCUSSION 

Fault diagnosis 

The training phase of the two-stage ANN used idealized patterns of normalized residuals as 



inputs. In the testing phase, data obtained from a simulation program based on simplified AHU 

component models are used as inputs. Faults are introduced to the simulation program through 

modifications of the computer algorithm. Residuals (measured and normalized values) for the 

stage one and stage two ANNs are given in Tables 3 and 4, respectively. Values used for 

normalization are indicated with bold typeface. 

Results of the fault diagnosis for the stage one and stage two ANNs are given in Tables 5 and 

6, respectively. In the stage one ANN, each fault is classified as belonging to one of four 

subsystems shown in Figure 2. As an example, the pump, valve, and temperature sensor failures 

are classified as cooling coil subsystem faults. From Table 1 the idealized output pattern for a 

cooling coil subsystem fault is (0 0 0 1 0). From Table 5 it is seen that these failures are correctly 

classified by the stage one ANN, that is, the output pattern in Table 5 is also (0 0 0 1 0). The 

other faults are also properly classified according to subsystem by the stage one ANN. 

In the stage two ANN, the cooling coil valve subsystem faults are further analyzed to 

determine the specific causes of the faults. The stage two ANN uses three residual values as 
- - - 

inputs, namely, RTS1, RTS2, and RVCC By comparing Tables 2 and 6, it is seen that the five 

faults associated with the cooling coil subsystem are correctly identified. Similar stage two ANNs 

could be developed for the other subsystems. 

The results presented in this section demonstrate the capability of the two-stage ANN to 

correctly diagnose the faulty subsystem for eleven faults in an AHU, and to further diagnose the 

faulty component for the five faults that occurred in the cooling coil subsystem. The study by Lee 

et al. (1996b) demonstrated the capability of ANNs to generalize from idealized input data to 

noisy lab data. The two-stage approach simplifies the generalization by reducing a single ANN 

that encompasses all considered faults to a number of less complex ANNs, each one dealing with 

a subset of the residuals and symptoms associated with a complete diagnosis of all faults. As 

more faults are considered, more stages could be added. In addition, this kind of architecture 

would make it possible to limit retraining to only select ANNs. Retraining should also require 

fewer computational resources because the ANNs would not be as complex as in the case of a 



single ANN used for all faults. Finally, this approach is beneficial from a standpoint of 

understanding the diagnosis and could be utilized by a building operator to step through the 

reasoning behind the fault diagnosis. 

Temperature sensor recovery 

For fault #5, the supply air temperature sensor experiences a complete failure. Real 

(simulated: T S )  and estimated values (TSEV)  of the supply air temperature and the supply air 

temperature sensor signal are plotted as functions of time in Figure 6 for the case where the 

temperature sensor is not recovered. As described previously, when the sensor fails at t = 2000 s, 

the sensed value of TS becomes 0°C and the cooling coil valve closes in an attempt to make the 

sensed supply air temperature increase to the setpoint value of 14.5'C. This action causes the 

actual supply air temperature to increase to approximately 18"C, while the estimated value 

increases to approximately 19OC. Figure 7 shows the stage one and stage two diagnoses for fault 

#5. During the initial 2000 s of the simulation, the stage one ANN output indicates that the 

system operation is normal (the f r s t  ANN output unit for the stage one ANN is nearly equal to 

unity and all other outputs are nearly equal to zero). After the fault, the value of the frst  ANN 

output unit for the stage one ANN quickly decreases to nearly zero, while the output for the 

fourth output unit of the stage one ANN and the second output for the stage two ANN increase 

to values near unity, indicating that fault #5 (temperature sensor failure) has occurred. Figure 8 

shows that the failed sensor can be recovered within a very short time after the fault is detected. 

This is accomplished by switching the control of the cooling coil valve from the sensor output to 

the estimated value of the supply air temperature after the fault is detected. 

Fault #6 is the case in which the supply air temperature sensor drops from its supporting 

harness to the floor of the air duct. Simulation results for this fault are shown in Figure 9. 

Because the air duct surface is assumed to be at a higher temperature than the air flowing through 

the duct, the cooling coil valve controller responds as if a large disturbance has upset the process. 

In particular, the controller attempts to compensate for the fault by opening the control valve. 

This causes the real and estimated values of the supply air temperature to decrease; however, the 



wall temperature is assumed to be constant and the sensor temperature is equal to that of the wall. 

Figure 10 shows that the failed sensor can be recovered using the estimated value of the supply air 

temperature. That is, using TSEY obtained from a regression equation as the feedback signal to 

the cooling coil valve controller, the real value of the supply air temperature (TS) can be 

recovered to a value near the setpoint. 

Fault #7 is a degradation type failure of the supply air temperature sensor. Although this 

type of failure occurs over a period of time, it is simulated as an instantaneous fault in this study. 

The response of the real, estimated, and sensor values of the supply air temperature are plotted in 

Figure 11 as functions of time. The fault occurs at t = 2,000 s and is simulated by decreasing the 

sensor measurement to a value 1°C less than the actual value. The controller then closes the 

cooling coil valve and the sensed temperature is raised to the setpoint value, while the actual 

temperature is raised to a value 1°C above the setpoint. Figure 12 shows that the failed sensor 

can be recovered after the fault is detected. 

CONCLUSIONS 

The objectives of this paper were to describe an architecture for a two-stage ANN for fault 

diagnosis and to describe the use of regression equations for sensor recovery of failed temperature 

sensors. The stage one ANN was trained to class@ the subsystems where faults are occurring, 

and the stage two ANN was trained to diagnose the cause of faults at the subsystem level. The 

architecture can be extended in a straightforward manner to consider additional faults such as the 

faults in the VAV boxes, which can be accommodated with an additional stage two ANN. It is 

likeIy that this will require the introduction of additional residuals to the analysis. 

To train the ANNs, residuals of system variables were selected that could be used to quantify 

the dominant symptoms of fault modes of operation. Idealized steady-state patterns of these 

residuals were $en defined for each mode of operation studied and were subsequently used for 

training. The trained ANNs were applied to simulation data for various faults and successfully 

identified each fault. 

A regression equation was used to recover an estimate for the supply air temperature when 



the supply air temperature sensor yields erroneous measurements. Although the agreement 

between the actual and predicted temperature signal during faulty operation was not perfect, the 

regression model was adequate for identifying fault modes of operation. It was shown that the 

estimates of the sensor measurement can be used for cone01 purposes. 

Future work related to this study will include implementing a method for fault detection that 

can classlfy the system operation as either normal or faulty. In addition, the residual 

normalization procedure will be modified to accommodate the more realistic situation in which 

data for all types of faults may not be available. In this case, expert knowledge or statistical 

methods applied to normal operational data can be used to establish threshold values of the 

residuals that differentiate system operation as either normal or faulty. Another topic of future 

work is to mod@ ANN mining patterns to accommodate diagnoses that represent partial belief 

in a given fault. The current method uses Eaining patterns that represent complete belief that the 

operation is either normal or that a certain fault exists. A method that provides a measure of 

partial belief in a fault that increases as the fault worsens would be more intuitive to a building 

operator than the current approach. Finally, the two-stage ANN method must be implemented in 

real buildings to establish its capabilities, nengths, and weaknesses. 
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Table 1. Normalized stage one ANN training patterns for the AHU fault diagnosis. 

Net h u t s  1 

Fault Diagnosis 

Normal 

Pressure conmol subsystem 

Flow control subsystem 

Cooling coil subsystem 

Mixing box damper subsystem 

Table 2. Normalized stage two ANN training patterns for the cooling coil subsystem 
fault diagnosis. 

Net I n ~ u t s  I 

Net Outputs 

1 0 0 0 0 0 0  

0 1 0 0 0 0 0  

0 0 1 0 0 0 0  

0 0 0 1 0 0 0  

0 0 0 0 1 0 0  

0 0 0 0 0 1 0  

0 0 0 0 0 0 1  

Fault 
Diagnosis 

Normal 

Temperature sensor failure (fault #5) 

Temperature sensor failure (fault #6) 

Temperature sensor failure (fault #7) 

Pump failure (fault #3) 
Control valve failure (fault #4) 

Control valve failure (fault #4) 



Table 3. Measured and normalizedt residuals for the stage one ANN 

Fault 
- 

#1 

#2 

#3 

#4 

#5 

#6 

#7 

#8 

#9 

#10 

#11 

System Operation 

Normal 

Supply fan failure 

Return fan failure 

Pump failure 

Valve failure 

Temperature sensor 
failure 

Temperature sensor 
failure 

Temperature sensor 
failure 

Pressure mansducer 
failure 

Supply flow station 
failure 

Return flow station 
failure 

Recirculation damper 
failure 

L 

! For the fault cases, measurements are made 900 seconds after the occurrence of a fault 
Values in bold are used for normalization. 



Table 4. Measured and normalizedt residuals for the stage two ANN. 

- 

Fault 
- 

#3 

#4 

#6 

#7 

#8 - 

System Operation 1 R ~ ~ l  

Pump failure 

Valve failure 

Temperature sensor failure 

Temperature sensor failure 

Temperature sensor failure 

Measurements are made 900 seconds after the occurrence of a fault. Values in bold are used 
for normalization. 

Table 5. Classification results by the stage one ANN for the data in Table 3. 

System Operation Output Pattern 

Supply fan failure 

Return fan failure 

Pump failure 

Valve failure 

Temperature sensor 
failure 

Temperature sensor 
failure 

Temperature sensor 
failure 

Pressure uansducer 
failure 

Supply flow station 
failure 

Return flow station 
failure 

Recirculation damper 
failure 



Table 6. Classification results by the stage two ANN for the data in Table 4. 

- 

Fault System Operation 

Temperature sensor 
failure 

Temperature sensor 
failure 

Temperature sensor 
failure 

Pump failure 

Valve failure 

Output Pattern 

Exhaust Air Flow Return 

4 

. . .......... J ............................... : : 
Outdoor Air I I -------------- 

Damper 
r 1 

- - - - - - - Control Signal 
............. Sensor Signal 

Temperature 
o n o e r  1 1 CPZZ 1 

Figure 1. System model for a VAV AHU. 



Subsystem Equipment and Sensors 

Pump (Fault #3) 
C o o h g  

Ttuee-way Control Valve (Fault #4) 

Temperature Sensor (Fault #5, #6, and #7) 

Pressure Supply Fan (Fault #1) 

-(-- Pressure Transducer (Fault #8) 

Return Fan (Fault #2) 

Control Supply Fan Flow Station (Fault #9) 

Return Fan Flow Station (Fault #lo) 

L Mixing Box 
Damper Dampers (Fault #l 1) 

Figure 2. Subsystem fault classification. 

Residual 
Values 

r----- 

ANN 
to classify First 
Subsystem Stage 

Subsystem 

L----- 
Classification , ------- ------------ ---------------- 

;I I I 

Second to Diagnose 
Subsystem#l Subsystem#2 Subsystem#3 Subsystem #n 

1 2 ... m, 1 2 ... m2 1 2 ... m3 1 2 ... m, 

Figure 3. Two-stage ANN for fault diagnosis of an AHU. 
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Figure 4. Schematic diagram of the cooling coil and cooling coil valve subsystem. 

Figure 5. water pump fault. 
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Figure 6. Supply air temperature sensor fault: complete failure. 
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Figure 7. ANN output for diagnosis of complete failure of the supply air temperature sensor. 
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Figure 8. Sensor recovery for complete failure of the supply air temperature sensor. 

Figure 9. Supply air temperature sensor fault: 5OC offset due to contact with duct. 
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Figure 10. Sensor recovery for 5OC offset of the supply air temperature sensor. 
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Figure 11. Supply air temperature sensor fault: I0C offset due to degradation. 
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Figure 12. Sensor recovery for 1 OC offset of the supply air temperature sensor. 

FIGURE CAPTIONS 

Figure 1. System model for a VAV AHU. 

Figure 2. Subsystem fault classification. 

Figure 3. Two-stage ANN for fault diagnosis of an AHU. 

Figure 4. Schematic diagram of the cooling coil and cooling coil valve subsystem. 

Figure 5. Chilled water pump fault. 

Figure 6. Supply air temperature sensor fault: complete failure. 

Figure 7. ANN output for diagnosis of complete failure of the supply air temperature sensor. 

Figure 8. Sensor recovery for complete failure of the supply air temperature sensor. 

Figure 9. Supply air temperature sensor fault: 5OC offset due to contact with duct. 

Figure 10. Sensor recovery for 5OC offset of the supply air temperature sensor. 

Figure 11. Supply air temperature sensor fault: l0C offset due to degradation. 

Figure 12. Sensor recovery for 1°C offset of the supply air temperature sensor. 
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ABSTRACT 

The main of this paper is to develop 
fault detection modules for BEMS (Building Energy 
Management Systems), a software to aid building 
operators in detecting and diagnosing faults in 
HVAC systems. The fault detection modules 
proposed are based on two fundamentally different 
approaches based on component models: physical 
models and neural network. These modules using 
these two approaches are illustrated for a cooling 
coil of an Air Handling Unit. The parameters to be 
observed, the threshold (the limit over which the 
fault is considered), the sampling interval and the 
values of energy overconsumptions are established. 
The modules are then tested using data bases (no 
fault, fault) obtained from simulations of an HVAC 
system. 

1. INTRODUCTION & BACKGROUND 
A "fault" is defined as being a failure or 

unacceprable change in a property of a system or  
one of its components. One can distinguish three 
major types of faults: complete failure, malfunction 
and degradation. 

T o  address these three types of faults standard 
fault identification (FD) methodology is built on two 
independent foundations: fault detection and fault 
diagnosis. In the first stage, the presence of the fault 
is detected and in the second the fault is located. 

More specifically in the first stage, all the 
components with largest percentage of faults are 
identified. In [I], the analysis of causes of failures 
in different stages of an HVAC insrallation (design. 
assembling, commissioning, plant, equipment, 
operation, maintenance and training of the 
operators) was presented. The conclusion of [l] was 
that 29% of the faulrs result during the design stage, 
21% in the maintenance stage, 12% in the 
assembling srage; all other stages provide faults in a 
proponion inferior or equal to 10%. 

The classification of the components according 
to the number of faults is made by splitting up the 
HVAC system into sub-systems: ventilation, mixing 
section, air conditioning plant, cooling and heating 
plant, recuperation, air distribution, control system, 
safety installations and the sub-systems in 
components. For example, the air conditioning is 

further split up into: cooling coil, heating coil and 
humidifier. The conclusion was that 33% of failures 
were caused by the heating and cooling plant, 14% 
by safety installations, 11% by ventilation and 10% 
by mixing section, all other systems being inferior to 
10%. Carrying on this analysis down to the 
component level, the results are as follows: 8% of 
faults are provided by the humidifier, followed by 
fans and chiller with 7% and finally the water 
system with 5%. 

With the above classification the next problem is 
the choice of a fault identification scheme. The 
criterion for a particular FD scheme in BEMS 
should consider both robustness with respect to 
changes in the components and also generalize 
easily to other components and faults. In panicular, 
the main issue is modeling the components. For 
example, in 1121, fault identification using physical 
models supposes the description of the phenomena 
by heat and mass balance equations. 

In an alternative approach, [3] ANN (Artificial 
neural networks are used for components for which 
detailed models are not available or are not easy to 
explain from a physical point of view. 

1.1 PROBLEM STATEMENT 
In this paper, two fault detection modules based 

on physical models and a ANN are developed and 
compared for an Air Handling System. 

Comparison between the two methods of fault 
detection is made for two components of the Aii 
Handling Unit: the mixing section and the cooling 
coil. In this paper, the methodology is illushated 
only for the cooling coil. 

2. SYSTEM DESCRIPTION 
The Air Handling System (single zone fan 

system) is illustrated in Fig. 1. In its most basic 
configuration, the Air Handling System provides 
constant volume, forced air heating and cooling for 
a single zone. (containing a heating coil, a cooling 
coil, filters (not shown), and a supply fan.) Normal 
operation assumes a mixed flow during the 
occupation period, between 7 a.m. and 8 p.m. 
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Figure I .  ~Ehematic of Air Handling System 

It is further assumed that the quantity of outside 
air varies from "minimum required hygienic air", 
passing through "optimal mixing" to "all Fresh air". 
The damper adjustment is driven by indoor 
temperature: its upper limit position is all-outside- 
air and its lower limit position is a mix of returned 
air with minimum required hygienic air. 

The control of the cooling coil keeps the outlet 
temperature of the air constant for the same outdoor 
conditions. 

3. FAULTS CONSIDERED 
For the cooling coil, we considered two types of 

faults: fouling on coil fins and scale in coil tubes. 
The fust fault leads to a reduction in overall heat 
uansfer coefficient on the air side and the second 
fault to a reduction in overall heat transfer 
coefficient on the water side. 

The cooling capacity decreases due to the fact 
that the heat fransfer become gradually worse in 
both cases. As a result, the characteristic of the 
aeraulic system changes, hence changing the 
operation point The principal change is in the fan, 
in the case of 'fouling on coil fins' or the pump, in 
the case of 'scale in coil tubes', will operate at part 
load ratio. Hence, on the air side the fan's elecmcal 
consumption increzses or, on the water side, the 
pump's elecmical consumption increases as does the 
total energy consumption in one case or in another. 

4. FAULT IDENTIFICATION 
Both fault identification modules use the same 

measured values: the inlet air conditions (mass flow 
rate, temperature, and humidity ratio), the inlet 
water conditions (mass flow rate, temperature) and 
the outlet conditions of air and water. However 
some differences do exists. For example, the fault 
identification method using neural networks uses the 
cooling load, calculated on water side, therefore a 
combination of water parameters; meanwhile the 
fault identification method using physical models 
uses the water parameters one by one 

(independently). Another is the fault identification 
scheme using physical models needs information 
about fan and pump energy consumption. 

In the case of ANN, it is necessary to condition 
the dara first [ I l l .  The results of usual sensor 
measurements in a AKU, which includes flow rates, 
temperatures, humidity ratios, pressures, can vary 
significantly in magnitude and therefore must be 
appropriately conditioned. Consequently, 
normalized deviation values were used for the 
parameters. Calculation of the normalized deviation 
of a variable consists of taking the difference of the 
actual value and the average value of the variable, 
then dividing it by the average value. This dara 
conditioning method produces the desired effect of 
scaling all the process variables within a similar 
range, mainraining the qualitative relationship 
between them. 

5. FAULT IDENTIFICATION USIh'G 
PHYSICAL MODELS 

5.1. Descrimion o f  the method 
The fault identification using physical models 

relies on the comparison between the predicled 
values of different variables and the measured 
values of the same variables. The predicled values 
are the outputs of a physical model using measured 
values. The fault identification uses "if-then rules" 
and information concerning the other components 
called "complementary information" (energy 
overconsumption for example: see Section 5.4). This 
kind of information is needed during the diagnosis 
srage. When the deviation between predicted and 
measured values (temperature, humidity ratio) is 
larger than a certain threshold, the presence of a 
fault is declared. For the diagnosis, this kind of 
information is too poor the complementary 
information is then used. 

5.2. Asswn~tions 
The basic assumption is that the coil is operating 

under steady srate conditions i.e. the coil dynamics 
are much faster that the other system components. 
Statistical methods [6], [5 ] ,  [13], [I41 based on 
statistics tests of mean, variance and slope [4], [7] 
were used in order to esrablish the time intervals 
when the coil is operating under steady srate 
conditions. 

The algorithm calculates the outlet water 
temperature, air dry bulb temperature and humidity 
ratio for a coil with a completely wet fin surface. 
The coil is considered to be operating under "all 
wet" surface conditions if the surface temperature at 
the air inlet is lower than the inlet air dew-point 
temperature. Under wet conditions, the steady state 
air and water conditions can be determined using 



standard heat exchanger effectiveness relationships 
based on enthalpies rather than temperatures. 

The resistances to enthalpy hansfer are 
computed in terms of conventional heat transfer 
coefficients, fin efficiencies. and "fictious enthalpy" 
parameters as described in Threlkeld [8]. 

5.3 Statistical rnerhod to determine sreadv - 

This statistical method implies three steps. First, 
each variable was considered separately with the null 
hypothesis that there was no difference in the 
variances from one period to the next. This was 
tested by the Fisher test on the ratio of the estimates 
of the variances from two successive periods. In 
cases where there was no sigruficant ditference 
between successive variances, the variances were 
pooled. 

The Student test was then used to compare means 
of each measurement in successive periods, to find 
periods of apparent steady-state. Clearly it is 
suficient in order to establish an unsteady-state to 
find a significant change in the mean of any 
measurement from one period to the next. To 
establish steady state, it is necessary but not 
sufficient to find a sequence of periods with no 
signirtcant changes in the means of all 
measurements, since a trend could occur with small 
enough changes from one period to the next to 
escape statistical detection. 

For each pair of time periods in succession, the 
means were tested against the null hypothesis that 
they are equal. If the null hypothesis could not be 
rejected, that pair was recorded as forming part of a 
sequence of periods in apparent steady state. As soon 
as a pair of means was found which had changed 
sigruficantly-, if the earlier of the pair of periods 
already formed part of a sequence in apparent steady 
state, it marked the end of that sequence. Otherwise, 
the earlier period was flagged as unsteady sate and 
in either case, the next pair of periods was 
examined. Any sequence of two or more successive 
time periods which remained unflagged were then 
considered to be in apparent steady state. 

For each sequence of three or more periods of 
apparent steady state, we found the slope of the 
means of each measurement versus time from the 
first period to each later period. We then tested the 
null hypothesis that each slope was zero by a Student 
test. If any test failed, the sequence was shortened 
by excluding the subset of periods with sigruficant 
slope. The sequence was either reduced to zero 
duration, or there remained a sub-sequence which 
was deemed to be in steady state. The slope test was 
intended to prevent slow monotonic trends and 
cyclic patterns from being taken as steady states. 

5.4. Al~orirhm 
The in~uts  and ournuts for the coil model are 

schematically represen& in Fig .  2. 
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Figure 2 .  Coil model 

Enthalw based heat-uansfer calculations for a 
wet surf& use the fundamental relationship 
between heat transfer, enthalpy and capacity. 

9. = c, . (ha, - h,) 

s . = c ; ( h  ,,,a, -h_, ,)=&c;(r ,- t , , )  
(1) 

where the capacity rate of the two fluid streams are: 
C, = m, 

C c = m  .L (2) 
C p m  

cRsot is calculate using the specific heat of dry air, 
the specific heat of water vapour and the humidity 
ratio of saturated air: 
Cp.s.r = C, + W,, . C" . (3) 

The outlet air enthalpy and the enthalpy of 
saturated air at the water temperature can be 
determined by modeling the coil as a counterflow 
heat exchanger [12]. However, since the heat 
transfer calculations are performed based on 
enthalpies, the overall heat transfer coefficient is 
based on enthalpy potential rather than temperature 
potential. Under this assumption, a wet coil , local 
heat nansfer and the corresponding overall heat 
transfer coefficient between the air and water are 
calculated by the following: 

9 = K S , . ( h , - h , , , )  (5) 
The fault identification model compares the 

predicted values of the outlet variables, calculated 
with the algorithm that had been presented, with the 
measured values of the same variables. The 
measured values are noted with an apostophy (') in 
the following identification scheme. 
Complementary information concerning the energy 
consumption (i.e. overconsumption of the 
circulation pump and overconsumption of the fan) is 
considered, as illusuated in Fig .  3. 
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Figure 3. Fault identification model. 

An example of one of the rules used in the above 
scheme is: the measured value of the air temperature 
exiting the coil, Tas is less than the expected value, 
Tas'(calcu1ated with the algorithm). The 
explanation of this rule is that the considered faulls 
(fouling, scaling or freezing) are sufficient to 
prevent the set-point being strained. 

5 5 .  A~~licarion 
This application of fault identification shows 

what kind of parameters are considered for fault 
detection. For example, outlet dry bulb 
temperature, the aifs humidity ratio and cooling 
capacity were chosen to illustrate the consequences 
of each simulated fault. Hourly values of these 
parameters for a summer month (July), more 
precisely on 28th of July when the outside air 
temperature takes its maximal value 3I0C at 4 p.m. 
are analyzed. 

In the following examples, measurements for 
correct operation of the plant, called "reference 
values" (normal behavior), are compared to 
measurements for a non-optimal operation (failure). 
The last kind of operation is due to the appearance 
of the fault. 

Both curves are obrained by simulation with 
DOEL. The DOE2 cooling coil model used is a 
bypass factor model. 

The first simulated fault of the coil is the scale 
in the tubes. The effect of this fault is a decrease in 
the overall heat transfer coefficient between air and 
water, on the water side. 

The reason is that scale in the tubes introduces a 
supplementary thermal resisrance. The decrease in 
overall heat transfer coefficient leads to a decrease 

in heat transfer. Therefore on the water side the 
mass flow rate decreases resulting in less heat 
absorbed by the water. On the air side the mass 
flow rate remains constant but the difference of 
enthalpy decreases increasing the outlet air 
temperam and humidity ratio (Fig. 4). 

Figure 4: Influence of the overall heat transfer 
coefficient decrement. 

In Fig. 4, the line AB, represents the cooling 
provided by the coil before scaling. In this case the 
difference of enlhalpy is Ah,. After the introduction 
of scaling. the quantity of cooling becomes AB, 
with a corresponding difference of enthalpy Ah,. 
~onsequentl) the outlet temperature and humidity 
ratio increase as does the surface temperature of the 
coil. Meanwhile as the scaling increases (line AB> 
the difference of enthalpy on air side, Ah, decreases 
which yields to a decreasing of the oudet air 
temperature and surface temperature of the coil. 

The example in Fig. 5 shows the variation of the 
outlet air humidity ratio in this case. Note that, 
generally, the measurements of humidity may be 
reliable within about + 3% relative humidity for 
ordinary rooms temperatures under equilibrium 
conditions [8]. 
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Figure5. Scale in coil tubes evolution of the 
humidity ratio of air leaving the coil. 

The results concerning the observed parameters, 
thresholds, the sampling interval and values of 
energetic overconsumptions are given in Table 1. 



The cooling capacity decreaes and the energy 
consumption increases by 2% in the case of 
reduction in heat uansfer coefficient of 6%. 5% for 
16% reduction ,7% for 26%. 

The second simulated fault is the fouling on coil 
fms. The heat transfer between air and water 
diminishes due to the decreaing of overall heat 
m s f e r  coefficient on air side. 

The parameters considered for illustrating the 
effect of the fault are: the outlet temperature and 
humidity ratio , the cooling coil capacity and the fan 
electrical consumption. 

The hourly variations of the leaving air 
temperature is illustrated in the Figure 6. 

Tigure 6. Fouling on coil fins - evolution of the a i ~  
temperature leaving the coil. 

A reduction in the overall heat transfer 
coefficient on air side of 20% (curve kal) leads to a 
difference of temperature of 0.8"C between 
measured and reference values, which can not be 
detected. Meanwhile a reduction of 53% ( c w e  
ka2) of the overall heat transfer coefficient on air 
side determines a difference of temperature of 
2.7"C, which is now measurable. A decrease of the 
overall heat transfer coefficient on air side of 66% 
induces a variation of temperature of 4'C ( c w e  
ka3). The temperature variation can be detected 
beginning by a reduction in the overall heat transfer 
coefficient on air side of 25%. 

The fouling determines also a modification of. 
aeraulic characteristic of the system, the operation 
point changes and the fan operates at part load ratio 
leading to a waste of energy at the fan level. 

The results concerning the observed parameters, 
thresholds, the sampling interval and values of 
energy overconsumption are also given in Table I. 

Table 1. 
Obs: 1) The scale in coil tubes is a fault that can 
be detected starting by a diminution of 10% of the 
overall heat transfer coefficient on water side. 

2) The fouling on coil fins is a fault that can 
be detected starting by a reduction of 25% of the 
overall heat transfer coefficient on air side. 

3) Note that the number of observed 
parameters is larger than proposed in the 
identification scheme. Some of them can not be 
measured in practice. However, the fact that the 
data are provided by simulation allowed us lo 
observe their evolution. 

4) The values of the energy consumption 
are given only for the summer period. An 
augmentation of 10% in summer does not imply the 
same thing in winter. 

5) It is considered that the temperature 
threshold is 1°C. Only the values superior to this 
threshold are taking into account for fault 
identification. 

6. FAULT IDENTIFICATION USING 
ANN MODEL 

6.1. Descri~don of the method 
The proposed fault identification methodology 

using ANN, supposes two stages [3], [9] ,  [lo]. 
Fist, the ANN learns the ~ r m a l  operation of the 

equipment. In this case, the ANN is mined and 
tested with data bases containing values of various 
parameters in the absence of fault. Note that this 
stage supposes two different operations: the learning 
and the testing of the network. Both are made with 
data bases representing the behavior without fault of 
the system, but not with the same. For example, in 
the coil case. the !mining is done with hourly values 
for the months of May and July and the testing with 
hourly values for the others months (August or 
September). 

Second, the ANN is tested with an actual 
measured data base. The fault detection is based on 
the comparison between the outputs of the ANN for 
the normal operation with the outpuls of the ANN 
for the actual measured data base. If the two sels of 



outputs are different, we conclude that there is a 
fault. 

After each test of the ANN, a representation of 
the predicted output versus real value is plotted. 
When the equipment is operating normally, the 
values fmm the testing data base are dismbuted in 
the proximity of the first bisecmx. When fault is 
present, the dismbution of the testing data base 
values presents w i c a l  deviation from the first 
bisechx (Fig. 7). 

mdinod m,did*.lhs [*I m d i ~ o d r n ~ & l * l  

Figure 7 .  Representations of a predicted value 
versus a real value of an parameter. 

6.2. Assumptions 
The training of the ANN raises the problem of 

availability of data bases [9], [IS]. In this approach, 
a minimum of 744 data pairs is needed for training. 
It is also important that these data corresponds to all 
possible situations of system operation. In the case 
of the cooling coil, the dam used for training contain 
the hourly values of a month of mild weather. 
Suppose that only the month of August was chosen; 
in this case, the cooling coil operates in the most 
cases at maximum load. If the ANN is tested with 
the data bases for September, we note that the 
training was not efficient, because these data 
contains more operation situations than the training 
data. 

6.3. Structure o f  the ANN 
The ANN used for the fault detection in cooling 

coil has the following structure: 4 inputs, 3 outputs 
and 2 hidden layers containing 7, respectively 5 
neurons (Figure 8). The inputs are the inlet air 
temperature, humidity ratio, mass flow rate and the 
cooling load. The outputs are the outlet air 
temperature and humidity ratio. 

Our generalized delta rule with backpmpagation 
was used with a learning rate E ,  of 0.9 and a 
momentum, p of 0.1. A convergence criteria of 0.1, 
defined as the allowable difference between the 
actual output of a neuron in the output layer and the 
desired or target output. was used to determine the 
extent of funher network mining required. 

6.4 A ~ ~ l i c a r i o n  
F i t ,  the ANN was trained under normal 

operation. For an efficient mining, the data base 
must include the largest possible number of 
operating situations (the above mentioned months 
were chosen according to this purpose). The training 
dam base contained hourly values for two months: 
May and July. The ANN was then tested using a 
dam base for the month of August. 

Next the ANN was tested using data bases 
representing faults: scale in coil tubes and fouling 
on coil fins, assuming various degrees of fouling and 
scaling. It may be seen that the deviation of the 
outputs with respect to the first bisecmx increases 
(Fig. 9). 

Figure 8. ANN for cooling coil. 
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Figure 9. Increase of outputs deviation with respect 

to the f i s t  bisectrix due to the fault. 

Fig. 9 is an example of the resulting graphical 
representations after the testing. The first graph 
represents distribution's of air temperature leaving 
the coil during the normal operation. In this graph 
the data base used for testing was the training data 
base. The distribution of the parameter is close to 
the first bisectrix (dashed line). The second graph 
represents the distribution of the same variable when 
fouling occurs determining a reduction in 53% of 
the overall heat uansfer coefficient Note that the 
distribution is no longer close to the bisectrix. The 
third graph represents the outlet air temperature 
distribution's when scaling occurs and a reduction in 
26% of the overall heat transfer coefficient on water 
side is considered. 

The relation between the evolution of the outlet 
parameters and the fault aggravation is given in the 
Table 2. 

Table 2. 

CONCLUSIONS 
One of the limits of using a physical model for 

fault identification in the coil case is that detailed 
information about the coil geometry is needed (heat 
transfer coefficient). For the neural networks data 
bases are needed. 

Our results for fault identification with physical 
models, show hat  'scale in coil tubes' fault can be 
detected with a reduction in 10% of the overall heat 
transfer coefficient on the water side and the 'fouling 
on coil fins' for a reduction in 25% of the overall 
heat transfer coefficient on the air side. 

Values of the energy consumption are given for 
the summer period for different degree of fault 
(table I) with the precaution that an augmentation of 
10% in summer does not imply the same thing in 
winter. 

A fault detection method based on neural 
networks has been developed. 

The training time consists of 400 000 iterations 
in the coil case. The time is given in terms of 
iteration rather than specific durations, as actual 
physical training times are. dependent on the speed 
of the computer used for training. 

These two kinds of approaches have been tested 
using simulated data. The simulations are. provided 
with DOE2 [2]. There are two kinds of data: data 
representing the normal operation of the system and 
data representing faulty operation of the system. 
The simulation of faults is introduced in DOE2 input 
files modifying the suitable parameters. Long term 
simulation data (yearly hourly values) and short 
running time are some of the advantages of choosing 
DOE2. 

FUTURE WORK 
A method of diagnosis using neural networks is 

under study. The training in this case uses data 
bases representing faulty operation of the system. A 
fault type is assigned to a panicular output neuron 
which value is use to determine fault magnitudes. 

If data base provided by simulation m l s  are 
used, the simulation period for a certain value of 
overall heat transfer coefficient had to be increased, 
because in fact the fouling on the coil and the scale 
in tubes are. long-lasting phenomena. Until now, the 
simulated data were "non-continuous" because the 
data bases were created for different degrees of the 
fault. A future issue will be to take into account 
data describing the time evolution of the fault. 
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NOMECLATURE 
- C, = air-side capacity rate @&) 
- C, = water-side capacity rate @&) 
- ha, = entering air enthalpy ( J k )  
- ha = leaving air enthalpy ( m )  
- me =entering water mass flow rate @Us) 
- ma = dry air mass flow rate @g(da)W 
- = entering dry bulb temperamre PC) 
- 1, =leaving air temperature ("c) 
- woe = entering air humidity ratio @g/kg da) 
- wU =leaving air humidity ratio @g/kg a) 
- 1,* = enrering water temperature PC) 
- 1, = leaving water temperature ("C) 
- c, =specific heat of air = 1006 ( J k " c )  
- c, = specific heat of water vapor = 1830 (J/kgO)C 
- C, = specific heat of water = 4 186 (mg"c) 
- KSh= overall enthalpy heat transfer coefficient 

@m 
- "esat"= "fictious enthalpy" (enthalpy of saturated 
air evaluated at the liquid chilled water temperature) 

- 

' ~ n n e x  25 "Real simulations of HVAC Systems for 
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International Energy Agency. 



Presented to the IFAC workshop on On-line Fault Detection and 
Supervision in the Chemical Process Industries, Newcastle, pp. 
203-235, 1995. Authors retain the copyright. 

ON-LINE FAULT DETECTION A N D  DIAGNOSIS 
USING FUZZY MODELS 
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Abstract: T h e  paper  describes a new fuzzy model-based m e t h o d  of faul t  
detection a n d  diagnosis. T h e  method  uses t h e  principle of fuzzy matching 
t o  compare  t h e  rules of a f u z z y  model identified on-line describing t h e  actual  
operat ion of t h e  sys tem t o  each of t h e  rules of a se t  of reference models 
which describe t h e  fault-free a n d  faul ty  operation of t h e  sys tem.  T h e  
method  accounts  for any ambiguity,  which may  result f rom fault-free a n d  
faul ty  operat ion,  o r  f rom different faults ,  having similar s y m p t o m s  a t  some  
opera t ing  points.  Results a r e  presented which demons t ra te  t h e  use of t h e  
scheme to detect  a n d  identify faults  in a heat ing sys tem in  a large  building. 

Keywords: faul t  diagnosis, fuzzy logic, fuzzy models 

1.  INTRODUCTION 

Many of the existing fault detection and diagnosis 
(FDD) schemes use mathematical models to 
describe the behaviour of the plant. These models 
are used to predict the  behaviour of the plant 
if i t  were in a number of possible operating 
states. The predictions are then compared with 
measurements of the  plant's actual behaviour 
to produce residuals. However one problem 
associated with rhis approach is that ,  in practice, 
i t  is almost impossible lo oblain a model that  
exactly matches the  process behaviour. Mismatch 
between the model and the plant will lead to non- 
zero residuals which can cause false alarms unless 
appropriate thresholds are used. Also when the 
system under consideration is nonlinear, selection 
of appropriate thresholds may be quite difficult 
since the accuracy of the model will depend on 
the operating conditions and the value of the 
threshold must vary with operating point (Sauter, 
et  a]., 1994, Schneider and Frank, 1994). 

Fuzzy systems or more specifically Inzzy models 
can be used to take account of the ul~certainties 

and imprecision associated with modelling the  
behaviour of a complex and ill-defined system 
(Sugeno and Yasukawa, 1993). A fuzzy model 
is a representation of the essential features of 
a system. I t  is based on the concept of fuzzy 
partitions of the information and operates with 
fuzzy sets instead of numbers. Fuzzy models 
can easily include whatever expert knowledge is 
available about the symptoms of faulty and fault- 
free operation of the system, and there has been 
increasing interest in their use in FDD schemes 
(Vachkov and Matsuyarna, 1992; Terpstra, et  al., 
1992; Linden, et al.,  1994; Maruyamaet al., 1995). 

In this paper, a fuzzy method of diagnosis which 
can be applied to ill-defined systems is presented. 
This method uses explicit fuzzy models, generated 
from training data,  t o  describe the symptoms of 
both faulty and fault-free operation. The fuzzy 
models are produced by combining information 
extracted from measured da ta  with whatever 
expert knowledge is available about the  system. 
A iuzzy matching scheme is used to compare the 
parameters of an on-line fuzzy model generated 
from normal operatiug da ta  with those of the 



fuzzy reference models 

The organisation of the paper is as follows. 
Section 2 describes the fuzzy fault diagnosis 
scheme, introduces the concept of fuzzy matching 
and explains how it can be used to evaluate 
the degree of similarity of two fuzzy models. A 
technique for evaluating the ambiguity, which 
occurs when fault-free and faulty operation, or 
different faults, exhibit similar symptoms at some 
operating points, is given. A method of using the 
similarity and ambiguity measures to generate the 
strength of the evidence associated with each of 
the different operating states is also described. In 
section 3, results are presented which demonstrate 
the use of the fuzzy FDD scheme to detect and 
identify faults in the heating system of a large 
building. Some conclusions are given in the last 
section. 

2. FUZZY FAULT DIAGNOSIS 

The reference models used in the proposed FDD 
scheme (see Figure 1) are identified using expert 
knowledge and training data generated from a 
simulated plant. Expert knowledge is used to 
determine the structure of the fuzzy models, or, 
in the case where there is no expert knowledge 
and only input-output training data are available, 
the structure of the reIationships between the 
variables, the shape of the membership functions 
and the number of the rules can be determined 
by clustering the data. Generic reference models 
which describe the underlying behaviour of a class 
of plants of similar design can also be used if 
it is impossible to obtain detailed information 
about the particular plant under test (Dexter and 
Benouarets, 1995a). One of the fuzzy reference 
models describes the fault-free operation of the 
system, the others describe the behaviour of the 
system in the presence of specific faults. 

Each fuzzy reference model is a qualitative 
description of the relationship between input- 
output variables in the form of IF-THEN rules. 
To generate the fuzzy models, the elements of an 
associated relational matrix are estimated using 
a simple fuzzy identification scheme (Xu and Lu, 
1987). Each entry in the relational matrix is 
a measure of the credibility (confidence) that 
the corresponding rule appropriately describes the 
behaviour of the system at  a particular operating 
point. 

The operating data are collected on-line from 
the actual plant, filtered using a moving-average 
filter and, if static fuzzy reference models are 
used, passed through an activity detector to locale 
portions of data where the system is in or near 
to steady-state (Dexter and Benouarets, 1995b). 
The data are then used to identify an on-line 

fuzzy model which describes the current behaviour 
of the system. The rules of the identified on- 
line fuzzy model are compared to those of the 
fuzzy reference models using fuzzy matching. The 
reference models are also compared to each other 
to account for any ambiguity which may result 
from fault-free and faulty operation, or different 
faults, having similar symptoms a t  some operating 
points. 

Expen Knowledge F u z y  on-line 

Fuuy Reference F u n y  Fault Dingomis 
Models 

Model 1 F u r y  Muchvlg 

Model 2 

Combirution 
Model K of evidsnss 

Figure 1: T h e  fault detection and  diagnosis 
scheme 

2.1 Fuzzy matching and levels of ambiguity.  

Lee et a]., (1992) define the degree of matching 
S(A, B)  between two discrete membership func- 
tions A and B (see Figure 2) as the proportion of 
A that  is contained in B where 

and n can be represented in fuzzy logic by the 
' m i d  operator. 

Figure 2: Fuzzy matching of two fuzzy sets 

The degree of similarity of fuzzy models can 
also be evaluated using an expression similar to 
Equation 1 if the fuzzy models are regarded as 
level-2 fuzzy sets (Sosnowski and Pedrycz, 1992) 
with discrete membership functions given by the 
credibilities of their rules (see Figure 3). Thus, 
a measure of the degree of similarity between 
two fuzzy models Mi and M, is expressed by the 



following equation 

where cM,(n) and cMj(n) are the credibilities 
of the nth rule in the fuzzy models Mi and 
M, respectively, and N is the number of rules 
compared. 

10 

Figure  3: Fuzzy ma tch ing  of t w o  fuzzy models 

The  value S(Mi,M,)  may be regarded as a 
measure of the extent t o  which the symptoms of 
the behaviour in the operating state represented 
by the fuzzy model Mi are similar t o  those of 
behaviour in the operating state represented by 
the fuzzy model Mj. Equation 2 can be used to 
evaluate the degrees of similarity between the on- 
line fuzzy model and each of the reference fuzzy 
models. Thus,  

for i = 1,2, ..., I< where M. denotes the on-line 
fuzzy model and I< is the total number of reference 
models (see Figure 1). T h e  value S(M, ,  Mi) can 
be used as an  indicator of the strength of the 
evidence that  the system is in the same state as 
that  described by the model Mi. 

Since most physical systems are nonlinear to 
some extent, situations may occur where, for 
example, two or more reference models exhibit 
common symptoms a t  some operating points. 
In this case nearly equal degrees of similarity 
are associated with more that  one state and 
it becomes practically impossible to distinguish 
between different faults or between correct and 
faulty operation at those operating points. T o  
avoid this problem, additional sensors can be 
introduced t o  discriminate between different faults 
(Vachkov and Matsuyama, 1992). However, for 
economic and teclmical reasons, the installation of 
additional or different sensors is often not feasible 
in practice, and alternative solutions must be 
considered. The  approach proposed here is to 

evaluate the levels of ambiguity by calculating 
the maximum degree of similarity between the 
on-line model and a particular reference model, 
and each of the other reference models. This 
value can then be subtracted from the degree of 
similarity calculated in Equation 3 to eliminate 
the ambiguous component. Thus, 

where c(n) = m~z:=~ , ,+~c~ ,  (n)  and m({Mi}) is 
the unambiguous strength of  the evidence that  the 
system has symptoms similar t o  those of model 
M,. The aboveequation may be written in a more 
compact form as 

where 

and is the total ambiguity associated with the 
state { A & } .  

The on-line model M, will have similar symp- 
toms to two reference models Mi and Mj  if 
S(M,,  Mi,  M,) # 0 for any i or j such that ( i  # j) 
where, 

In this case, the unambiguous strength of the 
evidence m({M;, Mj}) tha t  the system is in either 
the state described by the model Mi or by the 
model M, is given by, 

where the total ambiguity Amb{M,,Mj) associated 
with the state {Mi, M,} is given by, 

and c(n)  = CM, (n). The degree of 
similarity between the on-line model and three 
or more reference models can be evaluated in the 
same way. 

The  values of the unambiguous strength of the 
evidence m(.) can be used as normalised basic 
assignments (lilir and Folger, 1988) since the 
method of evaluat.ion ensures tha t  the following 
conditions are satisfied: m(.) = 0 indicates no 
evidence; m(.)  = 1 indicates complete evidence; 



0 5 m(.) 5 1 and C{MIEG m({M)) 5 1, where a 
is the frame of discernment. 

2.2 Combinat ion of evidence. 

Consider the case where the fuzzy FDD scheme 
includes only three fuzzy reference models, M I ,  
Mz and M3. The  similarity of the  on-line 
fuzzy model with all possible individual and 
composite events must be evaluated, where in- 
dividual events are associated with particular 
faults or correct operation and composite events 
are associated with the union of two or  more 
indiuidual events. In this example, the events are: 
{MI}, {M?),  {M3),  { M l r M z ) ,  { M i , M 3 I r  
{M?,M3) and { M I , M ? , M ~ ) .  

The  frame of discernment a when there are li 
reference models M 1 ,  Mz, ..., MK (where MI  is 
the model of the  correct operation and the  rest 
K - 1 models each simulating the operation of 
the system in the presence of a particular fault) is 
given by, 

where the event { M u )  is associated with observed 
symptoms tha t  are dissimilar to those of any of 
the reference models (see Figure 4). The strength 
of evidence tha t  the  system is in an unrecognised 
s ta te  {Mu) is given by 

In those cases where all combinations of possible 
faults are not considered, CIMIs4 m({M))  is 
strictly less tha t  1, and the remaning evidence 
is assigned t o  the  event { M I ,  M?, ..., MK).  

The  total number of possible events, N , ,  when Ii' 
reference models are used is given by 

where p i s  the  number of reference models associ- 
ated with each event. T o  avoid the computational 
complexity associated with combining evidence 
when a great number of fault models are consid- 
ered, the diagnosis can be  restricted t o  indiuidual 
events or, if prior knowledge about the  fault 
symptoms is available (Gertler and Anderson, 
1992), restricted t o  include only composiie events 
which are associated with faults that  have similar 
symptoms. 

Values of the normalised basic assignments are 
computed each t ime an on-line fuzzy model is 
identified. Since the model will be identified a t  
different operating points, it may be assumed 

that  the evidence is obtained from different 
sources, and the Dempster rule of combination 
(Klir and Folger, 1988) can be used t o  combine 
new normalised basic assignments m? with values 
obtained previously m , .  Thus,  

where m,({R)) denotes the combined evidence 
associated with event {R) .  The  events {A),  {B)  
and {R)  can be either indiuidual or composite.  

The  diagnosis is based on the degree of belief, Bel, 
t ha t  the system is in a particular s ta te  or in one 
of a group of possible states, where 

F igure  4: Representa t ion of t h e  f a u l t  space  

3. A PRACTICAL APPLICATION 

T o  demonstrate i ts  applicability and effectiveness, 
the fuzzy fault diagnosis scheme is used t o  detect 
and identify seven different operating modes in a 
detailed simulation of the heating system in a large 
building (Li, e t  al., 1995). The  following operating 
modes are considered: 

fault-free operation ( F l ) ,  
bad combustion in the burner of the boiler 

(FzL 
fouling in the heat exchanger of the  boiler 
(F3)1 
bad tuning of the controller, heating curve 
too low (F4),  
boost heating s tar t  time too early (Fs),  
boost heating s tar t  time too late (Fs) ,  
leakage in the three-way-valve ( F i ) .  

Simulation da ta  are  generated, for fault-free 
operation and for operation in the presence of each 
fault ,  over a period of seventy days. T h e  da ta  are 
divided into two groups. The  first group consists 
of d a t a  collected during the 35 odd days which 
are used to identify the fuzzy reference models. 
The  second group of da ta  collected during the even 
days are used for testing the FDD scheme. The  
raw data  collected over each day are reduced t o  a 



set of mean values which are representative of the 
operation of the heating system a t  different times 
of the day. 

The inputs of the fuzzy models are: the mean 
temperature of the water supplied by boiler 
during the boost period (06:OO-08:00), the mean 
temperature of the air extracted by the mechanical 
ventilation system at  06:00, the mean temperature 
of the air extracted by the mechanical ventilation 
system a t  08:00, the mean temperature of the air 
in the building measured between 18:OO-23:OO and 
the mean outside air temperature. The output 
of the fuzzy model is the mean temperature of the 
air extracted by the mechanical ventilation system 
during the occupancy period between 10:OO-18:OO. 

Fuzzy CMeans clustering (Bezdek, 1991) is used 
to determine the fuzzy sets for the input and 
output spaces. The clustering is performed indi- 
vidually on each of the variables using the training 
data from all the operating modes. As can be 
seen in Figure 5, the number of clusters for each 
variable is limited to a maximum of four. Fuzzy 
reference sets are constructed by approximating 
the clusters by triangular membership functions. 

The performance of the fuzzy FDD scheme is 
investigated using all seven test data sets. In 
this case, the diagnosis is restricted to indiuidual 
events only. The tests are numbered T I  to 
T7 corresponding to the operating modes FI to 
F7. Figures 6 and 7 show the variations of the 
normalised basic assignments and the degrees of 
belief for the test data corresponding to fault-free 
operation. The maximum values of the degrees of 
belief obtained during each of the tests are given 
in Table 1. 

Table 1 Maximum values of the degrees of belief (%) 

Reierence models 
Test FI F? F3 F, Fs Fs F; 
T I  99.1 1.3 0.0 15.9 13.3 0.5 0.0 

T2 0.0 99.9 0.4 1.7 0.3 0.0 0.0 

T3 0.0 0.0 99.9 0.0 0.0 0.0 0.0 
TI 0.0 0.0 0.0 99.9 0.3 0.0 0.0 

T5 0.0 0.0 0.0 0.4 99.9 O.? 0.2 

T6 0.5 0.0 0.0 0.0 0.0 100 0.0 
T7 0.0 0.5 0.0 0.0 0.0 0.0 100 

The fault condition is correctly diagnosed for each 
of the tests. However, the indoor temperature 
is unusually low on some of the days during test 
T I ,  and the controller fails to predict the correct 
time to restart the boost heating. On these days, 
the FDD scheme generates some evidence that 
the behaviour of the plant is similar to operating 
modes F4 and F5, even though the operatiou of the 
plant is supposedly fault-free. As can be seen in 
Figure 7,  the beliefs in operating modes F4 and Fs 
both decay to zero, as more evidence is collected 

that the system is operating correctly (see Figure 

6). 

0.5 
0 

3.1 4 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 
U r n  WIY* m v R M  

Figure 5: Clustering of the training d a t a  from 
all operating modes 

4. CONCLUSIONS 

A fuzzy diagnosis scheme which is suitable for on- 
line implementation in low-cost hardware is able 
to identify faults in ill-defined systems. Fuzzy 
matching can be used to generate normalised basic 
assignments if the ambiguity which arises from 
fault-free and faulty operation, or different faults, 
having similar symptoms is taken into account. 
Results have demonstrated that the scheme can 
successfully identify the different operating modes 
of a heating system in a large building. 
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ROUTINES FOR IMPLEMENTATION OF C EXPERT SYSTEMS 
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Delft, The Netherlands 

Abstract 

RICE stands for Routines for implemention of C Expen sys tem.  The idea of the software is to provide 
a tool for easy implementing small, but powerfull, (fuzzy) expert systems within C or C++ programs. The 
software is supposed to lake away all worries about the inference mechanism: the user provides the knowledge 
on a high level, but is still able to call plain C-code (or C++) from within the knowledge base. This means in 
fact that the user can build a program or a pan of a program in which the execution order of plain C-code is 
completely determined by the knowledge base which is inferred. 

In expert systems, the inference engine is not the critical pan; designing a functional knowledge base is the 
hardest part, which is a task of the expert system user. This paper presents an example of an expert system based 
on RICE. The example is based on the results of a TRNSYS simulation of a VAV system plant. 

1 INTRODUCTION 

The introduction describes the general properties of expert systems; expert system logic and reasoning will be 
discussed. Several common reasoning methods will be explained. However, the RICE implementation of the 
methods falls out of the scope of this paper. The RICE program, including instruction manual, is available on 
World Wide Web. 

Essential for the definition of expens systems is the seperation of knowledge and inference. Unlike other 
computer programs, an expert system has a predefined part, generally referenced to as the inference engine, and 
a variable part, referenced to as the knowledge base. An expert system can be described as 

expen system = knowledge base + inference engine 

In the following two sections, the knowledge base and inference engine will be discussed. 

1.1 THE KNOWLEDGE BASE 

The knowledge base of an expert system contains knowledge of a specific domain. For example, an expert 
system for medical diagnosis contains expert knowledge for a set of diseases. The knowledge is normally stored 
in the knowledge base using a symbolic representation, for example: 

if there is smoke then there is fire 

This representation is known as a production rule, or rule for short. Other representations are frames and objects. 
The main advantage of having a seperation between the knowledge base and the inference engine is the fact that 
an iterative development of the expert system is possible in a more naturaI way than in case of normal computer 
programs. The production rule is specificaly suitable for implementing heuristic knowledge. 



It is possible that the knowledge base contains knowledge about knowledge within itself; this is called meta- 
knowledge. Examples of meta-knowledge are rules which, when fued, will focus on a certain part of the 
knowledge base (focus of attention). Also possible is knowledge which adapts other knowledge within the 
knowledge base, for example, a rule which changes the degree of certainty of another rule. 

The knowledge base is filled with rules like the one in the example above and the inference engine will act on 
this knowledge base to obtain new information. The next section describes the inference engine in more detail. 

1.2 THE INFERENCE ENGINE 

The inference engine is the part of the expert system that is not changed by expert system developers. It is 
generally integrated with an expert system shell or toolbox. The main task of the inference engine is inferring 
new information using the knowledge base and (already) stored information. When we take the example from 
the previous section, the inference engine is able to infer the fact there isfire when the fact there is smoke is 
true, using the rule from the example. 

To be able to obtain new information using existing information and knowledge from the knowledge base, the 
inference engine needs logic, to be able to perform the task in a logical sense, and reasoning methods to use the 
knowledge base in a consisting way. Both aspects will be discussed in the following sections. 

1.3 REASONING AND SEARCH METHODS 

In the design of expert systems several reasoning and search methods can be chosen. It depends on the 
application which methods and techniques are used. More detailed information about the design of expert systems 
can be found in [Luger and Stubblefield 19891. 

In expert systems two main reasoning methods can be found: fowani and backward reasoning. Foward 
reasoning, also known as data-driven or bottom-up reasoning or chaining, uses initial data and infers new data 
from the known data. The inference of new data is done by applying rules from the rule base. The inference of 
new knowledge stops in case some predefined goal is reached or no new knowledge can be infered. Backward 
reasoning, also called goal-driven or top-down reasoning or chaining, starts with certain goals and in order to 
solve (read: prove) these goals their subgoals are tried to be solved. This mechanism repeats until no subgoals 
are present or the initial goals are solved. The combination of foward and backward reasoning in one inference 
engine within an expert system is possible, but not often used in practice. 

In addition to the above reasoning methods, three search methods can be distinguished: depth-tirst, breadth-first 
and heuristic search. The depth-first search method is normally used in combination with backward reasoning, 
the breadth-first method with foward reasoning. Whenever it is possible, depth-fmt search goes deeper into the 
search me. The search stops in case no lower levels within the serach net exist or a stop criterium is met. The 
breadth-first search method however, searches level by level within the search tree. The exploration of the next 
level of a search m e  is started in case in the current level no more states can be solved or a certain stop 
criterium is met. 
Heuristic search is applied to guide the search within the search nee and therefore can be seen as 
meta-knowledge: knowledge about knowledge. The best-first search method is an example of heuristic search. 
In this search method the 'most promising* branch of a search tree is chosen for further search. Confidence 
factors can be used to indicate which branch is more promising to lead to a satisfying result than others. 

1.4 REAL-TIME ISSUES 

Real-time behaviour is often easier to recognize than to define. As discussed in [O'Reilly 19??] many definitions 
of real time exist. Real-time is mostly related to 'fast': meaning that a system processes data quickly. A formal 
definition of real time is offered: 

a hard real-time system is defined as a system in which correcmess of the system not only 
depends on the logical results of a computation, but also on the time at which the results are 
prodiced. 



The most important item is the response time, if events are not handled timely, the process can get out of 
connol. Thus, the feature that defines a real-time system is the system's ability to guarantee a response before 
a certain time has elapsed, where that time related to the dynamic behaviour of the system. If, given an arbinary 
event or state of the system, the system always produces a response by the time it is needed, then the system 
is said to be real-time. Due to the real-time aspect the fuzzy expert system should be able to perform 
non-monotonic, temporal and progressive reasoning. Non-monotonic reasoning innoduces the ability to change 
already proven data and all the infered data that depend on it. Assumptions which later on in the reasoning 
process appear to be erroneous can be changed and all the data which depend those assumptions must be 
reexamined and possibly withdrawn from the data base. The reexamination of the data base is done by a 
mth-maintenance system [Doyle 19791. Non-monotonic reasoning is more like the reasoning of humans than 
monotonic reasoning is, in which previously added knowledge or data can not be reexamined. 

In case the expert system deals with past, present and future, it has to be able to outdate previous and accept 
new data as the time window connected to the present time is moving. This principle is called temporal reasoning 
[Krijgsman et al. 19911 and an essential aspect of real-time expert systems. 

Also an important aspect of the real-time expert systems is the progressive reasoning principle [Lattimer et al. 
19861. In case of progressive reasoning the rule base is divived in several layers, which are in fact also rule 
bases. The inference engine starts with the inference of the first layer and proceeds with the next (higher) layer 
in case the inference of the first layer is finished. Each layer is able to use the data inferred by the lower layers 

,as well as the rules within that layer. In case the real-time environment aborts the reasoning by means of an 
interrupt. the data infered by the last layer which completed its inference can be used. In this way the more time 
available, the 'better' the conclusions get. This aspect has also close resemblance to human reasoning. 

2 APPLICATION OF RICE TO A VAV SYSTEM PLANT 

The purpose of this example is to establish fault detection using RICE 4.0. Data was generated from a TRNSYS 
simulation of a VAV system plant and controls that were similar to the IEA Annex 25 Reference Air Handling 
System (see Figure 1). The simulation was altered to generate faulty data. Ten hours of summer weather data 
was utilised, in which a TRNSYS error type was developed, causing the Damper of the Miring Box to be fully 
opened after 15000 seconds from simulation start. Furthermore errors in the control strategy were introduced. 

A 
TI M1 rn 12 T3 . , 1 5  - - . - 

&Id0 Air M ' d  M2 

(Flesh Air) Air 
T48 

Figure 1 VAV PI Diagram 

2.1 DEFINITION OF THE TYPE OF FAULTS 

The aim was to detect the following faults: 

. Wastefull Heating (Heating not allowed) 



Wastefull Cooling (Cooling not allowed) 
Damper stuck in maximal open position 
Damper stuct in minimal open position 
Damper not responding to conuol signal (stuck in between) 

2.2 DEFINITION OF THE RULES 

The following rules were b i d  for fault detection: 

+ If the optimal damper position is not maximal open or closed, no heating or cooling is allowed. 
+ If the optimal damper position is maximal open and the estimated mixing temperature is higher than the 

setpoint of the supply air, cooling is allowed. If the estimated mixing temperature is lower, heating is 
allowed. 

+ If the mixing temperature is close to the estimated closed damper mixing temperature the damper is assumed 
to be closed. 

+ If the mixing temperature is close to the estimated open damper mixing temperature the damper is assumed 
to be opened. 

+ If the mixing temperature is between the estimated open damper and closed damper mixing temperatures the 
damper is assumed to be modulating. 

+ If the setpoint of the supply air is between the estimated open and closed mixing temperature the optimal 
damper position is modulating. 

+ If the optimal damper position is not modulating, the estimated open and closed mixing temperatures 
determine whether the optimal damper position is opened or closed. 

+ The conuol signals of the cooling and heating coil determined if cooling or heating was enabled. 
+ The conk01 signal of the damper was compared to the estimated damper position 
+ The mixing temperatures were estimated using the simplyfied relation: 

For details of the program example, see Appendix A & B 
The results are presented in Appendix C. 

3 CONCLUSIONS 

The purpose of the example was to establish fault detection using RICE 4.0. It is concluded to be very well 
possible to develop a simple expert system which is able to detect and diagnose faults of a particular application. 
RICE is very suitable for experimentation with expert systems, but the low-level shaight-forward approach is 
not suited for a larger professional environment. 

4 COPYRIGHT, WARRANTY AND UPDATES 

4.1 INFORMATION 

For information, please contact the RICE expert by: 

Rent lager 
Wevershof 19 
1483 XI De Rijp 
The Netherlands 
tel : + 31 2992 4297 (home) 
E-mail : jager@simplex.nl 

New version of RICE (4.1) is now available on World Wide Webb. 

WWW http : //simplex.nVusers/jagerl 



Last version : 4.1 
Output : source code + manual (45 pages) 

4.2 LICENSE 

The toolbox is free software; you can redistribute andlor modify it under the terms of the GNU General Public 
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any 
later version. The toolbox is dismbuted in the hope that it will be useful but WITHOUT ANY WARRANTY; 
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTlCULAR PURPOSE. 
See the GNU General Public License for more details. You should have received a copy of the GNU General 
Public License along with this toolbox; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, 
Cambridge, MA 02139, USA. 
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Appendix A : Source code of the test program 

File D R - M 2  . C 
Date 17-02-1995 
Author V.E.Bakker 
Company TND Building and Construction research 

Department of Indoor Environment, 
Building Physics and Systems 
The Netherlands 

E-mail peiC~mn@b~uw.mo.nl 
Last modified : 24-09-1995 

First trial for Air Handle Unit fault detection using the RICE 4.0 system 
' I  

linclude cconio.h> 
linclude 'rice.h" 
#include cdos.h> 
#include "dr-ahu2.h" 

int read-tempslFILE *, struct Temperatures - 1 ;  
inc read-stats(F1LE *, s t ~ c t  Status *I; 

int theES; 

long Timestamp; 
float Tatm, Trec, Tmix, Tsup, Tset; 
float Vdamp, Verr, Dheat, Dcool, Chiller-On, Boiler-On; 
float Estmix, Estmixnin, Estmixnax, MaxMixTemp. MinMixTemp, 

MinDampNearest, OptDampPosMod, 
MaxDampPos = MRXDAMPPOS, MinDampPos = MINDAMPPDS. Leak = LEAKAGE; 

FILE *OuzputFile; 

void printValuesIvoid1 
I 

gotoxyl1.11; 
printf("Simu1ation results:\n\nm1; 
printf('TimeStamp: $ld\n\n'.TimeStampl; 
print 

- - 

brintf immix . . . . . . . . . . . . . . . . . . . . .  : 9 
printf1"Tsup ..................... : $2. 

Printf ('Estimate 
printf('Est.mix (Vdamp 
printf ("Est.mix (Vdamp 

brintf ('~stimted values:\n\nml ; 
d m i x  . . . . . . . . . . .  : %1.2f 

0.191 . . . .  : %2.2f 
1.001 . . . .  : s 

void fprintValues(void1 
1 

\nm.Tsetl ; 
(input for error typel \nm.Vdamp) ; 
(output from error type1\nm.Verr): 
\no,Dheat1 ; 

typei\nm,,v&mpi; 
fprintf(OutputFile,'Verr . . . . . . . . . . . . . . . . . . . . .  : 

typel \n*,verrl; 
fprinCflOutputFi1e;Dheat . . . . . . . . . . . . . . . . . . . .  : 
fprintfI0utputFile,"Dco~l . . . . . . . . . . . . . . . . . . . .  : 
fprintflOutp~tFile;Chiller~on . . . . . . . . . . . . . . .  : 
fprintf(OutputFi1e;Boiler-On ................ : 
fgrintflOutputFile."\tEstimated values:\n\n"); 
fprintflOutputFile."Estimated m i x  . . . . . . . . . . .  : 
fprintflOutputFile.'Est.~ix (Vdamp 0.191 . . . .  : 
fprintflOutputFile."Est.mix (Vdamp 1.001 . . . .  : 

I 

w i d  showInfolchar 'msg, float grade) 

\nm,Tsup); 
\n",Tsetl: 
(Input of the Error 

(Output of the Error 



fprintvalues I I ; 
fprintfIOutputFile,"\tConclusion of the Inference Mechanism:\n\n"l; 
fprintflOutputFile,"%s : %l.lf\n\n",msg,gradel; 
fprintf(OutputFile."\tExplanation of the Inference Mechanism:\n\n'l; 
rice-ExplaimowItheES.msg,-11; 
fprintflOutputFile."\n\n"l; 

1 

void redirExplain(int kb, char' Explanation) 
{ 

f~rintf (OutputFile, '%s",Explanation): 
1 

void redirmfolint kb, int argc, char *argv[l, float 'grade1 

RICE-LinkerImyLinkerl 
i 

RICE-Link("Optima1 Damper Position = Modulating", 
i 

*ricegrade = OptDampPosMod: 
11: 

~~c~-~ink("~stimated Minimal Open Mixing Temperature = Nearest to Tsetpoint", 
( 

'ricegrade = MinDamPNearest: 
11: 

RICE-LinkIoEstimated Minimal Open Mixing Temperature < Tsetpeint', 

if [EstTmixMin < Tsetl 
.rice-grade = 1.0; 

else 
'rice-grade = 0.0; 

1 1 ;  

RICE-LinkVEstimated Minim1 Open Mixing Temperature > Tsetpoint', 

if IEstRnixMin > Tsetl 
*ricegrade = 1.0; 

else 
*rice-grade = 0.0; 

1 1 ;  

RICE-Link("Estimated Maximal Open Mixing Temperature < Tsetpoint", 

if IEstRnixNax < Tsetl 
*rice-grade = 1.0; 

else 
'rice-grade = 0.0: 

RICE-LinkVEstimated Maxim1 Open Mixing Temperature > Tsetpoint". 
i 

if IEstRnixNax > Tsetl 
.rice-grade = 1.0; 

else 
*rice-grade = 0.0; 

11: 

RICE-Link1"Estimated Maximal Open Mixing Temperature = Tsetpoinc". 
1 

if IEstRnixMax == Tsetl 
*rice-grade = 1.0; 

else 
*rice-grade = 0.0: 

11: 

RICE-Lirk1"Heating Enabled", 
1 

if ( Dheat > 0.02 I 
'rice-grade = 1.0; 

else 
*rice-grade = 0.0: 

1 1 ;  

RICE-Linkl"Coo1ing Enabled", 

else 
*rice-grade = 0.0; 



R1CELinkl"Mixing Temperature = Maximal Open Mixing Temperature", 
i 

if lfabs(Trnix - EStRnixMaxl <= 0.31 
'rice-grade = 1.0; 

else 
'rice-grade = 0.0; 

)I; 

RICE-Link("Mixing Temperature = Minimal Open Mixing Temperature'. 

if lfabs(lYoix - EstRnixMinl <= 0.31 
'ricegrade = 1.0: 

else 
'ricegrade = 0.0: 

11 ;  

RICELinkImMixing Temperature = Betveen Maximal and Minimal Open Mixing Temperature", 

if I (mix < MaxHiflempl k (mix > Mimiflempl I 
.rice-grade = 1.0; 

else 
.ricegrade = 0.0; 

11: 

RICE-Link("Contro1 Signal of Damper = Maximal Open". 

if ( V d w  > 0.981 
'rice-grade = 1.0; 

else 
'rice-grade = 0.0; 

1 1 ;  

RICE-Link(.Control Signal of D w e r  = Minimal Open" 
. . 

if (V- < 0.221 
'rice-grade = 1.0: 

else 
'rice-grade = 0.0; 

)I: 
1 

RICE-LINKER theLinker = mylinker; 

void main(void1 

SCNC~ Temperatures Temps; 
struct Stacus Stats: 
FILE 'tempsfile, 'statsfile; 

printf('Err0r could not open OUTPUT file! \n\nm1; 
exit(l1 ; 

1 

printf1"Error could not open TEXPERATURES file!\n\n"l; 
exitll); 

if ((statsfile = fopen(STATSFILE,'r'l~ == NULL) 
I 

printf1"Error could not open STATUS file!\n\nm1: 
exitlll; 

) 

vhile ( read-tempsltempsfile, &Temps) h read-stats(statsfile, hstats) 1 
gotOxy(l.ll: 
clreol 1) ; 



( 
clrscr (1 ; 
printf("Status and Temperatures file not synchranired!\n\n"); 
printf("Timestamp of Temperatures file: %ld\n",Temps.TimeStamp); 
printf("Timestamp of Status file : %ld\n\n',stats.TimeStampl; 
printf("Program stopped with exitcode: l\n\ns1: 
exitill; 

1 

Timestamp = TemPs.TimeStamp; 
Tatm = Temps.Tatm; 
Tret I Temp5,Tre~: 
m i x  = Temps.Rnix; 
TSUP I Temps.Tsup; 
Tset = Temp5.TseL; 
Vdamp = stats.vdamp; 
verr = stats.verr; 
Dheat = sta~s.Dheat; 
DCOO~ = Stat~.D~001; 
Chillerpn = Stats.Chiller-On; 
 oiler-on = stats.Boiler-On; 

~ s t ~ m i x  = (Vdamp-Leak)*Tatm+(l-Vdamp+Leak)'Tret; 

if i fabs(Tset-EstRnixMinI c fabs(Tset-EstTmixMax) I 
MinDampNearest=l.O; 

else 
MinDampNearest=O.O; 

else 
1 

if ( (Tset <= HaxMixTemp) & (Tset >= MinHixTemp) ) 
OptDampPosHod = 1.0; 

else 
OptDampPosMod = 0.0; 

int read-tempslFILE 'tempfile. strucc Temperatures *Temps) 

float Limefloat; 
char string[801; 

if ((fgets(string,80,tempsfilel)==mLl 
return 10) ; 

int read-stats1~1~~ 'statsfile. struct Status 'Statsl 
( 

float timefloat; 
char string[801; 



1- 
File : dr-ahu . h 
* I  

#define TMPSFILE "err-temPs.datm 
#define STATSFILE "err-stats.datR 
#define OUTPUTFILE "drIahu2 .outm 
adef:ne THE-XB 'dr-ahu2.L~' 
Rdef ine MAXDMlPPOS 1.0 
adefine MINDMlPPOS 0.2 

struct Temperatures 
i 

long Timestamp; 
float Tam; 
float Tret; 
floac mix; 
float TSUO: 
floac ~ s e i ;  

1 ;  

( 
long Timescamp; 
float V d m ;  
float verr: 
float Dhea t ; 
float Dcool ; 
float Chiller-On; 
float Boiler-On; 

1; 



Appendix B : The Knowledge Base 

Layer Predictor 

IfNot Optimal Damper Position = Modulating 
And Estimated Minimal Open Mixing Tewerature = Nearesc to Tsetpoint 
Then Optimal Damper Position = Minimal m e n  

IfNot Optimal Damper Position = Modulating 
AndNot Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint 
Then Optimal Damper Position = Maximal Open 

If Qtimal Damper Position = Minimal m e n  
And Estimated Minimal men Mixing Temperature < Tsetpoint 
Then Heating Allowed 
ThenNoc Cooling Allowed 

If Qtimal Damper Position = Minimal Open 
And Estimated Minimal m e n  Mixing Temperature s Tsetpoint 
Themot Heating Allowed 
Then Cooling Allowed 

If Optimal Damper Position = Maximal Open 
And Estimated Maximal m e n  Mixing Temperature < Tsetpoint 
Then Heating Allowed 
Themot Cooling Allowed 

If Optimal Damper Position = Maximal m e n  
And Estimated Maximal Open Mixing Temperature > Tsetpoint 
Themot Heating Allowed 
Then Cooling Allowed 

If Estimated Maximal m e n  Mixing Temperature = Tsetpoint 
ThenNot Heating Allowed 
ThenNoc Cooling Allowed 

IfNot Control Signal of Damper = Maximal Open 
AndNot Control Signal of Damper = Minimal m e n  
then Control Signal of Damper = Between Maximal and Minimal m e n  

Goal Diagnose Found 

IfNot Heating Allowed 
And Heating Enabled 
ThenInf Warning Wasteful1 Heating 
Then Diagnose Found 

IfNot Cooling Allowed 
And Cooling Enabled 
ThenInf Warning Wastefull Cooling 
Then Diagnose Found 

If Mixing Temperature = Maximal Open Mixing Temperature 
AndNot Control Signal of Damper = Maximal m e n  
ThenInf Error Damper stuck in Maximal Open position 
Then Diagnose Found 

If Mixing Temperacure = Minimal m e n  Mixing Temperature 
AndNot Control Signal of Damper = Minimal m e n  
ThenInf Error Damper stuck in Minimal m e n  position 
Then Diagnose Found 

If Mixing Temperature = Between Maximal and Minimal m e n  Mixing Temperature 
AndNot Control Signal of Damper = Between Maximal and Minimal m e n  
ThenInf Error Damper not responding to control signal 
Then Diagnose Found 



Appendix C : Simulation Results 

Simulation results: 
Timestamp: 16680 

Tatm ..................... : 22.30 
Tretn . . . . . . . . . . . . . . . . . . . .  : 19.37 
Tmix . . . . . . . . . . . . . . . . . . . . .  : 22.18 
Tsup ..................... : 24.53 
Tset . . . . . . . . . . . . . . . . . . . . .  : 22.93 
Vdamp . . . . . . . . . . . . . . . . . . . .  : 1.00 (Input of the Error type) 
Verr . . . . . . . . . . . . . . . . . . . . .  : 1.00 (Output of the Error type) 
Dheat . . . . . . . . . . . . . . . . . . . .  : 0.00 
Dcool . . . . . . . . . . . . . . . . . . . .  : 0.03 
Chiller-on . . . . . . . . . . . . . . .  : 1.00 
Boiler-On . . . . . . . . . . . . . . . .  : 0.00 

Estimated values: 

Estimated Tmix . . . . . . . . . . .  : 22.03 
Est.Rnix (Vdamp 0.19) . . . .  : 19.69 
Est.Rnix (Vdamp 1.00) . . . .  : 22.03 

Conclusion of the Inference Mechanism: 

Warning Wastefull Cooling : 1.0 

Explanation of the Inference Mech&ism: 

[*I means unknown 
[Ol means false 
[l] means true 

IfNot Coolins Allowed [11 
And Cooling Enabled [ll - 
ThenInf Warning Wastefull Cooling [11 
Then Diagnose Found ['I 

If Optimal Damper Position = Modulating [O] 
ThenNot Heating Allowed [*I 
ThenNot Cooling Allowed [*I 

If Optimal Damper Position = Minimal Open ['I 
And Estimated Minimal Open Mixing Temperature < Tsetpoint [l] 
Then Heating Allowed ['I 
ThenNot Cooling Allowed [*I 

IfNot Optimal Damper Position = Modulating 111 
And Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint [O] 
Then Optimal Damper Position = Minimal Open [*] 

If Optimal Damper Position = Minimal Open [ ' I  
And Estimated Minimal Open Mixing ~emp&at;re > Tsetpoint [01 
ThenNot Heating Allowed ['I 
Then Cooling Allowed [*I 

IfNot Optimal Damper Position = Modulating [l] 
AndNot Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint [l] 
Then Optimal Damper Position = Maximal Open [l] 

If Optimal Damper Position = Maximal Open [l] 
And Estimated Maximal Open Mixing Temperature < Tsetpoint [l] 
Then Heating Allowed [l] 
ThenNot Cooling Allowed [O] 

If Optimal Damper Position = Maximal Open [l] 
And Estimated Maximal Open Mixing Temperature > Tsetpoint [01 
ThenNot Heating Allowed [*I 



Then Cooling Allowed ['I 

If Estimated Maximal Open Mixing Temperature = Tsetpoint [Ol 
ThenNot Heating Allowed ['I 
ThenNot Cooling Allowed ['I 

Simulation Results: 
Timestamp: 20820 

Tatm . . . . . . . . . . . . . . . . . . . . .  : 24.71 
Tretn . . . . . . . . . . . . . . . . . . . .  : 19.86 
Tmix . . . . . . . . . . . . . . . . . . . . .  : 24.36 
Tsup . . . . . . . . . . . . . . . . . . . . .  : 24.26 
Tset . . . . . . . . . . . . . . . . . . . . .  : 24.29 
Vdamp . . . . . . . . . . . . . . . . . . . .  : 0.97 (Input of the Error type) 
Verr . . . . . . . . . . . . . . . . . . . . .  : 1.00 (Output of the Error type) 
Dheat . . . . . . . . . . . . . . . . . . . .  : 0.00 
Dcool . . . . . . . . . . . . . . . . . . . .  : 0.33 
Chiller-on . . . . . . . . . . . . . . .  : 1.00 
Boiler-On . . . . . . . . . . . . . . . .  : 0.00 

Estimated values: 

Estimated Tmix . . . . . . . . . . .  : 24.10 
Est.Tmix (Vdamp 0.19) . . . .  : 20.39 
Est.Tmix (Vdamp 1.00) . . . .  : 24.27 

Conclusion of the Inference Mechanism: 

Warning Wastefull Cooling : 1.0 

Explanation of the Inference Mechanism: 

IfNot Cooling Allowed 111 
And Cooling Enabled [I] 
ThenInf Warning Wastefull Cooling [ll 
Then Diagnose Found ['I 

If Optimal Damper Position = Modulating [O] 
ThenNot Heating Allowed ['I 
ThenNot Cooling Allowed ['I 

If Optimal Damper Position = Minimal Open ['I 
~ n d  Estimated Minimal Open Mixing Temperature < Tsetpoint (11 
Then Heating Allowed ['I 
ThenNot Cooling Allowed [ ' I  

IfNot Optimal Damper Position = Modulating [I] 
And Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint [01 
Then Optimal Damper Position = Minimal Open ['I 

If Optimal Damper Position = Minimal Open ['I 
And Estimated Minimal Open Mixing Temperature > Tsetpoint [O] 
ThenNot Heating Allowed ['I 
Then Cooling Allowed ['I 

IfNot Optimal Damper Position = Modulating 111 
AndNot Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint [l] 
Then Optimal Damper Position = Maximal Open 111 

If Optimal Damper Position = Maximal Open 111 
And Estimated Maximal Open Mixing Temperature < Tsetpoint [11 
Then Heating Allowed [I] 
ThenNot Cooling Allowed I01 

If Optimal Damper Position = Maximal Open [I] 
And Estimated Maximal Open Mixing Temperature > Tsetpoint LO1 
ThenNot Heating Allowed ['I 
Then Cooling Allowed ['I 



If Estimated Maximal Open Mixing Temperature = Tsetpoint [Ol 
ThenNot Heating Allowed I*] 
ThenNot Cooling Allowed ['I 

Simulation results: 
Timestamp: 20820 

Tatm . . . . . . . . . . . . . . . . . . . . .  : 24.71 
Tretn . . . . . . . . . . . . . . . . . . . .  : 19.86 
Tmix . . . . . . . . . . . . . . . . . . . . .  : 24.36 
Tsup . . . . . . . . . . . . . . . . . . . . .  : 24.26 
Tset . . . . . . . . . . . . . . . . . . . . .  : 24.29 
Vdamp . . . . . . . . . . . . . . . . . . . .  : 0.97 (Input of the Error type) 
Verr . . . . . . . . . . . . . . . . . . . . .  : 1.00 (Output of the Error type) 
Dheat . . . . . . . . . . . . . . . . . . . .  : 0.00 
Dcool . . . . . . . . . . . . . . . . . . . .  : 0.33 
Chiller-on . . . . . . . . . . . . . . .  : 1.00 
Boiler-On . . . . . . . . . . . . . . . .  : 0.00 

Estimated values: 

Estimated Tmix . . . . . . . . . . . .  : 24.10 
Est.Tmix [Vdamp 0.19) . . . .  : 20.39 
Est.Tmix (Vdamp 1.00) .... : 24.27 

Conclusion of the Inference Mechanism: 

Error Damper stuck in Maximal Open position : 1.0 

Explanation of the Inference Mechanism: 

If Mixing Temperature = Maximal Open Mixing Temperature [I] 
Andliot Control Signal of Damper = Maximal Open [I] 
ThenInf Error Damper stuck in Maximal Open position [I] 
Then Diagnose Found [*I 

Simulation results: 
Timestamp: 16680 

Tatm . . . . . . . . . . . . . . . . . . . . .  : 22.30 
Tretn . . . . . . . . . . . . . . . . . . . .  : 19.37 
Tmix . . . . . . . . . . . . . . . . . . . . .  : 22.18 
Tsup . . . . . . . . . . . . . . . . . . . . .  : 24.53 
Tset . . . . . . . . . . . . . . . . . . . . .  : 22.93 
Vdamp . . . . . . . . . . . . . . . . . . . .  : 1.00 (Input of the Error type) 
Verr . . . . . . . . . . . . . . . . . . . . .  : 1.00 (Output of the Error type) 
Dheat . . . . . . . . . . . . . . . . . . . .  : 0.00 
Dcool . . . . . . . . . . . . . . . . . . . .  : 0.03 
Chiller-on . . . . . . . . . . . . . . .  : 1.00 
Boiler-On . . . . . . . . . . . . . . . .  : 0.00 

Estimated values: 

Estimated Tmix . . . . . . . . . . .  : 22.03 
Est.Tmix (Vdamp 0.19) .... : 19.69 
Est.Tmix (Vdamp 1.00) .... : 22.03 

Conclusion of the Inference Mechanism: 

Warning Wastefull Cooling : 1.0 

Explanation of the Inference Mechaniem: 

IfNot Cooling Allowed [I] 
And Cooling Enabled [I] 
ThenInf Warning Wastefull Cooling [I] 
Then Diagnose Found [*I 

If Optimal Damper Position = Modulating [O] 



ThenNot Heating Allowed [*I 
ThenNot Cooling Allowed ['I 

If Optimal Damper Position = Minimal Open ['I 
And Estimated Minimal Open Mixing Temperature < Tsetpoint [I] 
Then Heating Allowed [*I 
ThenNot Cooling Allowed ['I 

IfNot Optimal Damper Position = Modulating [I] 
And Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint [Ol 
Then Optimal Damper Position = Minimal Open [*I 

If Optimal Damper Position = Minimal Open [*I 
And Estimated Minimal Open Mixing Temperature > Tsetpoint [Ol 
ThenNot Heating Allowed [*I 
Then Cooling Allowed [*I 

IfNot Optimal Damper Position = Modulating [ll 
AndNot Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint [I] 
Then Optimal Damper Position = Maximal Open [I] 

If Optimal Damper Position = Maximal Open [ll 
And Estimated Maximal Open Mixing Temperature < Tsetpoint 111 
Then Heating Allowed [I] 
ThenNot Cooling Allowed [Ol 

If Optimal Damper Position = Maximal Open [I] 
And Estimated Maximal Open Mixing Temperature > Tsetpoint [Ol 
ThenNot Heating Allowed [*I 
Then Cooling Allowed I * ]  

If Estimated Maximal Open Mixing Temperature = Tsetpoint [Ol 
ThenNot Heating Allowed ['I 
ThenNot Cooling Allowed ['I 

Simulation results: 
Timestamp: 20820 

Tatm . . . . . .  
Tretn . . . . .  
Tmix . . . . . .  
Tsup . . . . . .  
Tset . . . . . .  
Vdamp . . . . .  
Verr . . . . . .  
Dheat . . . . .  
Dcool . . . . .  
Chiller-on 
Boiler-On . 

. . . . . . . . . . . . . . .  : 24.71 
: 19.86 . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  : 24.36 

. . . . . . . . . . . . . . .  : 24.26 

. . . . . . . . . . . . . . .  : 24.29 

. . . . . . . . . . . . . . .  : 0.97 (Input of the Error type) 

. . . . . . . . . . . . . . .  : 1.00 (Output of the Error type) 

. . . . . . . . . . . . . . .  : 0.00 

. . . . . . . . . . . . . . .  : 0.33 

. . . . . . . . . . . . . . .  : 1.00 

. . . . . . . . . . . . . . .  : 0.00 

Estimated values: 

Estimated Tmix ........... : 24.10 
Est.Tmix (Vdamp 0.19) . . . .  : 20.39 
Est.Tmix (Vdamp 1.00) . . . .  : 24.27 

Conclusion of the Inference Mechanism: 

Warning Wastefull Cooling : 1.0 

Explanation of the Inference Mechanism: 

IfNot Cooling Allowed [I1 
And Cooling Enabled 111 
ThenInf Warnins Wastefull Cooling 111 
Then Diagnose Found ['I 

. 

If Optimal Damper Position = Modulating [O] 
ThenNot Heating Allowed [*I 



ThenNot Cooling Allowed ['I 

If Optimal Damper Position = Minimal Open ['I 
And Estimated Minimal Open Mixing Temperature < Tsetpoint 111 
Then Heating Allowed 1'1 
ThenNot Cooling Allowed ['I 

IfNot Optimal Damper Position = Modulating [11 
And Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint [Ol 
Then Optimal Damper Position = Minimal Open ['I 

If Optimal Damper Position = Minimal Open ['I 
And Estimated Minimal Open Mixing Temperature > Tsetpoint 101 
ThenNot Heating Allowed ['I 
Then Cooling Allowed [+I 

IfNot Optimal Damper Position = Modulating [l] 
AndNot Estimated Minimal Open Mixing Temperature = Nearest to Tsetpoint [I] 
Then Optimal Damper Position = Maximal Open [I] 

If Optimal Damper Position = Maximal Open [11 
And Estimated Maximal Open Mixing Temperature < Tsetpoint Ill 
Then Heating Allowed 111 
ThenNot Cooling Allowed [01 

If Optimal Damper Position = Maximal Open [I] 
And Estimated Maximal Open Mixing Temperature > Tsetpoint 101 
ThenNot Heating Allowed [+I 
Then Cooling Allowed [+I 

If Estimated Maximal Open Mixing Temperature = Tsetpoint [Ol 
ThenNot Heating Allowed [+I 
ThenNot Cooling Allowed [+I 

Simulation results: 
Timestamp: 20820 

Tatm . . . . . . . . . . . . . . . . . . . . .  : 24.71 
Tretn . . . . . . . . . . . . . . . . . . . .  : 19.86 
Tmix . . . . . . . . . . . . . . . . . . . . .  : 24.36 
Tsup . . . . . . . . . . . . . . . . . . . . .  : 24.26 
Tset . . . . . . . . . . . . . . . . . . . . .  : 24.29 
Vdamp . . . . . . . . . . . . . . . . . . . .  : 0.97 (Input of the Error type) 
Verr . . . . . . . . . . . . . . . . . . . . .  : 1.00 (Output of the Error type) 
Dheat . . . . . . . . . . . . . . . . . . . .  : 0.00 
Dcool . . . . . . . . . . . . . . . . . . . .  : 0.33 
Chiller-on . . . . . . . . . . . . . . .  : 1.00 
Boiler-On . . . . . . . . . . . . . . . .  : 0.00 

Estimated values: 

Estimated Rnix . . . . . . . . . . .  : 24.10 
Est.Rnix (Vdamp 0.19) .... : 20.39 
Est.Rnix (Vdamp 1.00) . . . .  : 24.27 

Conclusion of the Inference Mechanism: 

Error Damper stuck in Maximal Open position : 1.0 

-lanation of the Inference Mechanism: 

If Mixing Temperature = Maximal Open Mixing Temperature [I] 
AndNot Control Signal of Damper = Maximal Open [I] 
ThenInf Error Damper stuck in Maximal Open position [I] 
Then Diagnose Found [ + I  
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ABSTRACT 

Dynamic programming was used to obtain optimal service schedules and costs for 

cleaning the condensers and evaporators of air conditioning equipment. Results were 

obtained for a range of service and energy costs, characteristic fouling times, and equipment 

sizes for a single building and location. Minimum operating costs were compared with 

regular service intervals (representative of current practice) and a strategy where service is 

only performed when a constraint is violated (e.g., a comfort violation). It was found that 

optimal service scheduling reduced lifetime operating costs by as much as a factor of two 

over regular service intervals and 50% when compared to constrained only service. For 

practical implementation, a simple near-optimal algorithm for estimating optimal service 

scheduling was developed that does not require on-line forecasting or numerical optimization 

and is easily implemented within a micro-controller. Over a wide range of cases tested, the 

near-optimal algorithm gave operating costs that were within 1 % of optimal. This technique 

could also be applied to other systems where performance degradations are important such as 

large chillers and power plants. 

NOMENCLATURE 

Ce = Energy cost ($/kwh) 
c, = Service cost ($) 
G = Mass flux (kg/m2/s) 

H(t) = J;h(t,)dt, (kwh) 

Jo = Cost function with fewest assumptions ($/year) 
J l  = J d c ,  = Simplified cost function (kwhlyear) 
Jz=Jl*Tc = Dynamic programming cost function (kwh) 



= Simplified cost function assuming the time between service tasks 
is fmed (k W)  

= Simplified cost function subtracting out the expected power 
consumption with no fouling (kW) 

= Energy consumed starting at time stage 1 after servicing and 

operating for k time stages (kwh) 
= Number of service tasks during equipment lifetime 

(dimensionless) 
= Number of service tasks during service cycle (dimensionless) 
= Hours of fan operation that would occur each year if there were 

no fouling (hoursbear) 
= Number of hours per year (hours/year) 
= Equipment power consumption rate (kW) 
= Part-load fraction (dimensionless) 
= Law pass filter time constant (h)  
= Threshold value that becomes negative to indicate when the 

simplified scheduler calls for service (kwh)  
= Duration of service cycle (years) 

= Equipment lifetime (years) 
= Dynamic programming cost for the irh decision stage (kwh) 
= Fouling state (dimensionless) 
= Fouling state immediately after service (dimensionless) 
= Dynamic programming cost-to-go at the irh decision stage (kwh) 
= Extra power consumed because of fouling (kW) 
= h(t) after low passfilter (kW) 

= Number of service opportunities per cycle (dimensionless) 
= Number of service opportunities per year ( Ibear)  

= Set of N times service is done during equipment lifetime (h )  

= Calendar time (h )  
= Heat exchanger characteristic fouling time (h) 
= Normalized characteristic fouling time for heat exchangers 

(years) 
= Time of the ifh service task (h)  
= Accumulated runtime since last service (h )  
= Runtime between service (h)  
= Equipment driving conditions 

= Ambient temperature (C) 
= Return air temperature (C)  
= Return air humidity ratio (kgkg) 



Greek Symbols 

1 
At = - = Minimum service interval (years) 

ns 
At, = Runtime during each time step (h) 
&.) = Dirac delta function (dimensionless) 

57 = Number of time stages berween service tasks (dimensionless) 
- 
z = {z,, z,, . . . ,z,) = Dimensionless service schedule (dimensionless) 

ti z i  =- = Time stage when the f h  service is performed (dimensionless) 
At .  N ,  

Subscripts 

Superscript 

max 
min 

= condenser air 
= evaporator air 

= maximum value 
= minimum value 

INTRODUCTION 

Automated fault detection and diagnostics (FDD) can improve reliability, reduce 

operating costs, and increase equipment safety in many applications. Most of the previous 

research and development of FDD techniques has focused on critical processes, such as 

aircraft engines [Onken & Stuckenberg 1979, Patton, Willcox & Winter 19871, nuclear 

power plants [Kitamura 19801, and the space shuttle main engine [Cikanek 1986, Duyar & 

Merill 19921. However, the costs of applying FDD techniques are going down with reduced 

hardware and software costs and techniques are beginning to be applied to heating, 

ventilating, air conditioning, and refrigeration (HVAC&R) applications. 

Many authors [Willsky 1976, Isennann 1984, Frank 1987, Basseville 1988, Gertler 1988, 

Frank 19901 have offered excellent review papers on fault detection and diagnostic 

techniques. Isermann [I9841 presents the application of FDD techniques as a series of four 

steps termed "process supervision" that are illustrated in Figure 1. The first step is fault 

detection, in which a fault is indicated when the performance of a monitored system has 

deviated from expectation. The second step, diagnosis, determines which malfunctioning 

component is causing the fault. Following diagnosis, fault evaluation assesses the impact of 
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compression equipment [Kaler 1988, Culp 1989, Yoshimura & Noboru 1989, Kaler 1990, 

Kumamaru, Utsunomiya, Yamada, Iwasaki, Shoda & Obayashi 1991, Hiroshi, Matsuo, 

Fujiwara Yamada & Nishizawa 19921. 

There appears to be no literature related to fault evaluation for HVAC&R systems. Fault 

evaluation is particularly important when the performance of a component is degrading 

slowly over time, such as occurs for heat exchanger fouling. In this case, it is possible to 

detect a fault well before it is severe enough to justify the service expense. In contrast, abrupt 

failures such as broken belts would not require the evaluation step when it is obvious that the 

fault should be repaired (e.g., the system no longer maintains comfort). 

In principle, fault evaluation could be achieved by minimizing lifetime operating costs. 

An optimal service scheduler would purchase service when it contributes to reducing overall 

costs. Important costs to consider are: maintenance, energy, equipment down time (i.e. the 

cost of not maintaining comfort or refrigeration set point), premature component wear 

(avoidable service costs), and liability costs associated with injury to people, damaged 

facilities, or pollution of the environment. With the exception of maintenance and energy, 

the other costs are difficult to quantify. The optimization problem could be simplified by 

assuming that the comfort, premature wear, and liability costs are much larger than the 

service cost to repair them. This is equivalent to assigning an infinite economic penalty for 

these conditions (i.e. treating them as constraints) and minimizing the combined costs of 

energy and service. With these considerations in mind, the following four fault evaluation 

criteria are proposed for HVAC&R systems. 

1. ECONOMIC CRlTERIA - Service is required when it contributes to the 
reduction of the combined costs of energy and service over the lifetime of 
the unit. 

2. COMFORT or REFRIGERATION SET POINT CRlTERIA - Service is 
required when the equipment is not capable of maintaining building 
comfort (air conditioning applications) or a refrigeration set point 
(refrigeration applications). 

3. SAFETY CRlTERIA - Service is required when the operating state of the 
equipment could lead to damage or injury (e.g. liquid entering a 
compressor or head pressure above the tube burst pressure). 



4. ENVIRONMENTAL CRITERIA - Service is required when the 
equipment is polluting the environment. This criteria is included for 
refrigerant leaks. 

This paper presents results associated with maintenance scheduling that were determined 

using the fault evaluation criteria described above. The goals of the research were to evaluate 

the maximum cost savings associated with using optimal service scheduling for the cleaning 

of heat exchangers in air conditioning equipment and to develop a more practical, near- 

optimal scheduling technique. In order to evaluate the maximum savings potential, the 

simulated lifetime costs for service and energy associated with optimal maintenance 

scheduling were compared with results for regular service intervals and service dictated by 

the constraints only. Service at regular time intervals (e.g., 1 year) is characteristic of today's 

practice. Presumably, fixed service intervals are chosen based upon consideration of both 

energy and service costs. On the other hand, constrained only service represents a limiting 

case where the economic criteria for service, as described above, is ignored. The next three 

sections describe the development and application of the optimal, regular, constrained only, 

and near-optimal maintenance schedulers followed by a description of the system simulation 

and results of the comparisons. 

OPTIMAL MAINTENANCE SCHEDULER 

Neglecting inflation, the average annual cost of energy and service for vapor compression 

equipment can be expressed as 

where T, is the equipment lifetime, C, is the constant cost of one kwh of energy, C, is the 

constant cost of service to repair the fault, 7 = {t,,t2, ..., tN)  is the set of service times, N is the 

number of service tasks performed during the equipment lifetime, 6(.) is the Dirac delta 

function, P is the instantaneous power consumption of the equipment, ? ( r )  represents the 

natural driving functions controlling power consumption including ambient and load 

conditions, and f (t) is the state of the degrading equipment components (e.g. fouling heat 



exchangers and leaking compressor valves). The integral can be divided into the sum of 

integrals over the periods between service tasks to give 

where t,,, = t,  + 1; . N ,  . 

In the following development, the cost function of equation 2 is modified in order to 

simplify the numerical solution for the optimal maintenance schedule. First of all, the cost 

function is divided by C, to get a cost function that gives the same optimal solution, but only 

depends upon the ratio of service to energy costs (C,lC,). 

The optimization problem is simplified by limiting the available opportunities to perform 

service to periodic instances of time (e.g. monthly), thereby restricting the size of the solution 

space. With this assumption, the integral portion of the cost function can only take a limited 

number of values that can be tabulated to eliminate repetitive calculations during the solution 

of the optimization problem. Each entry in the table is expressed as 

where n, is the maximum number of potential service tasks that can be performed per year 

(e.g. n, = 12 serviceslyear for monthly service opportunities) and zi is the number of the time 

stage (each of duration At = I/n, = minimum service interval) when the irh service task is 

performed. The subscript for K is the time stage number when equipment operation begins 

after a service task and the superscript is the number of time stages the unit runs before 

service is needed again. The simplified cost function is 



In order to eliminate the need to integrate out to potentially long and unknown equipment 

lifetimes, it is assumed that the service schedule eventually settles into a cycle with a period 

of n, time stages (e.g. nc = 36 for a 3.0 year cycle with n, = 12 serviceslyear). For a cycle to 

occur, the driving conditions for the cooling equipment (e.g. weather patterns, occupancy 

schedule, etc.) must be periodic. The length of the service cycle is T, = ndn, and the total 

number of services in one service cycle is defined as N,. In order to minimize the average 

operating cost, it is only necessary to integrate over one period of the cycle. This bounds the 

size of the table to n: elements (K::l I k I n,, 1 I 1 < n,) . The service schedule for one 

cycle is defined by ?, = (7,,72,...,7,c) and can also be represented by .rl (time stage of the 

first service task in the schedule) and the set of the number of time stages between service 

tasks & = (67,,&T ,,..., 67 ,<_,), where 6ri = 7,+, -7, and &THC = n, - cT-' ,=I  &Ti . The 

average cost for the service cycle can then be expressed as 

The analysis can be further simplified by assuming that the longest period for the natural 

driving conditions (x(t)) is one year. In this study, typical meteorological year (TMY) [Hall, 

Prairie, Anderson & Boes 19781 weather data were used in the simulations and the typical 

year's weather pattern reoccurred each year. With this simplification, the table only requires 

n, .n,elements (K::l < 1 I n,, 1 I k I n,) and the duration of the service cycle (T,) is an 

integer multiple of one year. 

Given a model for determining P(x(t),f(t)) (needed to calculate 

~ ; " : l  I 1 I ns, I I k I n,), the cost ratio C,/C, , and the minimum service interval At, the 

optimization problem can be defined as minimizing J1 with respect to (To N, 7,) and the 

number of time stages between service tasks (&). This is an Nc + 2 dimensional 

optimization problem. The minimum service interval (At) can be the minimum reaction time 



of the service organization or a sufficiently small quantity such that the minimum cost no 

longer depends on its value. In the later case, At would be decreased until the minimum cost 

became insensitive to At. For the cleaning of heat exchangers, a minimum service interval of 

1 month is a realistic and sufficiently accurate interval for scheduling service that was 

utilized in this study. 

The optimal maintenance scheduler minimizes the lifetime costs of energy and service 

while maintaining comfort, safety, and environmental protection as constraints. The comfort, 

safety, and environmental protection constraints are maintained by adding artificially high 

costs to the tabulated energy usage (K:) for operating conditions that would result in 

constraint violations. 

The numerical solution to the optimization problem is accomplished using a combination 

of two numerical techniques. Given values of (T, No r,], the optimal set of time stages 

between service tasks &' = (6z;,&; ,...,&',?_,)is determined using dynamic programming 

[Bellman 19571. An outer loop, containing the dynamic programming solution, is then used 

to find the optimal values of the three quantities: {'1;', N:,T;}. 

Dynamic Programming 

The use of dynamic programming for solving an optimal equipment replacement problem 

is discussed in Jardine [1973, section 4.41. Dynamic programming determines a global 

minimum in an efficient manner for this type of problem by taking advantage of the fact that 

the number of possible solutions is restricted by the sequential nature of the decision process. 

A good description of dynamic programming can be found in Rao [1984]. 

Figure 2 is a black box diagram illustrating the sequence of decisions required to solve for 

the optimum placement of N, service tasks among n, time stages, starting at time stage z,. 

There are N,-I decisions that have to be made and each one is referred to as a decision stage. 

The state information passed between decision stages is the time stage that service was last 

performed (T,, for the ifh stage). The decision variable is the number of time stages to wait 

until the next service ( J r ,  , for the if* stage). The cost of each decision stage (c,), except the 



last, is the energy used while running the unit f o r h i  time stages starting at 7; plus the service 

cost divided by the energy cost. The cost of the last decision stage ( C N ~ . ~ )  also includes the 

energy consumed while running the unit back to the first decision stage plus the cost of the 

first service task normalized by the energy cost. Finally, the output of each stage is the time 

of the last service plus the run time for that decision stage (zi+,  = 7; + h i ) .  The sum of the 

costs of the decision stages is given by 

Figure 2. Dynamic programming places N,-1 service tasks to minimize J, 

Dynamic programming is appropriate for this optimization problem because the 

performance of the vapor compression equipment does not depend on the chain of events that 

led to the most recent servicing. Figure 2 illustrates this point in that the decision to do 

service only requires knowledge of the time of the previous service task (represented by the 

state variable passed between decision stages). This property of the optimal servicing 

problem guarantees an optimal solution without the need for testing all possible service 

schedules. 

Figure 3 illustrates an example dynamic programming problem for optimal maintenance 

scheduling. The abscissa contains the decisions stages and the ordinate contains the time 

stages when service can be done. In this example, there are n, = 12 time stages in a T, = 1 

year service cycle (i.e. service opportunities are at monthly intervals and the cycle repeats 



each year). There are N, = 4 service tasks to place and the time stage of the first task is 

specified as TI = 3. The open circles indicate the available opportunities for doing service at 

each decision stage. Not all values are allowed for each stage because Ti,/ is restricted by 

definition to follow T~. This reduces the number of possible decisions to test reducing 

computation time. In general, the number of available time stages at each decision stage is 

I w w w V C 

2 3 4 1 2 
Decision Stage 

Figure 3. Optimal trajectory through domain for an example problem 

The example problem of Figure 3 is solved by starting at decision stage 1 and progressing 

backwards one decision at a time until decision stage 1 is reached again and the cycle repeats 

itself. Beginning at decision stage 1 (where service is performed at time stage 3), the costs of 

getting there from all 9 allowed time stages in decision stage 4 are computed and stored. 

Next, all possible time stages in decision stage 3 are considered. For each of these 9 time 

stages, the costs of moving to each possible time stage in decision stage 4 are computed. 

Then, the minimum costs-to-go from each of the 9 time stages at decision stage 3 to decision 

stage 1 are computed and stored with the associated path. This process is repeated until 

decision stage 1 is reached. 



At each decision stage, a catalog of the minimum cost-to-go and the corresponding 

optimal trajectory to the end of the cycle is generated. The path associated with the filled 

circles connected by arrows in Figure 3 is the optimal trajectory for this example. In 

mathematical terms, the solution to the i'h decision stage is 

where g; = 0 .  The operator (min) refers to a one-dimensional optimization with respect to 

6Ti (the number of time stages to wait before doing service again), while g. is the minimum 

cost-to-go at the i'h decision stage. The process begins at the last stage (i = N,-1) and 

continues recursively until the first stage (i = 1). 

Outer Loop Optimization 

The minimization of Jl with respect to its N, + 2 independent variables is done using 

four nested optimization loops. The inner most loop solves the dynamic programming 

problem. The next loop solves for N: using the golden section method [Rao 19841 and the 

outer most loops exhaustively search values of T, and TI. An exhaustive search is used for 

determining Tc and TI because Jl is not guaranteed to be unimodal with respect to changes 

in these variables. All n, possible values of T ,  (e.g. 12 for a one month minimum service 

interval) and all values of T, up to a practical limit (e.g. 12 years) that provide unique 

solutions are tested. It is not necessary to evaluate all values of T, in order to test all service 

cycles. For example, a 12-year service cycle contains 1, 2, 3, 4, & 6 year cycles. Therefore, 

all cycles up to 12 years can be tested by considering T, = 7, 8, 9, 10, 11, & 12 years. A 

non-exhaustive search can be used for N, because the dependence of J, on N, is unimodal for 

T, and TI fixed and all the service tasks optimally placed. Values of N ,  greater than optimal 

will have increasingly higher cost due to excessive service and Nc less than optimal will have 

increasingly higher cost due to excessive energy consumption. 



REGULAR AND CONSTRAINED SERVICE SCHEDULES 

With regular maintenance scheduling, preventive maintenance (coil cleaning or filter 

changing) is performed at regular time intervals (e.g. annually, quarterly, or monthly). When 

the chosen interval is not sufficient to maintain the constraints on comfort and safety, then the 

costs associated with the schedule are set artificially high. The constrained service scheduler 

only performs service when a comfort or equipment safety constraint is violated. Constrained 

service is simpler to implement than optimal scheduling and could be considered as a viable 

alternative to regular service scheduling. 

Costs are compared by contrasting total annual costs for the different maintenance 

schedulers. All schedulers use the tabulated values of K:, but manipulate the values of the 

N, + 2 service variables differently. In the case of regular service, the times for service are 

prescribed by the schedule. Service is performed just before the cooling season begins in the 

once per season schedule and an additional service is added in the middle of the cooling 

season in the twice per season service schedule. For constrained service, the schedule begins 

service on January 1 of the first year. Service is performed as needed for as many years as 

required to achieve a natural service cycle. A cycle occurs when service is performed at the 

same time segment in different years. 

SIMPLIFIED NEAR-OPTIMAL SERVICE SCHEDULE 

The simplified near-optimal scheduler captures the important features of the optimal 

scheduler with significantly reduced computational requirements and without the need for 

weather and load forecasters. The derivation of the simplified scheduler begins with the 

complete cost function given by equation 3. 

Equation 3 can be approximated by fixing the time between service tasks ( to  = ti+, - t i ,  for 

all 1 < i < N )  and assuming that the cost is only a function of the runtime since the last 

service. 



where T, = N.to and to is the equipment runtime between service tasks. The use of 

equipment runtime instead of clock time implies that the state of fouling is only a function of 

runtime after cleaning. 

If J, were independent of .Y(t), and f always had the same time dependence after service, 

then the assumption of a fixed service interval would be exact (i.e. J3 = J,). However, since 

J, depends on seasonal changes in i ( t ) ,  then the assumption of a fixed service interval 

improves when seasonal effects are reduced by subtracting the cost associated with no 

performance degradations. With this in mind, a new cost function is defined as 

wherefl is defined as the value of f immediately after service. This cost function differs 

from J3 by the baseline energy consumption of the unit during the time between service tasks 

with no fouling (IJI P(i(r), f .) . The integral portion of equation (10) is the extra energy 
to O 

consumed in one service period due to degrading component performance and C,/C, is the 

amount of energy that could be purchased with the cost of one service task. 

The service interval determined by minimizing J4 is used as an approximation to the 

optimal solution that minimizes Jo. This approximation is less accurate when ?(t) changes 

appreciably from one service cycle to the next. In general, performance is good when to > 1 

year, because each service cycle experiences similar weather conditions. It will be shown 

later that subtracting the power consumption with no foulingalso provides a mechanism for 

considering multiple simultaneous faults. 

The cost function J4 can be minimized by determining where its derivative with respect to 

time is zero, providing the following solution: 

where 



is the extra power required to provide the necessary cooling due to the performance 

degradation. The solution of equation 1 1  for r, is guaranteed to be a minimum when h(f) is 

an increasing function. In order to filter diurnal fluctuations in h(r), a low pass filter for h(r) 

is used. 

The time constant (RC) should be much longer than one day and much shorter than the time 

between service tasks. For the simulation results in this paper, RC was set to 200 hours. 

Substituting h(r) into equation 11 results a classification rule used to evaluate the need for 

service. 

where w ,  is the class "do service" and w, is the class "no service". The runtime between 

service tasks (to) is determined with equation 14 as the time when the left hand side makes a 

transition from a positive to a negative quantity. The evaluation of this rule is based on 

information acquired since the last service only and requires no forecasting. 

The following is a step-by-step procedure for using the simplified scheduler. 

1. Identify the cost of energy and the cost of performing the service task to 
repair the performance degradation fault that is reducing efficiency. 

2. Learn a model that tracks the expected power consumption with no 
performance degradation as a function of the measured driving conditions 

(p(:(r),f .)) . 



3. Initialize three accumulator variables to zero. Integrated variables are 

H(t) = / i ( t )d t ,  h(t) , and the accumulated runtime t,, 
0 

4. Measure power consumption, driving conditions (e.g. ambient 
temperature), constraints (e.g. room temperature), and runtime for the 
current time step (At,). 

5. Update the accumulators using the following equations: 

H(t) = H(t) + h(t) . At, 

tr = t, +At, 

where T is the threshold value used to decide if service is required or not 
and RC is the time constant for the low pass filter designed to average over 
diurnal variations in h(t). 

6 .  Compare T with 0 and evaluate the constraints. If T<O or a constraint is 
violated, then perform the service task and reset the three accumulator 
variables. 

7. Wait until the next time step and then return to step 4. 

The procedure described in this section considers only one fault. However, a "single 

fault" could actually be a collection of faults that are always serviced together (e.g. condenser 

fouling and filter changing). With this assumption, only one decision is necessary at any 

time: whether to perform service or not. In order to consider multiple faults with different 

service times, it would be necessary to evaluate the impact of each combination of service 

tasks on the overall costs. It is possible to extend the simplified service scheduler for this 

case. 

Consider the case where two performance degradations are developing at the same time. 

Definef, and f2 as the fault states for the first and second degrading components, respectively 

(e.g. evaporator and condenser fouling). The degradation states are indicators of the severity 



of each fault being considered. Each state tracks the evolution of only 'one fault to provide a 

means of determining the contribution of each fault to the overall degradation in 

performance. A degradation state is a general term that may be a single measurement or an 

estimate from many measurements. For example, the air pressure drop across a heat 

exchanger of filter is commonly used in buildings as an indicator of fouling. Another 

possibility is an estimate of the overall thermal conductance of a heat exchanger from many 

temperature and other measurements. 

There are three rules that must be evaluated, along with the comfort constraint, to 

determine when to do service. They are given by 

for i = 1, 2, & 3. C,, is the cost of servicing component 1 only and 

Cs2 is the cost of servicing component 2 only and 

Finally, q3 is the cost of servicing components 1 & 2 together and 

In many cases, it may be possible to service both performance degradations at the same time 

for less money than both separately. Service is done when any of these rules fire. The results 

presented in this paper are only for a single fault developing at one time (evaporator or 

condenser fouling). More work would be necessary to determine approximate measures that 



characterize degradations states in order to implement the procedure for multiple faults with 

different service times. 

SYSTEM MODELING 

Simulations were used to demonstrate the potential for optimal service scheduling and to 

evaluate the performance of the simplified near-optimal service scheduler. This section 

describes the models and the conditions considered. 

Building Model 

Building cooling requirements were determined using a TRNSYS simulation [Klein et al. 

19901 of a three-zone office building in Nashville, TN, USA. The simulation model is a 

detailed representation of a building (TYPE 56 within TRNSYS) that considers coupling to 

the ambient (temperature and humidity), internal and solar gains, internal radiation and 

convective exchange, building mass, day and night occupancy schedules, and night setback 

control. The simulation model generated cooling requirements for every hour of a typical 

year using typical meteorological year (TMY) weather data [Hall et al. 19781, Figure 4 

shows the average daily cooling load for the entire year and the hourly cooling load for a one- 

week period surrounding the peak cooling load day. The dashed lines enclose the cooling 

season during which the evaporator fans ran continuously during occupied periods for 

ventilation. 

(a) (b) 

Figure 4. Cooling load schedule for demonstration building 



The use of the building model was simplified by decoupling the building from the air 

conditioning unit. TRNSYS provided the sensible and latent cooling required to maintain 

fixed temperature and humidity set points for the building (24.4"C (76°F) and 60% RH). In 

the system simulations, the air conditioning unit was required to remove the total heat load 

whenever the sensible cooling requirement was greater than zero. 

Air Conditioning Unit Model 

The building was cooled by an air-to-air vapor compression air conditioning system using 

on/off control. A detailed physical model was used to predict the performance of a 

commercial rooftop air conditioning system [Rossi 19951. The model provided the power 

consumption and total cooling capacity as a function of ambient temperature, evaporator 

filter fouling state, and condenser fouling state for return air conditions of 24.4"C (76°F) and 

60% relative humidity. For simplicity, fouling was modeled only as an obstruction to air 

flow across the coils. The state of fouling is defined as the difference between the maximum 

and actual air mass flow rates divided by the maximum mass flow rates (O=no fouling and 

l=completely obstructed flow): 

The symbols f,, and f,, are the "fouling states" of the evaporator and condenser coils, 

respectively, G,, and G, are the air mass fluxes through each coil, and G,:? and GcY are. 

the maximum values (unobstructed flow) of the respective air flow rates. For this 

demonstration system, Gcy = 2.85 kg/s/m2 and G r  = 4.80 kg/s/m2, which corresponds to 

volume flow rates of 0.57 m3/s (1200 cfm) and 1.65 m3/s (3500 cfm). 

A simulation was run over a uniformly spaced three-dimensional grid of ambient 

temperature (10°C 5 To& 5 35"C), outside air mass flux (0 tG, 4.80 kg/s/m2), and inside 

air mass flux (0 5 G,, 5 2.85 kg/s/m2) and results for power consumption and total capacity 



were tabulated. The lookup table was used by the service scheduling program to determine 

the amount of energy used to support the prescribed cooling load under the specified 

conditions and fouling states and to provide an upper limit on the cooling capacity in order to 

evaluate the comfort constraint. 

Figure 5 shows example predictions of total capacity and power consumption predictions 

as a function evaporator and condenser air flow rates. When the evaporator air flow rate 

decreases, capacity begins to fall immediately and power consumption follows. When 

condenser air flow rate decreases, capacity remains relatively constant because increases in 

head pressure have a relatively small effect on evaporating conditions. However, the high 

head pressure does result in higher power consumption. Eventually, capacity suffers at 

extremely low condenser air flow rates. 

Figure 5. Performance map for rooftop air conditioner 

Fouling model 

For simplicity, fouling was modeled as a linear function of fan runtime since the last 

servicing (2,). It increased from 0, after cleaning, to 1 in a characteristic time tf. 

t , - for 0 < t, s t, 
f =  2 ,  

i for t , > t ,  



The condenser fans ran only when the compressor was on and the evaporator fans ran 

continuously during occupied periods (I2 hourslday) in the cooling season. 

Constraints 

Three of the four criteria that were defined for fault evaluation are constraints: comfort, 

safety, and environmental. Heat exchanger fouling can impact both comfort and equipment 

safety through its effect on the operating states of the air conditioner. The comfort constraint 

was handled by requiring the cooling capacity of the air conditioner to be greater than or 

equal to the cooling requirement at each hour of the simulation. The only safety constraints 

considered were high and low limits on the refrigerant operating pressures. The vapor 

compression cycle was required to conform to high head pressure (<3050 kPa (425 psig)) and 

low suction pressure (>275 kPa (25 psig)) safety constraints. 

SIMULATION RESULTS 

Given a building, an air conditioning unit, and a weather model, there are only two 

independent variables on which the optimal service schedule depends: the cost ratio C,/C, 

and the fouling time 9. The first demonstration results in this section provide the costs of the 

optimal, regular, constrained, and simplified service schedules as a function of fouling time. 

Results are compared for evaporator and condenser fouling and for two different capacity-to- 

load ratios. The second set of results explores the cost ratio and capacity-to-load ratio 

dependence for fixed fouling time. The third set of results investigates the sensitivity of the 

simplified service schedule to the type of fouling model. 

It is more meaningful to present results as a function of calendar time required for fouling 

rather than runtime. For this purpose, a normalized fouling time is defined as 

where N ,  is the number of hours of fan operation that would occur each year if there were no 

fouling. For evaporator fouling, r; is the actual number of years required for complete 

fouling because the evaporator fan runs continuously during occupancy, independent of the 



fouling rate. For condenser fouling, r ;  only approximates the actual number of years 

required for complete fouling because the compressor and condenser fan must operate longer 

as the condenser coil becomes fouled and the cooling capacity is reduced. 

Cost vs. t; for Evaporator Fouling 

Figure 6 compares the combined costs of energy and service for different service 

schedules versus the fouling rate of the evaporator coil. The operating costs, plotted on the 

vertical axis, are normalized using the base operating cost with no fouling. The base cost is 

the total annual energy cost with no fouling for cooling the building and has a constant value 

of $857 for all results given in this paper. The normalized cost is the actual cost minus the 

base cost divided by the base cost and represents the fractional extra cost due to reduced 

efficiency and increased service associated with the fouled heat exchangers. The horizontal 

axis is the normalized characteristic fouling time of the heat exchanger ( t i ) .  

All four plots of Figure 6 were generated for representative service and energy costs of C, 

= $60 and C, = 0.10 $/kwh. Figures 6(a) and 6(b) describe the main results, while 6(c) and 

(d) enlarge a portion of the constrained only solution with additional information for 

describing the unusual non-uniform nature of the curves. Figures 6(a) and 6(c) are for 

PLFm,,=0.55 and 6(b) and 6(d) are for PLFm,=0.80. PLF,, (miximum part-load fraction) 

describes the size of the cooling equipment relative to the load and is the ratio of the design . 

cooling capacity to the peak building load requirement (10 tons for this study). . . 

As expected, Figures 6(a) & 6(b) demonstrate that the optimal solution always results in 

lower costs than the alternative service strategies. In both figures, the savings associated with 

optimal maintenance scheduling increase with fouling time. For optimal scheduling, the 

additional costs due to fouling asymptotically approach zero as the fouling time. In the limit, 

the fouling goes to zero and the optimal solution reduces the service frequency to zero. In 

contrast, the extra cost of the regular service schedules approaches the annual service cost as 

the fouling time increases. The constrained service schedule also approaches zero additional 

costs as the fouling time increases, but at a slower rate than the optimal scheduler. For a 

fouling time of 5 years in Figure 6(a), the minimum operating costs are about a third of those 



for twicelseason service and about two-thirds of those for oncelseason and constrained 

service. 

(d) (c) 

Figure 6. Additional annual operating costs versus t ;  for evaporator fouling. 

The results of Figure 6(b) are similar to those for Figures 6(b) except that the minimum 

operating costs are not much lower than the costs for the constrained service scheduler. This 

behavior is not surprising since evaporator fouling has a direct impact on capacity and there 

is less extra capacity to meet the load when the heat exchanger fouls. In general, the 

constrained solution is nearly optimal when there is little extra capacity and is less efficient 

when there is extra capacity and longer fouling times. 

The regular maintenance schedulers always provide excessive service whenever the 

service interval is short enough to ensure that comfort conditions are maintained. For the 



results of Figures 6(a) and 6(b), the twicelseason regular service scheduler maintains comfort 

for shorter fouling times than the oncelseason schedule at the expense of higher service costs 

for longer fouling times. 

The costs associated with the simplified, near-optimal scheduler are close to those for the 

optimal solution under all conditions. The average difference between the optimal and near- 

optimal schedules is less than 0.2% for all results presented in Figures 6(a) and 6(b). 

Figures 6(c) & 6(d) reproduce a portion of the costs of the constrained only schedules to 

help explain the irregular features. Curves providing the corresponding service rates are also 

included and are referenced to the right axes. The service rate is the average number of 

services per year computed over one service cycle. Dotted vertical lines indicate when the 

service rate changes. The primary causes of the irregular nature of the cost curves are 

discontinuities caused by sudden changes in service costs when the service rate changes 

followed by changing energy costs as the fouling time changes for a constant service rate. 

Secondruy causes of irregular behavior in the cost curves are discrete changes in the month 

service is performed (with the same service rate) and changes in the constraint violation that 

triggers the service. Both of these secondary features are included in these figures. For 

example, when PLF,, = 0.80 and the service rate equals one service every three years, the 

total costs change when the service time changes from June (month 6) to September (month 

9). For the case of PLF,, = 0.55 and the service rates equal to one service every 1, 2, & 3 

years, the operating costs change rapidly when the service time changes from June to April 

because the constraint violation switches from comfort to low suction pressure. 

Cost vs. t; for Condenser Fouling 

Figure 7 compares the combined costs of energy and service for different service 

schedules versus the fouling rate of the condenser. The trends and percent savings associated 

with optimal maintenance scheduling are similar to those reported for evaporator fouling. 

However, the scale of the vertical axis (extra cost) is larger due to the higher cost for 

condenser cleaning ($100) as compared to evaporator fouling ($60) resulting in larger 

absolute savings for optimal maintenance scheduling. In contrast to the results of Figure 6, 

the differences between the costs for the constrained only and optimal schedules do not 

depend strongly on PLF,,. Unlike evaporator fouling, condenser fouling does not have a 



severe impact on capacity. The cooling capacity does affect the condenser fan runtime and 

therefore the rate of fouling. However, the results in Figures 7 are presented as a function of 

fouling relative the fan runtime. 

Figure 7. Additional annual operating costs versus t; for condenser fouling 

Once again, the simplified, near-optimal scheduler gives operating costs that are within 

0.2% of the optimal solution. The constrained only service schedules have the same irregular 

features observed in the evaporator fouling service schedule. 

Cost vs. C, and PLF,, for Evaporator Fouling 

Figure 8 shows the costs of the four service schedules as a function of service cost and 

PLF, for tf = 7830 runtime hours (r; = 3.0 years). When C, was varied, PLF,, was fixed 

at 0.55 and when PLF,, was varied; C, was fixed at $60. Figure 8(a) demonstrates that the 

costs associated with the regular and constrained schedules are linear functions of service 

cost, while the costs for the optimal schedule increase more slowly as service costs increase. 

When the service cost is small, the regular and optimal schedules converge because the cost 

of excessive servicing is small. As service costs increase, the cost penalties associated with 

the excessive service of the regular schedules increase. In contrast, the constrained only 

schedule is not providing enough service and its total cost is always greater than the optimal. 



The differences become greater when the service costs are small and there is an incentive to 

service more often to reduce energy costs. 

Figure 8. Additional annual operating costs versus service cost (a) and PLF,, (b) for 
evaporator fouling. 

Figure 8(b) shows that the costs of the optimal and regular service schedules are nearly 

independent of PLF,, for a fixed fouling rate. Since the fan runtime is fixed by the 

occupancy schedule, the coil fouls at the same rate, regardless of the cooling capacity. In 

addition, the efficiency of the onloff controlled compressor does not depend on its runtime. 

As a result, the same profile of cooling requirements will produce the same optimal schedule, 

regardless of cooling capacity if service decisions are not based on constraints. The 

constrained only schedule changes with PLF,, because as the capacity of the unit increases, 

it can operate with more fouling and still maintain the comfort constraint. In this case, the 

energy costs increase as the service rate decreases with additional cooling capacity. 

The costs associated with the simplified, near-optimal scheduler are very close to the 

minimum costs under all conditions considered in Figure 8. 

Cost vs. C, and PLF,, for Condenser Fouling 

Figure 9 shows the costs of the five service schedules as a function of service cost and 

PLF,, for condenser fouling with I /  = 1230 runtime hours. The fouling time of z, = 1230 

runtime hours corresponds to Z; = 2.75 years for P a ,  = 0.55 and Z; = 1.95 years for 

PLF,, = 0.80. When C, was varied, PLF,, was fixed at 0.55 and when PLF,, was varied, 



C, was fixed at $100. The results of Figure 9(a) are similar to those of Figure 8(a). For low 

service costs, the optimal and regular schedules give similar costs since they all provide 

enough service and there is a small penalty for over servicing. As service costs rise, the 

regular schedules cost more because they are providing excessive service. In contrast, the 

constrained schedule is under servicing resulting in larger cost penalties at low service costs. 

Figure 9. Additional annual operating costs versus service cost (a) and PLF,, (b) for 
condenser fouling. 

Unlike evaporator fouling, the costs of regular and optimal service schedules are not 

independent of PLF,, for a fixed fouling rate. When the equipment size becomes larger 

(smaller PLF,,,), the condenser fans run less and fouling occurs more slowly (clock time), 

thereby decreasing the costs for all the schedules. The optimal schedule has the ability to 

reduce the service rate to less than once per year as the unit size increases, causing the costs 

of the once/year and optimal schedules to separate for low PLF,,. 

Effect of the Fouling Model 

For any point in time, an estimate of the optimal service time from the simplified service 

scheduler is based on the assumption that the current dependence of fouling on runtime will 

not change in the future. Under this assumption, the performance of this scheduler is 

extremely good as demonstrated in  Figures 6 - 9. This section investigates the effect of using 

a fouling model that changes with time. The alternative fouling model consists of replacing 

portions of the constant fouling rate with randomly placed impulses while maintaining tf as 



the characteristic fouling time. The impulses model sudden unanticipated accumulations of 

dirt on the heat exchangers. 

A mathematical description of the fouling model is: 

where 

and ? ={z,,z, ,..., z,} is a set of uniformly distributed random runtimes in each cooling 

season when the impulse fouling occurs, and r, is the calendar time required for the runtime 

to equal r,in the absence of fouling. The two terms in the integrand are normalized such that 

complete fouling (f = 1) occurs approximately when the runtime accumulates to 9, 

independent of a and n. The parameter a indicates the fraction of the fouling caused by 

impulses relative to a constant fouling rate. When a = 1, the model is completely comprised 

of a series of impulses and when a = 0, the model is completely linear. The parameter n is 

the number of impulses per calendar year. The impulses are randomly placed throughout the 

year, but reoccur at the same time each year. 

Figure 10 shows the fouling state f as a function of runtime for a fouling time of tf = 7830 

hours (number of evaporator runtime hours in three cooling seasons). The vertical lines 

separate the cooling seasons. Figure 10(a) illustrates the dependence on n for a = 0.8 and 

Figure 10(b) illustrates the dependence on a for n = 3. All fouling models attain complete 

fouling in the characteristic time 9. The more nonlinear models are characterized by a near 1 

and small n (e.g. n=l). In this case, fouling as a series of large step changes. As n grows 

larger, the evolution of fouling approaches a linear model, regardless of a. 

Table 1 summarizes the costs for different fan control strategies and building capacity-to- 

load ratios for both evaporator and condenser fouling. The costs are the percent additional 

costs relative to optimal maintenance scheduling (actual - optimal cost over the optimal cost 



times 100) averaged over 1 1  values of a between 0 and 1 and 5 values of n between 1 and 5. 

The fan control strategies are call for cooling (CFC), meaning that the fan operates only when 

the compressor is operating, and occupancy schedule (OCC), meaning that the fan runs 

during occupied periods for ventilation. For the cases considered, the simplified scheduler 

provided near-optimal operating costs. For evaporator fouling with PLF,, = 0.80 (little 

extra capacity), the constrained solution also provided performance comparable to the 

optimal schedule. 

(a) (b) 

Figure 10. Fouling state versus runtime hours. 

O/c Additional Cost relative to Optimal i 
Fouling Type Control PLF,,, I Simplified OncejSeason Constrained Twice/Season 1 
Condenser CFC 0.55 1 0.56 2.68 5.60 11.5 1 

CONCLUSION 

This paper demonstrated that there is a significant opportunity for cost savings associated 

with optimal scheduling of condenser and evaporator maintenance. It was found that optimal 

service scheduling reduced lifetime operating costs for a rooftop air conditioner by as much 

as a factor of two over regular service intervals and 50% when compared to constrained only 

~ 

Condenser CFC 0.60 
Evaporator OCC 0.55 
Evaporator OCC 0.80 
Evaporator CFC 0.55 
Evaporator CFC 0.80 

0.53 1.85 4.42 9.93 1 
0.46 2.11 3.74 7.86 I 
0.46 2.11 0.65 7.88 I 
0.36 1.S1 2.61 7.58 
0.31 1.21 0.21 i 6.63 , 

Table 1. Performance comparisons between different service schedules 



service. For practical implementation, a simple near-optimal algorithm was developed for 

estimating optimal service times. In contrast to the optimal solution, this approach does not 

require on-line forecasting or numerical optimization and is easily implemented within a 

micro-controller. Over a wide range of cases tested, the near-optimal algorithm gave 

operating costs that were within 1% of the optimal results. 

This study was performed for a small rooftop air conditioner. Greater opportunities for 

cost savings may be possible for larger equipment such as water chillers or electric power 

generating plants. These systems also experience performance degradations, but have 

significantly higher service and energy costs. Future work should extend the approaches 

described in this paper for determining optimal and near-optimal service times to these other 

systems. Implementation of the near-optimal maintenance scheduler should also be tested in 

the laboratory under controlled conditions. 
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DETERMINATION OF THE TUNING PARAMETERS OF A STEADY 
STATE DETECTOR FOR A CENTRAL AIR HANDLING UNIT 

P.Gmber. Landis & Gyr, 6301 Zug, Switzerland 

ABSTRACT 

The dynamic behaviour (set point change, disturbances) of a cenval air handling unit (CAHU) is analyzed in 
detail, in order to determine the parameters of a steady state detector hooked to such a uniL it is shown that the 
dynamic response of the controlled unit to step set point changes is crucial for the determination of the time 
window needed for the steady state detection. The settling time of this response can be estimated by using only 
the steady state gains of heater and cooler and the control parameter of the PI controllers. The threshold are 
determined by evaluating the noise aansfer functions between disturbance inputs and controlled variable Ts and 
by incorporating deterministic contributions to lhe deviation of Ts. 

I. INTRODUCTION 

The qualitative fault detection method which is used in the work of [1],[2] relies on the facL that s a y  states or 
quasi-steady s w  of temperalures or other signals can be efficiently detected. One of lhe methods for lhe steady 
state detection is to compute recursively the running damped fixed window averages and corresponding 
variances for the relevant measured quantities [3]. Whenever the varianm atrain sufficiently low values, the 
system may be deemed to be in steady state. Tuning this type of steady state detector requires appropriate 
settings of an averaging window lenglh or a damping parameter for the determination of the average and the 
variance of the signal and a threshold paramem for the variance. 
In this work a method is derived which allows lhis window length to be estimated in terms of the settling times 
of the control loop. The settling times of lhe control loop are determined for step changes in set points, or in 
internal or external disturbances. These settling times are functions of the dynamics of the proms and of the 
controller acting on the proms. We assume that lhe parameters of the controllers are tuned such that a good 
uansient behaviour is achieved. The tuning of the controller parameters is done by off- and on-line luning 
methods. It will be shown that in the cases considered, the seltling times can be estimated by the control 
parameters and tbe closed loop behaviour of lhe system without specific knowledge of the dynamics of the plant. 
Some ideas of how to choose the thresholds of the detector are also presented. 
We concentrate on the central air handling unit (CAHU) only, as it was demibed in [4],[5]. Fist the control 
loop of tbe central air handling unit (CAHU) is demibed. Then the mathematical models of lhe CAHU and the 
control loop are derived in the third and founh section. The fifth section presents the main results with the 
estimates of the settling times for the different modes of operaIion (pay-cooling, free-cooling, heating) and the 
different disturbances. In the sixth section Lhe results are related to the parameters of the steady state detector. 

2. THE CAHU CONTROL LOOP 

In this work only the thermal behaviour of the system is considered. 
The block diagram of the control loop of Lhe CAHU basically looks as follows: 

+ q z  
T s ~  Y Ts T, =T,  

SEQUENT. ' 
CAHU ZONE 

CONTROL 

t 
Fig.1: Temperamre wnuol of the supply air temperature of the CAHU 



Tbe sequential controller generates a conuol signal y, which consists of three outputs: Uh.Um,Uc. These outputs 
are controlled such that only one mode is active at a time. For each control variable uh,um,uc which is active in 
its corresponding mode (beating, damper, cooling), the controller has a different set of parameters. Each mode of 
the sequential controller consists of a PI-conuollw with some additional features. The two parameters of the PI- 
controller are fmt satisfactorily tuned for each mode. For the cooling and the heating mode the tuning is easy, 
because the p r m  is more or less linear (except for the constraintsimposed by the maximum heating and 
cooling capacity). For the damping mode however, the situation is different: the actuator gain is proponional to 
the difference of Toa and Tr. Although the PI parameters for this case would actually be dependent on the 
opemhg conditions in the zone and the disturbance, they are set to constant values here. 
Tbe CAHU consists of the mixing box, cmling coil and heating coil including their dynamics and constraints. 
Tbe output is (he supply air temperature to the zones. 
Tbe zone includes the dynamics of the building and the sequential controllers acting ria the VAV dampers and 
the reheating coils on the air flow rate and temperature in order to guarantee that the zone temperature TZ is 
equal to its setpoint TZsp 4 denotes the disturbances (beat gains and losses I of the zone. 
The return air temperature Tr and the ouldmr air temperature To,. usually act as slow disturbances on the 
control loop of the CAHU 

3. THE CAHU CONTROL LOOP 

We basically follow the system representation as it was used for the simulation studies in SIMULINK 
FGGT931. The CAHU blodc diagram of the system chat is considered is shorn in Rg.2 

heating coil cooling coil 

Fig.2: Block diagram of the CAHU 

Tbe mixing of the return and outside air lemperature is assumed to be instantaneous 

and the uanspon delays through the ducts are not taken into consideration too. Eliminating Tm leads to h e  
model of the basic dynamics: 

CM,T, = ~ ( u , ~ , + ( l - u , ) T , - T , ) + u , Q ,  (2a) 

CM,T, = LWT, - T,) + U,Q, (2b) 
u, E [O,lI, u, E [O.-11 
Mpair  mass in heater. M& mass in cooler, ospecific heat capacity of air 

That is a second order system with the stales Th and Tc=Ts, he'disturbance inputs Tr and To,, and h e  conuol 
inputs uh, ud. and uc. The equations are linear i n  h e  temperature and the hearing and cooling conrrol bul 
nonlinear in the damper conuol. In this case h e  conuol input is a multiplication of h e  damper position and a 
temperature. In the s-domain one oblains h e  two equations become 



M Q 
(s---I + 1)T, (s) = Tb (s) + + u,(s) 

m cm 
(3b) 

Solving the fmt e q u ~ o n  for Th(s), substituting into the second equation and replacing Tc by Ts yields: 

Ch 
M 

(sf + l)T, (s) = 
1 Q 

m 
M (u,(s)+u,(s))+ - up(s)++u,(s) 

(s+ + 1) M, (ST+ 1) cm 
m m 

It is assumed that To, < T, holds, otherwise the damper reverses ils direction 

4. THE CONTROL LOOP EQUATIONS 

The PI-cnnuoller has the vansfer function 

with m the integral lime and Kr the proponional factor.. 
The parameters of the controllers for the three controller modes are denoted by: 

The sequential controller determines which of the controller oulpuls are active, that means only one of the 
following mode is active. 

pay -cooling mode: uh(s) =O. u, = 0 * u,(s)= 0, u,(s)= T,(s) 

free - w l i n g  mode: uh(s) = 0, u,(s) = 0 

beating mode: u,(s) = 0, u, = u,,, * u, (s) = (1 - u,,, )T,(s), - 
L 

We can now consids the conuol loop for the supply air temperature in more d c ~ l .  We make a distinction 
between the three conuoller modes 



Pay-Cooling 

T 

Q K =' M 
7 =- 

ah' ' m 

Heating T 4 To, I 

Fig. 3ab and c: The conuol loops for h e  lhree modes pay-cooling, free-cooling and heating for ihe cast Toa<Tr 



5. THE CONTROL LOOP TRANSFER FUNCTION 

A lransfer function can be derived for each mode and each input if the system is Linear. For the disturbance input 
in the freecooling mode there is a nonlinear khaviow, such that some more assumptions have to k made. 
We slan with rhe heating mode, continue with rhe pay-cooling mode and end with the Gee-cooling mode. 

5.1. HEATING MODE 

In the heating mode the dynamic of the system is of order three. In order to make rhings easy, we assume that 
the time constant so of the PI-arnlroller is tuned such it cancels the slowest mode of the system. In o w  case we 
set 

With this assumptions we obtain for tbe set point and tbe two disturbance lransfer functions the following 
expressions 

, " - 
s e t  point: JiQL = ~ , ( s )  = 7 3 ,  

T,(s) s2 +-+- s K:Kb 
7, 735, 

We analyze the behaviour in response to both set point changes and disturbances. 

5.1.1. Behaviour in response to a set-point change: 

We assume that K , ~  and T~~ are chosen such that the dynamic behaviour for set point changes corresponds to 
well damped system, that means 5 lies in the range: 

This corresponds to an overshoot of 25% to 5%. 
With Kh known as well, one can eliminate sh from the equations (7d) and (7e) and gels for og and 500 : 



For an approximate five percent (5%) settling timer,,,, 

one obrains with the above expressions for 5m0: 

To be on the safe side, the lower 5 must be used resulting in a longer settling lime. It must be noted that for real 
poles instead of complex poles ( b 1 )  the settling lime increases with increasing 5. The seuling time obtained by 
the lower value of 5 of equation (8) holds therefore up to a 5 value of 1.5 which corresponds to a well damped 
system. 

5.1.2 Behaviour in response to a disturbance: 

For the assessment of the disturbance behaviour we start from the transfer function given in equation (7b) and 
(7c). We recognise that for both dislurbances the influence on the output is the same except for the different 
gains. We look fmt at the outdoor influence. For a step disturbance of height AToa,the response looks like an 
impulse response due to the differential term. Transformed back into the lime domain one obtains for the 
deviation from the operating point 

With the known expression for rh, one can determine the lime it lakes until the deviation ATs from the operating 
point falls under a chosen lhreshold, denoted by ATs,sp 'Ibis settling lime is given by 

For the dismbance K-AT, is replaced by K,AT, T, 

'Ibe influence of the additional pole depends on a knowledge of the lime constant rc. We can assume that this 
time constant is slower than rh, because the zero of the conuoller has cancelled it. Simulations show that the 
'effect of a closed loop real axis pole at -I/rc on the settling time of the above system having complex pole with 
real pans at -500 can be estimated by inspection of the rafio of the absolute value of the real pan of the real pole 
to the absolute value of complex poles. If this ratio exceeds 1 and €30.4 then the influence is negligible. Tbe 
inequality for the estimation of the influence is thus given by: 

With the equality (6) we obtain for the above inequality: 

Example: +2, ~,~=0.025/0.5=0.05. 
Kh=12900/(2.44*1005)=5.261 
KrKh=0.263 

5 a .707.  rbseule,sp=3*2/(2*0.5*0.263)=22.8sec 
~2*0.707*0.263/w.186 



check for pole influence: 1/0.263=3.8>1 
--> negligible 

5=0.4. shseule,sp=71.3sec 

Disturbance TI: 
ATs.sp=O.l. A T r l  u 4 . 8 ,  K,=0.8 
5 4.707,  shse~e,dist=7.61n(1.414*0.8/(0.1*~.7~7))=21.1sec 

5 4 . 4 ,  shsettle,dist=23.761n(0.8*~.8/(~.1*~.92))=~.lsec 

The settling limes for a step disturbance of one degree and a decay to a tolerance band less than O.1° is always 
smaller than the settling lime to a set point step and a 5% tolerance band. 
Equations (9) and (I 1) give expressions for the settling limes of the system, which are independent on the 
knowledge of the dynamics of heating and cooling coils! 

5.2 PAY-COOLING MODE 

The uansfer function are given by the following equation: 

K:K, -(I + ss:) 
T (s) K:K$ +ST:) - CT, Set point = G,(s) = - 
T,, (s) s ~ : ( i + s s , ) + ~ : ~ , ( l + s s : )  sl+(l+K:K,)-+a s K=K 

7, t ~ ,  

5.2.1 Behaviour in response to a set point change: 

We assume that KrC and snC are again chosen such ha t  the dynamic bebaviour for set point changes 
corresponds to a well damped systems, e.g. 5 is in Ibe range of 0.4 to 0.707. With K, known as well, one can 
eliminate T, and gels for b a n d  500: 

For an approximate five percent setlling time rsetde,sp one oblains with Ibe above expression for Cy): 

It remains to check the influence of the real zero at -zr of Ibe transfer function. A similar consideration as for Ibe 
additional real pole of the disturbance behaviour in Ibe heating mode leads to the following inequality for Ibe 
ratio of Ibe absolute values of Ibe real pans: 



This conditions ensures hat  the dynamic behaviow,is not effected by lhe zero. I t  can be assumed, lhat kc is not 
much different from the slower time constant in our case rc. 

5.2.2 Behaviour in response to a disturbance 

For the assessment of the disturbance khaviow we s t m  from lhe transfer function of equation (13b). We 
recognise that for a stepwise disturbance of height AToa,the response looks again l i e  an impulse response due 
to the differential lenn. Fmt we neglect the additional pole. Transforming the olher pan of equation (13h) back 
into the time domain one obtains 

With the known expression for rc, one obrains for a seuling time of ATs under lhe threshold ATSvSP 

It remains to check the influence of the pole at -pr of the uansfer function. In order not to influence the dynamic 
behaviou lhe same inequality should hold as in lhe case of disturbance khaviou in lhe heating mode : 

The time constant rh is not known, but in ow example we assume that it is smaller lhan rc . In the heating mode 
lhe slower time constant was cancelled by the controller time constant mC. So we can usernC as upper Limit for 
rh  and plug it in the above equation. 
Equations (14) and (16) give expressions for the settling time of the system, which are again independent on 
the knowledge or the dynamics or the beating and cooling coils! 

Example: mC=2 KrG0.025/1 .3=0.0192 
Kc=40600/(2.44*1005)=16.56 
Kr%c=O.3184 

Setpoint 
E, d.707, ~setde,sp=6*1.3184/(2*0.5*0.3184)=24.8sec 

~-2*0.707*0.3184/(2*1.3184)=0.171 
check for influence of zero: 

1/(2'0.171*0.707)=4.15>2 --> negligible 
E, =0.4, $setde,sp=43.83m 
Disturbance 
ATS,sp=O.l. AToa=l, mC=2. 
5 =0.707, ~~tde,disF8.271~(l.414/(0. 13184*0.707))=22.5~ 

check for pole influence: same result as for set 
point 

5 =0.4. ~setde,dist=14.61n(0.8/(0.13184*0.92))=27.5sec 

Again, the settling times for a slep disulrbance of one degree and a decay ro a tolerance band of less lhan 10% is 
always smaller than the settling time to a set point slep and a 5% rolerance band. 



5.3 FREE-COOLING MODE 

Looking at the conml in the damper mode, one recognises immediately that tiis control loop is equivalent to the 
healing mode control loop with one important difference that there exist a lime variable gain 

Kd = CTrTd. (17) 

For the moment we assume IhatQ is constant and that 

Then the set point transfer function is given as 

T (s) Set point = G, (s) = ~ 3 b  
T, (s) s 2 +-+- S K$d 

r b  ~ 3 b  

The settling time is then according to equation (19) 

From equation (20) it is evident that the settling time is inversely proportional to the varying gain Kd. One can 
expect a similar or analler seffling lime in the b e p e r  mode for a set point change if 

In the a b v e  example this is the be a long as K,j>S°C. 
For small diifuences between return air and outdoor air temperatures the gain becomes very small and the 
transient response very slow if the conuoller gain is not increased. If we assume that the conuoller has fixed 
aoefficienu, then one can conclude that in the free cooling mode the steady state detection based on settling 
time is inappropriate if TrToa gets small (<2OC). 
If the influence of the disturbances is to be considered one has to make some further assumptions. We assume 
that the system is in steady state before a stepwise change in one of the disturbances occurs. In steady state ,the 
m o r  is zero, which leads to the following steady slate values: 

Next the effecu of changes in the outdoor air temperature To, or the return air temperature T, is investigated. 
For this purpose the deviations of the variables from the operating point are defined as: 

If the disturbance bebaviour is linearized in this way, one obtains after some manipulations 



The disturbances ATo, and ATr are propagated hical ly in the same way as the disturbance in the h&ng mode. 
So Ihe influence of a stepwise change is determined by equation (1 1) by substituting for Koa new quantities : 

T; -T, T, -TO, 
Kk = AT- or K: = AT, 

T; -TO, T; -TL (22c.d) 

Additionally Kh is replaced by Kd in equation (7b). 
The factors hd and  re^ with which the step heights AToa and ATr are multiplied are due to the inequalities 
(22a 22b) strictly less than 1. The influence is therefore comparable to the disturbance effects in the heating 
mode and the same estimates for the seuling times are applicable. 
The example follows very closely to the one of the heating mode and is left out. 

5.4 MAXIMAL APPLICABLE DISTURBANCES 

If we look at the mult of the preceding sections one can conclude (hat for step wise disturbances of up to one 
degree Celsius and aseuliig time to 10% of the disturbance heighh the settling t i e  of a set point change is 
good upper bound for the settling times which are to be expected for the disturbance inputs. In the control 
loop configurations under investigation the disturbance transfer function always has a phase lead behaviour 
compared to the set point transfer function due to the PI controller. 

The term (~ , ) -1  generates a phase lead effect 

We can compute now the maximum ratio of height of the step of the disturb- to the tolerance band width 
ATsvsp .This leads to the same sealing time as the set point settling time with a 5% tolerance band: 

AT = AT, heating mode 

AT - AT, free - cooling mode 

AT = AT, heating mode 

AT = AT, free - cooling mode 

K = 1 
AT = AT, pay - cooling mode 

I + K,K, 

Equality in equation (23) is obtained for: 

numerical values: a) AT, = O.l0C K = 1 

5=0.707 AT2l0C 

5=0.4 AT2 2.3"C 

b)AT,=2"C K = l  

\ =  0.707 AT, = 0.05"C 

\=0.4  AT, 0.l0C 



6. STEADY STATE DETECTOR PARAMETER DETERMINATION 

Tie derivation of steady state detection schemes are described in [G&G961. We consider here the detection 
using fured window or geometrically weighted moving variances. ~e form& is basically an averaging scheme 
which computes at each sampling time an estimate of the mean and the variance using a fured number of data 
points. The-lam use.s a recursive low pass fdter. 

6.1. DETERMINATION OF THE TIME WINDOW 

One signal that can be used to &tea steady state is the error signal in the control loop. If this signal falls in 
absolute value to under 5% of the f d  value, we can assume quasi steady state conditions. Tie choice of the 
window length for the averager is determined as follows: 

If the disturbance signal is effectively averaged over the length of the settling time and after this window length 
the variance is under the given ihreshold, then one can be reasonably certain that the influence on the error and 
so aLFo on the steady state is less than the specified absolute error limits. Fig. 4 shows an illushative example of 
this idea 

1: unit step disturbance at t=40 
2: output of the fued window mean estimator (averager of length 50) 
3: output of the fixed window variance estimator (length 50) 
4: standard deviation of the variance 3 
5: output of the recursive mean estimator with damping factor 0.95 
6: output of the recursive variance estimator with damping factor 0.95 
7: standard deviation of variance 6 

1': AT&), transient response of the control loop due to step disturbance 
2': exponential envelope 
3 threshold ATSvsp 

F i g . 4 ~  Estimation of the mean and standard deviation for a stepwise disturbance input 
Fig.4b: corresponding supply air temperature transients 



It is assumed, that the step d i i turban~ is a worst case signal with respect to the wtling lime. 
A look at the F~gures 4 shows the following: The settling time of the steady state detector should match the 
settling time of the conml loop. Both variance estimators of Fig.4a reach approximately the same value for the 
variance estimate at the setllig time of the conml loop (t3Osec). 
So the rule is as fouows: 

The averaging length T w  (or window length for a rued time window) for the steady state detector should 
he chosen ss 

tsettlesp is either the maximum of the settling times of the three controller modes or if the controller mode is 
known the corresponding settling time. For a geomevically weighted avenging procedure the correct 
exponential weighting factor is reIated to the time constant of the exponential transient behaviour of the low pass 
to a step inpur This time constant is approximately TWO 131. 

6.2 THRESHOLD VALUES FOR THE STEADY STATE DETECTOR 

It remains to derive a rule for the threshold and the hysteresis for the estimation of the variance or standard 
deviation of the disturbance (especially Toa)and of the control loop output. the supply air temperature Ts. 

6.2.1 Supply air temperature: 

The threshold values are set in response to two considerations. One is that the minimum threshold .cssTs 
penaining to the supply air tempgdture Ts must take residual high frequency noise in the signal into account. 
whose standard deviation is denoted here by aTs. A minimum standard deviation qs of Ts under stable 
operation can be found for insfance by inspecting some recorded data. If detaministic changes in the outdoor air 
temperature, which act as disturbance on TS, are taken into acmunt as weU, the standard deviation q s .  has to be 
increased by a factor p can be related to the tolerance band AT%rp which was introduced in the deterministic 
disturbance behaviour (see influence of outdoor air temperature in next subsedon..Secondly, in view of the fact 
ha t  the response of the supply air temperature to step changes in i u  set point is approximately exponential, some 
f d e r  allowance has to be made for the residual effect of such a step change after the setllig time, which is 
chosen as 5% of the original step. This residual amount is denoted by h s ,  and the resulting threshold .cssTs is 
given by: 

6.2.2 Outdoor air temperature 

The same idea as before is used here. The noise contribution to the threshold is determined by using the standard 
deviation q s  of the supply air temperature Ts. 
If we assume a srationary random source with standard deviation qoa as diswbance input we can calculate the 
standard deviation q s  of the high frequency noise of the output signal Ts due to this inpur 
If we assume that we can neglect the additional zeros or poles, then all disturbance lransfer functions are of the 
form 

K  is dependent on the controller mode and the disturbance input. However the following inequality holds 
(section V.d)): 

K < 1  (26) 

As an upper bound K  can therefore be set to 1. 
Now a srationaq disturbance noise source with zero mean and variance qoa2 and a constant specual density 
S T ~ ~ ( W ) = S T ~ ~  is applied to the disturbance input 



The bandwidth is normally half of h e  sampling frequency fg  at which the disturbances are measured: fg=f&. 
The sampling time is denoted by TSmpl,.Thus equation (25) gives h e  following aTz of h e  noise in steady 
state at ihe output of the rnnb'ol loop using Parseval's Theorem: 

1f ors2 is given instead of qm2 then equation (27) has to be rewritten as: 

K can be set to l (equation 26)). 2fg can be replaced by l ~ s m p l e  and Cooby 3/Tsetuc.sp (quation (9)) 
resulting in: 

It remains to determine lhe effect of deterministic disturbance inputs. A step input is again regarded as the 
relevant signal. The residual effect of such a step change after the settling Lime for h e  variance estimator of To, 
is dneoted by boa. which is 5% of h e  disoybance step heighr This leads U, a resulling threshold E~~~~ for h e  
steady state estimator a: 

The disturbance step of height 20' G T ~ ~  has also effect on lhe deviation of the supply temperature. This 
influence after h e  settling Lime is assumed to be The variance of T, is thus increased by  AT,.,^^. 
Combined wih ors2 allows to determine p: 

6.2.3 Choice of Hysteresis 

Because h e  variance estimation is evaluated al each sampling time inslant a hysteresis type threshold has U, be 
used to avoid rapid fluctuations of h e  smdy state signal. This has to be applied to each variance estimation, hat 



means for each disturbance input and for the controlled signal. It  is reasonable to choose the upper and lower 
values of the hystersis as a factor of the corresponding determined thresholds essTs and eSsToa. For a 10% 
factor one obtains: 

As an example the hysteresis type threshold for the supply temperalure is shown in Fig. 5 

Fig.5: Example of thresholds for the supply temperalure, 

An example with test data is also mated in [6] 
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ANNEX 

Summary of the equations needed: 

Pay-Cooling 
m=airmassflow 
c = specific heat capacity of air 

K:,r: = PI control parameter 

5 = damping of conmlled Imp (0.4 < 6 < 0.707) 

check: if - > 1 
3r; 

Heating 
m=airmassflow 
c = specific heat capacity of air 

K:.rL =PI  control parameter 

5 =damping of conmlled loop (0.4 s 5 5 0.707) 

7:- check: if - > 1 
31; 

Free-cooling 
Kf.rd, = PI control parameter 

6 =damping of wnmlled loop (0.4 _< 6 5 0.707) 

K,=(T, -T, )  

check: if - 



Threshold for controlled variable (supply air temperature) 
a:, measwed 

6:, and 6:- estimated 
K chosen 
5 chosen 
AT, =2O*6, 

AT =-- 2Y( I AT- 
e3 

Threshold for disturbance variable (outdoor air temperature) 
T-, :sampling time chosen 
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Abstract 

Theoretical method for the preventive maintenance and the decision making of the investment for installation 

BEMSDOFD system and the retrofit of components, subsystems and the total system has been developed 

in!mducing a transitional probability of incremental faulty stages. An example calculation shows the impomme 

of the life cycle costing and the study to identify the transition probability. 

1 INTRODUCTION 

The present section reviews an innovative tool to identify the following issues: 

- reasonable invesunent to be spent for inboducing BOFD system 

-effective preventive maintenance strategy 

Present Value Based Life Cycle Cost Method is fundamentally applied as basic tool for their purposes. However, 

new ideas are developed to precisely evaluate the outbreak frequencies of fault and failure and the various kinds 
of damage by them. Thus, probability characteristics of fault's and failure's outbreaks are considered with "cost- 

convened" amount of damages in energy consumption and indoor environmental quality. The detail of this 
methodology has been described in references [1][2]. 

2 BASIC CONCEPT OF EVALUATION OF BOFD AND PREVENTIVE 
MAINTENANCE 

BOFD system is quite alike fue-detection system. Both systems always supervise phenomena that could not 

happen in essential. so that these systems have ideally never done in the building's life. Thus, these systems 

involve contradictions that investments for them are thoroughly "worthless" when the ideals can be realized. 

However, the failure of fue-detection shall bring down enormous damages to human's life & well as building's 

Life, so that the fue-detection system must be indispensable without any conditions. There is, therefore, little 

scope left to discuss whether it is needed or not from the viewpoint of costbenefit. 

How about the BOFD system? The failure of detecting a faulty operation in HVAC system will not inherently 

take human's life, or reduce building's life. The fault may decrease thermal comfon of occupant slightly. 

However, it may be aivial and unimpomt problem if the global environment problems are taken into 

consideration as our commonsense. This is because we now live in a period when we must agree a slightly 



uncomfortable indoor climate in our dairy life. Therefore, it is obvious that we endure slightly uncomfonable 

environment due to fault and/or failure in a HVAC system, since they happen entirely on rare occasions. 

In fact. to install a BOFD system shall necessarily follow additional hardware, software, and sensors regardless 

of stand-alone type or BEMS-included type. The BOFD system must recover the investments for themselves 

completely in a building life. To improve the fault detecting accuracy could certainly increase investment to 
BOFD system itself. Thus, there shall be uade+ff relationship between the investment for a BOFD system and 

the benefit due to it. 011 the other hand, building optimization based on the BOFD must be closely related to 

preventive maintenance strategy, i.e., whether a detected fault should be repaired or not A minor fault may give 

no damage to thermal comfon and energy consumption, while the cost to repair the fault is inevitably needed. 
Thus, it is not always optimal fmm the viewpoint of costkenefit to repair a fault whenever it is detected. It  is 

very important to identify what level of fault should be repaired. 

The following two standpoints must be discussed in all seriousness: 
1) How grade of BOFD system is reasonable to be applied in a building? 

2) How level of a fault should be repaired? 
The latter level can be referred as "threshold" of repairhemfit of a fault. Of course, both standpoints are closely 

related together. It is rational if they can be evaluated to minimize the total of the following costs. 
- investment for installing a BOFD system itself and addindmending sensors 

- cost of preventive and/or after-failure maintenance of HVAC system 

- cost-convened damages due to fault and/or failure 

The building's life should be taken as the period of evaluation. BOFD system is inherently to detect a fault in a 
HVAC system; a fault will follow damages to thermal comfon of occupants and energy consumption in HVAC 

system. Therefore, the benefit can be replaced as damages in the cost and benefit analysis. An investmnt for a 
BOFD system can be also interrupted as a kind of damage because the HVAC system is not complete. Thus, a 
BOFD system could be optimized to minimize the total life cycle damage in a building. 

3 MODELING OF FAULT'S OUTBREAK, DETECTION AND 
MAINTENANCE PROCESS 

3.1 BASIC CONCEPT 

As have been discussed in the Annex 25, there are many kinds of target for B O m  a unique machine such as 

pump, fan, and refrigerator, a subsystem such as thermal storage, and total HVAC system. On the other hand, 
fault in a machine or a system could shift in various states, from slight case to serious case. It will be rational 
that completely normal state and completely failure state can be also d e f d  as exnapolation of "fault-state". If 
these states can be shown as discrete value of fault level, change of fault state fmm a state. i, to a fault state, j, 
can be described by probability process, regardless of target of BOFD. 

Fault detection and repa" processes can be illusnated as Figure I. The ordinate is fault level of a machine or a 

system and the abscissa is time. Fundamentally, a BOFD system always supervises fault state of a machine or a 

system every a time step. AT. A fault will surely either hold previous level or rise in level more than previous 
one. If the BOFD system can detect a fault at a level more than lhreshold, the system or machine will be 
repaired. The lhreshold means, of course, a fault level that a system or machine must be repaired. It should be 

determined to minimize the life cycle damage. 



The following rational hypotheses are proposed for fault detection and fault repair processes to model their 

process theoretically. 

1) Fault state can be described discretely; Lo, LI, L 2, ..., L, ...., Lh, L,. Here, Lo is completely normal (no fault) 
state, Lh is a level previous to completely failure state, and LC is completely failure state. 

2) Fault will change from a level L i to its arbihary upper level L, with a transmission probability, p  i,. every 

time step for detecting, AT. Here, the following consmint can be composed. 

Thus, various kinds of fault prosress such as drift and abrupt change to "failure" can be rationally 
reproduced. Transmission probability of the abrupt change, p i  ,, will be very small but not zero. 

3) If fault level is over L,, a machine or system that a BOFD system is applied may waste energy comparing to 

no faulty operation. 011 the other hand, if fault level is less than L,, no wastefulness may happen. The 

amount of wasted energy, which can be finally convened to money, will be assumed to be proportioned to its 

fault level. Thus. the energy damage when fault level is L i (Li > L,) can be represented as D, i ($/I). 

4) If fault level is over La, a machine orsystem may not maintain indoor environmental quality within a comfort 

Lo : completely nomal state, LC : completely failure state, Lh : a state previous to LC. L, : lower l i t  
of fault that give energy wastefulness, La: lower limit of fault that give indoor environmental 
aggravation, Ld : threshold where a fault should be repaired. 

[Fault Level] A fault could be detected successfully. 
I& level was over Ld, so the fault was 

LC 

- - got to failure, so it was - 
fault level was 
initialized to Lo. . . -. . -. . - . -. . - - . -. . - 

[Time] 

Energy Loss (conve 
0 

0 

0 
[Environmental Damage (converted to money)] 

0 
[Time] 

Figure 1 Sketch of process of fault detection and repair 



criteria; concretely speaking. indoor air temperature andlor humidity may miss the comfort zone. If fault 
level is less than &, indom air quality could be maintained within a comfort criteria because of automatic 

action of conhvl devices. It is now assumed that the discomfort due to such a fault level can be converted to 

"money". Of course, if fault state gets "failure" with defeat of fault detection, it will bring huge damage to 

occupants' workability. The amount of discomfort will be dependent on the fault level. Thus, enviromental 

damage when fault level is L , (L , > L .) can be represented as D. i ($/I). In fact, it will be very difficult to 

identify D . , . In the developing described later, it is assumed that the rime consumed for recovering fault 
and failure can be ignored. 

5) Accuracy for detecting a fault in a BOFD system will be not properly perfect The probability to succeed 
detecting L i level's fault is replaced as q i. High-grade's BOFD syslem will have naturally high probability 
for q ,, while it will become expensive. Thus, the mde-off could be consisted between cost and benefit of a 

BOFD system To identify the probability variable is important to evaluate a BOFD system precisely. 
6) If the BOFD system can detect a fault more than l&el Ld, the system or machine is repaired. Thus, Ld is 

threshold, a system or machime must be repaired. To identify this value is very imponant, and it should be 

determined to maximize life cycle costlknefit of a BOFD system. After the fault is repaired, the fault level 

could be restored to no fault level. Lg. Furthermore, the cost to repair a fault at level L i is defmed as Dd,. 
7) If the BOFD system can not detect a fault more than level Ld continuously, the system or machine will get to 

"failure", i.e., LC. Consequently, the failure must be certainly repaired. After the failure is repaired, fault 

level can be restored to no fault level, Lo. Furthermore, the cost to repaira failure at level LC is defmed as D,. 

4 DEFINITION OF LIFE CYCLE DAMAGE 

4.1 CONCEPT OF LIFE CYCLE DAMAGE 

Energy wastefulness and environmental aggravation owing to a fault are definitely recognized as damages. Cost 

to repair a fault or failure can be also interpreted as a kind of damage. Invesment for a BOFD system can be 
also interpreted so, since the investment is no more than lossof money for us. If high grade's BOFD system is 

applied, the first and second damages will decrease, while the third damage will increase. Therefore, we can 

perceive the uade-off relationship among those. 

On the other hand, these damages should be evaluated in the Life cycle of a building and/or HVAC system. Thus, 

a BOFD system can be evaluated by "Life Cycle Damage (LCD)", which is of course the concept extended from 
"Life Cycle Cost (LCC)". As stated earlier, it is very important to identify optimal grade of BOFD system and 
threshold to be repaired from the viewpoint of building optimization. 

Such an identification can be attained to minimize the LCD. Basic concept to minimize LCD can be described 

as follows: 

minimize: Is + Ir + Ea + Ee + Ed + Er (=LCD) (2) 
Is : Initial cost of a BOFD system 6) 
Ir : Life cycle cost for maintenance of the BOFD system itself ($)Ea : Life cycle damage of 

environmental aggravation ($We : Life cycle damage of energy wastefulness ($)Ed : Life cycle cost 
for preventive maintenance with fault detection ($) Er : Life cycle cost for post maintenance with 

failure 6) 



Is of a BOFD system generally consists of hardware, software, and sensors. When the BOFD is installed in 

BEMS, hardware cost may be neglected. Ir is mainly to calibrate andlor replace sensors. Dwabiiity of sensors is 
generally very low, so that they should be calibrated andlor replaced periodically many times for the building 
life. Thus, high reliable BOFD system must require higher Is and Ir. 

4.2 INITIAL COST AND LIFE CYCLE MAINTENANCE COST OF BOFD SYSTEM 

Is of a BOFD system will be closely related to the pmbab'iity of succeeding fault detection, q i. Higher reliable 
BOFD system will need greater cost for developing software and more sensors. Thus, Is can be represented as a 
function of q i (id ,h) as follows: 

q1, q2 ,......., 4; ,,...., qh is synthetically described as "q," hereafter. It could be calculated by simple average, i.e.. 

q m = ( q o q ~ q 2 +  .......qi+.....+q h )  I h . Ir is fundamentally for calibrating and/or renewing sensors, occasionally 
for improving hardware andlor software. Here, the following function could be composed. 

Ir (q,,,) = Dr (q,J TL I Tr (4) 
TL : life cycle of a building or HVAC system that a BOFD system is applied (h) 

Tr : mean time of proofing andlor replacing of sensors (h) 
Dr : costs for proofing andlor replacing of sensors ($hime) 

Dr could be represented as a function of detecting reliability of BOFD system. q,. Tr may be dependent on q, 

since higher reliable system shall need shorter interval for replacing. 

5 LIFE CYCLE DAMAGE BASED ON PROBABILITY PROCESS 

5.1 PROBABEITY PROCESS 

T i e  scale is discrete by the time step of fault detection, AT, and discrete time is represented as 1.2. ..., n, .... 
TL. Now, some probability variables are defined as follows in a discrete time, n: 

pi : pmbabiiity that a system or machine is at level, L i, of fault state 

qd : pmbability that fault is detected and repaired preventively 

q , " : pmbability that fault state get to completely failure and is repaired 

qi ,  : pmbab'iity that fault will change fmm level L , to L, after AT (independent on n) 

q i : pmbability that BOFD system can detect fault of level L ,  

pi  ", q d ". and q , " at n time are calculated using previous time's several probability variables as follows: 

i) The pmbability that a system or machine is at level L i of fault state at time n, pi ": 

i 

pJn = (q:-' + q:-l)Poi + ( 1  -q;-' - q : - l ) ~ P ; d P , i  i=0,1,2,.....h 
J* 

ii) The pmbability that fault is detected and repaired preventively at time n. qd " 



iii) The pmbabiity that fault state get to completely f a i lw  and is repaired at time n, q," 

q: = (q:-l + q;-l)p, + ( 1  - q y  - q;-l)gp;-lp, (7) 
id 

These pmbabiity process in relation to progress of a fault could be defined as a steady-state process. For 
example, the Markoff Chain theory can be applied to solve them. 

5.2 DAMAGE DUE TO ENERGY WASTEFULNESS AND ENVIRONMENTAL 
AGGRAVATION 

n The damage as energy wastefulness at time n, E, , can be calculated as the expected value using the pmbability 

variables as above defmed and the damage rate per an how, D, i .  

n The damage as indoor environmental aggravation at time n, E, , can be also calculated as the expected value 

using the pmbabiiity variables as above defined and the damage rate per an how, Do i .  

5.3 COSTSFOR REPAIRS OWING TO DETECED FAULT AND UNDETECTED 
FAILURE 

The cost of repairing a machine or system when a fault can be detected at time n, Ed cau be calculated using 
the pmbability that fault is detected at time n and the cost rate per time, Dd. 

The cost of repairing a machine or system when a fault can not be detected at time n and it gets to the failure, 
E,", can be calculated using the pmbabiity that fault is not detected and gets to the failwe at n time and the 

cost rate per time. D,. 

6 DECISION MAKING BASED ON LIFE CYCLE DAMAGE 

6.1 LIFE CYCLE DAMAGE 

Finally, the life cycle damage (LCD) can be basically represented via total checking times throughout building's 
life by BOFD system, L(=T L /AT) as follows: 



Actually, interest rate and inflation rate about energy cost must be included in the equation (12). In the 
description, however, they are omitted because equation become to too complicate. Of course, they were 
involved in the case study described later. 

6.2 DECISION MAKING PROCESS 

To identify optimal grade of BOR) system to be installed and threshold to be repaired are important from the 
viewpoint of the building optimization. The former element can be represen~ed by global probability to succeed 
detecting a fault. 9,. The latter can be also represented by a fault level that repair should be conducted, Ld. 
Therefore, we can obtain optimal values of 9, and Ld in order to minimize equation (12), i.e., LCD. If this 

thesis can be replaced by exhemum problem, the optimum values may be derived conceptually from the 
following equation. 

6.3 OTHER IMPORTANT SUBJECTS TO DEVELOP DECISION MAKING 
PROCESS 

There are many subjects remained, which must be clarified to concretely develop the decision making process 

and realize it in actual application. 

1) Identifying transition probability, pu : Tbis subject is very imponant not only to reproduce fault 
advancement for calculating LCD but also to analyze basicproperties of fault andlor failure in the Annex 

25's wok. For that purpose, field data will be able to be available. 

2) Identifying cost-converted damage due to environmental aggravation when level Li of fault is 
generated, D. i. Tbis factor may be most difficult to be identified, since it is closely related to human's 
thermal comfoa Thermal comfon is often hard to evaluate quantitatively and give strong incentive to 

evaluation of buildingRlVAC system The aial of quantifying this was hied in the reference [I]. 

3) Identifying cost-converted damage due to energy wastefulness when level Li of fault is generated, D, i : 
This factor will be relatively easy to be quantified, since energy can be easily converted to money. Many 
"building and HVAC system simulation codes" such as HASPIACSSWSOI, W E  2/3, and BLAST can be 

applied to estimate these values. 

7 CASE STUDY OF OPTIMIZED PREVENTIVE! MAINTENANCE 

7.1 OUTLINE AND SCOPE OF CASE STUDY 

Although there are many subjects to be clarified to concretely develop decision making process and realize it in 
actual application, case study was conducted to confirm mathematical propriety of the methodology to 

optimizing preventive maintenance. In addition, sensitivities of some imponant factors to the optimum grade 

(9,) and the threshold (Ld) were analyzed. Standard conditions were given as shown in Table 1. Eight stages 
were assumed for discrete fault levels including Completely normal and completely failure. The transition 
probabilities, money<onverted damages, maintenance cost. and investments to BOR) system were assumed 
based on information of some skillful engineers. The life cycle damage was evaluated based on rhe Present 
Value Method. in which future's income and outcome are rebated by interest rate and inflation rate. The 



equation (12) was also solved numerically under steady-state pmbability process. 

7.2 AMOUNT OF LCD 

Fist, variation of amount of LCD according to two parameters, q, and Ld, was calculated under the conditions 

shown in Table 1. Figure 2 shows its result Figure 3 also shows contents of LCD when q, was 03.  The 
differential between the highest LCD and the lowest LCD in this situation was approximately $180.000. Thus, 

combination of the grade of BOFD system (9,) and the threshold for preventive maintenance (Ld) had large 

influence to amount of money in the building's life. 

The optimum combination giving the lowest LCD was q,=0.3 and 4 2 .  'Ibis standard situation was when 
environmental damage and after-failure maintenance cost were estimated at relatively expensive values. In other 

words, to conduct preventive maintenance at relatively slight fault level was effective under such a heavy 
damage impacted case. So higher grade BOFD system was not needed under this situation. 

8 CONCLUSIONS 

The most important purpose of this paper was to appeal necessity of developing evaluation methods of BOFD 
system. Whatever great BOFD tool is quite unnecessary if building or HVAC system has high reliability andlor 
durability. Therefore, incentive of intmducing BOFD system must be rationally evaluated based on frequencies 
of fault andlor fault and their damages. 

Table 1 Calculation Conditions in Case Studv 

Outline of Building I Total Floor area : 10,000 m2. Use for Office 
Objective of BOFD I Motor-driven chiller (appropriate size and cost of chiller 

-.. . . 

Fundamental Parts of BOFD system I (Here, q, is the mean probability of succeeding fault detachon) 
Investment and Senrice Life of 1 Investment : 15,000 x q, IS], Service Life : 10 years 

Discrete Fault Levels 
Detective Interval 
Transition Probabilities of fault 
Investment and Service L ie  of 

Additional Parts of BOFD system I (Here. q, is the mean probability of succeeding fault detection) 
Damages to Indoor Thermal I 6.000 (L7). 3,000 (b), 1,500 (Ls), 750 ( b ) ,  O(L3 and less) 

was assumed) 

Eight levels : Lo-L7 (Lo : normal, L7 : Feure) 

1 b u d  
~ ~ . ~ + , = 3 x 1 0 - ~ ,  p iFlxl~-8  @i+2). pi,,d-pi,ib~?, 
Investment : 100.000 x a- 6 1 ,  Service Life : 50 years 

(converted to money) - I 
Cost needed for 1 7,000 [ $/time I 

Environment According to Fault Level 
(converted to money) 
Damages to Wasted Energy 
Consumption According to Fault Level 

Preventive Maintenance I 
Cost needed for 1 30,000 [ $/time I 

[$b] 

200 (L.5). 100 (Ls). 50 ( b ) ,  25 (Lj), 0 (L2 and less) [$bl 

After-failure Maintenance 

Building Life 
Commercial Interest Rate 
Inflation Rate 

100 [yead 
5 [%/years] 
4 [%/years] 



Figure 2 Calculation Result of LCD 

- 
Er : life cycle after-failure maintenance cost, Ed : life cycle preventive maintenance 
cost, Ea : life cycle environmental damage. Ee: life cycle energy damage, Ir: life cycle 
investment to additional parts in BOFD system, Is : life cycle investment to 
fundamental parts in BOFD system 

2 3 4 5 6 7 
L d 

Figure 3 Contents of LCD (when qm=0.3) 



The present paper developed new philosophy and innovative and simple process for evaluating BOFD system 
and preventive maintenance strategy based on the life cycle damage, in which pmbab'ity process of fault's 
outbreak was also considered. Funhermore, the present paper conducted a case study using the process. 
Although there are many subjects to be solved, this new methodology will become effective tool for decision 

making of inbodwing BOFD system and planning preventive maintenance shategy. 
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This paper presents a method for automated detection and diagnosis of faults in vapor 

compression air conditioners that only requires temperature measurements, and one 

humidity measurement. The differences between measured thermodynamic states and 

predicted states obtained from models for normal performance (residuals) are used as 

performance indices for both fault detection and diagnosis. For fault detection, statistical 

properties of the residuals for current and normal operation are used to classlfy the current 

operation as faulty or normal. A diagnosis is performed by comparing the directional 

change of each residual with a generic set of rules unique to each fault. This diagnostic 

technique does not require equipment-specific learning, is capable of detecting about a 5 

% loss of refrigerant, and can distinguish between refrigerant leaks, condenser fouling, 

evaporator fouling, liquid line restrictions, and compressor valve leakage. 

INTRODUCTION 

Automated fault detection and diagnostics (FDD) for HVAC systems has the 

potential to reduce energy and maintenance costs and improve comfort and reliability. 

Sensors are chosen and located strategically within the system so that their outputs are 

sensitive to the faults for which the FDD system is designed. The appropriate number and 

type of sensors results from a tradeoff between initial cost and performance of the FDD 

system. A micro-processor is used to process the measurements in order to provide the 

fault detection and diagnostic capability, and also may be used to provide communications 

with a central service facility. - 
As described by Isermann (1984) and depicted in Figure 1, a FDD system may include 

the following steps: fault detection, fault diagnosis, and fault evaluation. Fault detection 

indicates a deviation of performance from expectation, diagnosis determines the cause of 

the fault, and evaluation assesses whether the impact is severe enough to jus* service. 

In each of these steps, it is necessary to define criteria or thresholds for establishing 



appropriate outputs. The outputs would be fault or no fault for fault detection, the type of 

fault for diagnosis, and repair or don't repair for the fault evaluation step. 

Fault detection is accomplished by comparing performance determined from 

measurements with some expectation of performance. If the deviation exceeds a 

threshold, then a fault would be indicated. As depicted in Figure 2, this process may be 

described in two steps: preprocessing and classification. The preprocessor takes 

measurements from sensors and manipulates them to generate features for classification. 

Classifiers then operate on the features to determine whether the system contains a fault 

Figure 1. Supervision of HVAC&R Equipment 

features decisions 

Figure 2. Sequential Steps in Fault Detection and Diagnosis 

Simple transformations, characteristic quantities, and models a% three types of 

processors. Simple transformations include the identity transformation (i.e., no 

preprocessing) and trend generation (i.e., time derivatives). Characteristic quantities are 

features that are computed directly from measurements and that are indicative of 

component performance. Examples include overall system efficiencies and heat exchanger 



effectiveness. Model-based preprocessors utilize mathematical models of the monitored 

system to generate features. Model parameters could be learned £rom measurements when 

the system is operating normally, or determined using physical models. The features used 

by the classifier from model-based preprocessors could be the differences between 

measured and modeled performance (i.e., residuals) or physical parameters of the model. 

In a broad sense, the classifier is an expert system. The knowledge necessary to make 

a fault decision can be stored in a number of f o m ,  including: a set of production rules 

(i.e. IF, THEN, ELSE rules), a fault tree, and conditional probabilities for statistical 

pattern recognition classifiers. Typically, it is necessary to assign the thresholds for 

deviations between current and normal performance that constitute faults. In selecting 

thresholds, there is a uadeoff between detection sensitivities and false alarm rates. Tighter 

thresholds result in greater sensitivities (detection of smaller faults), but will lead to more 

false alarms (an indication of a fault that doesn't exist). Thresholds are often determined 

based upon heuristics, although better performance (lower ratio of false alarms to correct 

diagnoses) is achieved when statistical thresholds are employed. 

In general, preprocessing simplifies the classification and improves overall 

performance of the FDD system. In the absence of any preprocessing (identity 

transformation), the FDD system is a classic expert system. All fault detection is then 

based upon rules that act directly on the measurements. Consider a vapor compression 

system that uses condenser head pressure to detect faults. Without preprocessing, a 

simple check for excessive head pressure could be: If the head pressure is greater than 

425 psig (29.5 bar), then a fault exists. Since the head pressure varies under normal 

operation with the ambient temperature, the fault detection threshold must be greater than 

the highest head pressure associated with normal operation. A more complex expert 

system might contain a set of rules with different head pressure limits for different ambient 

temperatures. 

Alternatively, a model-based preprocessor could model the relationship between head 

pressure and ambient temperature under normal operation. Then, a fault would be 

identified if the deviations between measured and modeled head pressures exceeded a 

specified threshold. The FDD system with the model-based preprocessor would be 

sigruficantly more sensitive to abnormal behavior than the single rule system and easier to 

implement than the expert system with many rules. The thresholds for allowable 

deviations could be established by evaluating the statistical properties of the 

measurements, and how well the model for normal operation fits the measurements. 

The structure of Figure 2 can also be used to describe fault diagnosis. Measurements 

are processed in order to simphfy the classification required to identify the particular 



component at fault. The overall classification problem is different for fault diagnosis than 

fault detection in that the decision is not binary (i.e., fault1 no fault): the classifier must 

choose the specific fault kom a list of possibilities. However, the diagnostics problem can 

be reduced to a series of fault detection problems through fault isolation. 

With fault isolation, fault detection methods are applied to individual components for 

which diagnoses are desired. For instance, condenser fouling in an air conditioner could 

be detected by estimating the heat exchanger effectiveness from measurements on the 

condenser. The fault is diagnosed as soon as it is detected and no additional classification 

is necessary. The disadvantage of fault isolation is the large number of measurements 

required. The diagnosis of heat exchanger fouling would require measurements of all 

states entering and leaving the heat exchanger. 

Another diagnostic approach involves comparing physical parameters determined 

from measurements with values representative of normal operation. For instance, heat 

exchanger conductance could be estimated from entering and leaving conditions and used 

to diagnose fouling. Here again, fault detection and diagnosis are combined and no 

separate diagnostic classification is necessary. 

A more common diagnostic approach that requires fewer measurements involves the 

use of fault models. For each type of fault to be diagnosed, a fault model predicts the 

outputs associated with the occurrence of that fault for a current set of inputs. The fault is 

diagnosed through the use of a classifier that attempts to h d  the fault model with the best 

representation for the current behavior. The advantage of fault modeling for diagnosis is 

that fewer measurements are required. However, it is necessary to have fault models for 

each fault and combinations of faults to be diagnosed. 

Fault evaluation follows fault detection and diagnosis and requires an evaluation of 

the impact of a fault on system performance. Without this step, it must be obvious that 

the benefit of servicing the fault justifies its expense. This is the case for many "hard" 

failures, such as broken fan belts or seized compressors. However, fault evaluation is 

necessary for many performance degradations, such as heat exchanger fouling, where the 

fault could be detected and diagnosed well before the need for service. For HVAC 

applications, Rossi and Braun (1996) defined four criteria for evaluating the need for 

service: comfort, safety, environmental, and economic. In general, senice should be 
performed whenever: 1) comfort cannot be maintained, 2) equipment or personal safety is 

compromised, 3) environmental damage is occurring (e.g., refrigerant leakage), or 4) 

reduced energy costs jushfy the service expense. 



ADolications of FDD to Va-m- 

There is a large body of literature on fault detection and diagnostic techniques for 

applications in critical processes. As the cost of hardware (e.g., sensors, rnicro- 

processors) has gone down, interest in developing FDD systems for HVAC&R 

applications has increased. Most of the literature for HVAC&R applications has focused 

on "hard" failures for large central chilled water distribution systems and air handling 

systems. The literature for fault detection and diagnosis for vapor compression equipment 

is relatively sparse but includes conhibutions by McKellar (1987), Stallard (1989), 

Yoshimua and Noboru (1989), Kumarnaru et al. (1991), Wagner & Shoureshi (1992), 

Hiroshi et al. (1992), Grimmelius et al. (1995), and Rossi & Braun (1996). 

McKellar (1987) identified many of the common faults for home refrigerators and 

investigated the effects of several faults on thermodynamic measurements within the vapor 

compression cycle. The faults that he considered were compressor valve leakage, heat 

exchanger fan failures, frost on the evaporator, partially blocked capillary tube, and 

refrigerant charging failures. McKellar found that each of these faults had unique effects 

on three measures: suction pressure (or temperature), discharge pressure (or 

temperature), and discharge-to-suction pressure. ratio and concluded that these measures 

were sufficient for developing a FDD system. He did not develop a general approach to 

characterizing expectations for these measurements (i.e., a model-based preprocessor) nor 

did he discuss thresholds for fault detection and diagnostic classifiers. 

Based upon the work of McKellar, Stallard (1989) developed an expert system for 

automated FDD applied to refrigerators. Condensing temperature, evaporating 

temperature, condenser inlet temperature, and the ratio of discharge-to-suction pressure 

were used directly as classification features (i.e., no model-based preprocessor). Feature 

limit checking, the simplest of rule-based classifiers, was used for both detection and 

diagnostic classification. Fault diagnoses were performed by evaluating the direction in 

which classification features changed from expected values and matching these changes to 

expected directional changes associated with each fault (when they exceeded the fixed 

threshold). Different rules were used for each of three discrete ranges of ambient 

temperature. 

Wagner and Shoureshi (1992) used a different approach to perform FDD for 

refiigerator faults. Dynamic, nonlinear state estimation techniques were 'used to generate 

residuals between current and expected states. Compressor shell temperature, condensing 

temperature, and compressor power were measured system responses, and ambient 

temperature was a measured model input. Experiments were used to develop dynamic 



fault models for each of the faults considered. On-line measurements were statistically 

compared with normal and fault models in order to perform diagnostic classification. 

Kumamaru et al. (1991) used characteristic curves to obtain quantitative expectations 

for heat pump performance as a function of cooling water temperature and loading. 

Diagnostics were performed using residuals as input features. The method did not utilize 

statistically based thresholds and did not detect performance degradations. 

Yoshimua and Nobom (1989) used a combination of seven temperature and pressure 

measurements to perform FDD for packaged air conditioners. Their method used rules 

with fxed thresholds to perform detection and diagnosis. They did not utilize any 

preprocessing or statistical rule evaluation. 

Hiroshi et al (1992) developed a refrigerant leak detection method for automotive air 

conditioners that used a measurement of the liquid to gas flow ratio in the liquid line. The 

method did not utilize any model-based preprocessing to account for the effects of 

ambient temperature and load conditions on expectations for this measurement and 

utilized fixed thresholds. As a result, the method could only detect refrigerant loss with a 

sensitivity of about 50% of full charge. 

Grimmelius et al. (1995) used differences between measurements and outputs of 

steady-state models for expected behavior as input features for detection and diagnoses of 

chiller faults. The method used approximately 20 measurements, including temperatures, 

pressures, power consumption, and compressor oil level. Diagnoses were performed 

using a pattern recognition technique applied to the current residuals and a matrix of 

expected residual changes associated with each possible fault. The fault matrix was 

determined using experiments on a chilled water system to which faults had been 

introduced. 

Rossi and Braun (1996) addressed the issue of fault evaluation for air conditioning 

equipment. They developed a simplified method for estimating the optimal senice times 

that minimizes combined energy and service costs for cleaning condensers and evaporators 

in air conditioners. They also compared the costs associated with optimal maintenance 

scheduling with those associated with regular maintenance and with a procedure where 

service was performed based only on the comfort and safety criteria (constrained service). 

Savings of between 5 and 15% of operating costs were possible through optimal 

maintenance scheduling. 

Although each of the previous studies provided contibutions, all of the methods have 

limitations. In some cases, expensive measurements are required (e.g., mass flow rate, 

power consumption, pressure), while in others, fault detection and diagnostic sensitivity 

could be significantly improved with the use of model-based preprocessing and 



statistically-based thresholds. The use of system specific fault models could require 

extensive experimentation for each possible fault, particularly when performance 

degradation faults are considered. None of the previous studies included results for 

sensitivities of the FDD methods in detecting and diagnosing faults. 

Scooe of this Study 

This paper describes the development and evaluation of a new method for detecting 

and diagnosing faults in air conditioning equipment that only requires temperature and 

humidity measurements. The diagnostic approach is based on generic rules and does not 

require equipment specific experimentation. Thresholds for both fault detection and 

diagnosis are based upon statistical analysis of on-line measurements. Five distinct faults 

were considered: 1) refrigerant leakage; 2) liquid line res~ction; 3) leaky compressor 

valves; 4) fouled condenser coil; and 5) du ty  evaporator filter. Only the fault detection 

and diagnostic steps were considered. Further work would be necessary to establish 

methods for fault evaluation. One primary goal was to identify the sensitivity of the 

algorithm in detecting and diagnosing each of these faults. 

Refrigerant loss detection could be an immediate application for the proposed FDD 

method, since fault evaluation is not necessary for this fault. A refrigerant leak should be 

repaired as soon as it is detected and diagnosed. As a step towards implementation, the 

impact of the number of sensors on the sensitivity for detecting and diagnosing refrigerant 

leakage was also studied. 

The performance of FDD methods for this study was evaluated using a combination 

of simulations and laboratory experiments. Diagnostic rules were developed through 

simulation and checked within the laboratory. The sensitivities of the FDD method for 

detecting and diagnosing each of the five faults were estimated through simulation. Both 

simulations and experiments were used to investigate the impact of the number of sensors 

on FDD performance for detecting and diagnosing refrigerant leaks. 

EVALUATION TOOLS 

For the simulations, a vapor compression system model developed and validated by 

Rossi (1995) was utilized. It is a modular, steady-state model that solves mass, energy, 

and momentum balances for any set of entering air conditions. A steady-state model is 

appropriate because the fluid flow and heat kansfer dynamics are generally much faster 

than the dynamics of the load and ambient conditions. The model dows  the introduction 

of all of the faults considered in this study. 



A fully-instrumented, three ton rooftop air conditioner was used for testing FDD 

algorithms. The system has fixed-speed condenser and evaporation fans, a fixed orifice 

expansion device, and a single-stage, on/off conmolled reciprocating compressor. Figure 3 
illusmates the manner with which faults were simulated in the test unit: 1) condenser 

fouling: paper was placed on the air-side of the coils, 2) evaporator filter fouling: paper 

was placed on the air-side filter, 3) leaky compressor valves: this effect was represented 

using a hot gas bypass line with a manual valve, 4) liquid line reshction; a manual valve 
was located in the liquid line before the expansion device, and 5) refrigerant leakage: 

refrigerant charge removal was coneolled by a valve located on the high pressure side of 

the unit and monitored with a scale. 

AU refrigerant cycle temperature measurements were made using K-type 

thermocouples mounted to the exterior surfaces of refrigerant piping and insulated. On 

the air side, temperatures of entering and leaving air were measured using platinum RTDs 

for both the evaporator and condenser smarns. The thermocouples and RTDs were 

calibrated by immersion in a mixed ice bath. The measured error for each sensor was used 

for an offset correction and to estimate the accuracy of the measurement. The error of all 

the thermocouple measurements was less than 0.4 C, while the RTDs were within 0.3 C. 

The relative humidity of air entering the evaporator was determined from measurements of 

dew point using a chilled mirror dewpoint hydrometer. This device is accurate to within 

0.5 C and results in an error in relative humidity that is less than 0.05 for the range of 

conditions considered in this study. 
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Figure 3. Rooftop Air Conditioner with Simulated Faults 



FDD TECHNIQUE 

Figure 4 shows a block diagram of the fault detection and diagnostic system in 

relation to input and output "measurements" from a vapor compression cycle. For fxed- 
speed fans, an air-to-air vapor compression cycle is driven only by the air inlet states into 

the evaporator and condenser (U). These states are characterized by the ambient 

temperature (T,b) and the return air temperature (T,,) and relative humidity (@,a of air 

stream entering the evaporator. In steady-state, every internal state of a normally 

operating cycle depends solely on the driving conditions. In this investigation, the 

performance of the cycle was characterized using a vector of ternperature measurernents 

(Y) only. At most, seven temperatures were considered: 1) TWq, evaporating 

temperature; 2) T,h, suction line superheat; 3) T,d, condensing ternperature; 4) T,, 

liquid line subcooling; 5) Thg, hot gas line or compressor outlet temperature; 6 )  ATca, air 

ternperature rise across condenser; and 7) AT,, air temperature drop across evaporator. 

The preprocessor portion of the FDD system contains two major components: a 

steady-state model and the preprocessor portion of a steady-state detector. The measured 

inputs are used by the model to predict each measured output for the vapor compression 

cycle under normal operation (i.e., no faults). The difference between measured and 

model predictions of the operating states (residuals) are used by the fault detection and 

diagnostic classifiers for decision making. A steady-state model was appropriate for the 

faults in this study because the fault development rate was generally slower than the 

equilibration time of the plant and it was easier to implement than dynamic modeling. 

Dynamic signatures would be useful for abrupt failures such as broken fan belts. 

A steady-state detector is necessary to determine when the model's predictions are 

valid (e.g., predictions are not valid during startup and shutdown transients). The steady- 

state detector's preprocessor evaluates the variation in the output measurements for use by 

a classifier. 

The classifier consists of fault detection, diagnostic, and steady-state classifiers. The 

fault detection classifier operates on the residuals and provides a binary output indicating 

when the current operating state deviates from expectation with greater than a prescribed 

statistical confidence. The diagnostic classifier provides the most likely cause of the fault 

after it is detected. The steady-state detection classifier provides a binary output that is an 

input to a switch (SW) that controls the output of the FDD system. The FDD system wiU 

only indicate a fault and provide a diagnosis when the system is in steady state. 



Figure 4. Fault detection and diagnostic system 

This study has focused on the development and evaluation of the fault detection and 

diagnostic classitiers only. The steady-state model was a lookup table that produced 

perfect predictions of plant output measurements when given the correct measured inputs. 

Errors in measurements were propagated through the model and used to assess the 

sensitivity of the FDD system in detecting faults. In practice, imperfect modeling would 

decrease the sensitivity of the FDD system. Further work would be necessary to develop 

appropriate on-line models and assess their impact on overall FDD performance. 

All simulations and experiments were performed at steady-state conditions in this 

study. Steady-state detection could be implemented using techniques developed by Glass 

et al. (1994). These methods are based on estimating the sample standard deviation about 

the mean of output measurements over a moving exponentially weighted window. 

Alternatively, the time rate of change in temperature measurements during a moving 

window could be used in steady-state detection. 

Fault Dete- 
. . 

The features used for classification are the residuals between current state variable 

measurements and outputs from the models. The classifier identifies a fault when the 

current measurements are statistically different than the expected values. Figure 5 

illustrates how this classifier works for a one-dimensional example. In this case, the 



classifier feature is the residual of the suction line superheat. The probabilities of 

obtaining a specific residual are shown for both normal and faulty operation. Under 

normal operation, there is a distribution of residuals that results from measurement noise 

and modeling errors . In the absence of modeling errors and with random noise, the 

distribution for normal operation would have zero mean. The introduction of afault 

changes both the mean andlor standard deviation of the residuals. 

Lf both normal and faulty distributions were known a priori, then this would be a 

classical classification problem. In this case, the current measurement residual would be 

compared to a threshold value that depended upon the normal and faulty distributions. 

The minimum error in classlfymg either normal behavior as faulty or fault behavior as 

normal would occur for a decision threshold located at the intersection of the two 

distributions. The probability of making an erroneous classification using this threshold, 

termed the classification error, would then be the overlap of the two probability 

distributions, shown as the shaded area in Figure 5. The classification error is the sum of 

the probability that a normal classification would be faulty and the probability that a faulty 

classification would be normal. It could be important to consider each type of 

classification error separately if the consequence of one is more serious than the other. 

Figure 5. One dimensional example of the detection classifier 

This problem differs from a classic classification problem in that the faulty distribution 

is not known a priori. As a fault progressively becomes worse, the current distribution of 

measurement residuals moves further away from the distribution for normal operation. A 



fault should be indicated when the classification error (shaded area) is small enough for the 

false a l m  rate to be acceptable. 

An optimal linear classifier (Fukunaga, 1990) was used for estimating the 

classification error associated with current and normal distributions of residuals. This is 

one of several possible statistical classifier designs (Fukunaga, 1990) and assumes that 

measurement noise is caused by independent random processes, and has a Gaussian 

dishibution. The residuals for both normal and current operation are fitted to a Gaussian 

model that is completely described in terms of a mean vector and covariance matrix. The 

assumption of a Gaussian distribution sigruficantly reduces the memory and computational 

requirements for fault detection. A Bayes classifier for a Gaussian distribution is in 

general quadratic (Fukunaga, 1990, p.125) and results in the following inequality for 

evaluating whether a fault should be indicated. 

where Y is a vector of current residuals, M N  and XN are the mean vector and covariance 

mahix that describe the distribution of residuals in the absence of any faults (i.e., normal 

operation), and MC and k are the mean vector and covariance ma& that describe the 

current distribution of residuals determined using recent measurements. For a perfect 

model, the mean of the residuals would be zero. However, an actual model would likely 

give biased estimates under certain operating conditions. 

A fault would be indicated whenever the left-hand side of equation 1 was greater than 

zero. This formulation mkhizes the probability of making a wrong decision, assuming 

that there is no built-in bias that favors a "faulty" or "normal" output. The quadratic 

classifier is reduced to a linear classifier by assuming that the separation between the 

dishibutions for current and normal operation is dominated by mean vector differences as 

opposed to covariance matrix differences. If it were assumed that X = XN = k, then 

Equation 1 would reduce to 

In practice, an average covariance matrix, X, is determined as the weighted average of XN 
and according to 



where s is determined by minimizing the classification error (i.e., probability of making an 

erroneous decision). The classification error is determined by integrating the overlapping 

areas associated with the multi-dimensional normal and fault distributions using 

(Fukunaga, 1990, p. 137) 

where, 

S ~ ~ V ~ M ~  + (1-s)o;vTMN 
v = -  

0 so; + (1-s)~:  

In this study, a fault was indicated whenever the classification error ( E )  was below a 

threshold equal to 0.001. This threshold for classification error gives a small false alarm 

rate and was found to provide acceptable fault detection sensitivities. The value of s that 

minimizes the classification error as determined with equation 4 was found using a golden- 

section search optimization method (Rao, 1984). The mean vector and covariance ma& 
that describe the distributions for normal and current operation were determined, as 

outlined in the section on testing and evaluation. 

Fault diagnosis is performed using the residual features as inputs to a rule-based 

classifier. The set of rules relates each fault to the direction that each measurement 

changes when the fault occurs. Table 1 gives the diagnostic rules for the five faults and 

seven measurements considered in this study. These rules were developed and tested 

through simulation over a range of operating conditions and tested using experiments at a 

single operating point. Each of the faults results in a different combination of increasing 



or decreasing measurements. The rules are effectively fault models. However, they are 

generic for all similar types of air conditioners and do not require on-line leaming. 

Table 1. Rules for the diagnostic classifier 

Figure 6 is an illusaation of the fault diagnostic classification method for two possible 

faults (refrigerant leakage and liquid line resaiction) with two input features (superheat 

and subcooling residuals). The progression of changes in the contours of two-dimensional 

probability distributions are shown as the two different faults are slowly introduced. 

Normal operation is shown as the dismbution centered at the zero point. As a fault 

develops, the contour moves along a curve. When the overlap between the normal 

performance distribution and the current dismbution (as indicated by the classification 

error, E) is small enough for the false alarm rate to be acceptable (e.g., E < 0.001), then a 

fault is signaled by the fault detector. The different diagnostic classes are separated by the 

axis. The overlap of the current distribution with each of the modeled classes is calculated 

and represents the probability that the fault class is the correct diagnosis. A diagnosis is 

indicated when the probability (overlap) of the most likely class is larger than the second 

most likely class by a specified threshold. As the fault becomes more severe, confidence in 

the fault detection and diagnosis increases as the current distribution moves further from 

the normal distribution, and kom the axis separating the classes. Again, the choice of a 

diagnositic threshold results from a tradeoff between diagnostic sensitivity and the rate of 

false diagnoses. 



Figure 6. Fault Diagnostic Classifier (Two-Dimensional Example) 

In order to perform the classification for diagnostics, the probability that each rule 

applies to the current operation is evaluated. The probability of each hypothesis is 
determined by the degree to which the distribution characterizing the current residuals 

overlaps each class. The overlap is evaluated by integrating the area under the m- 

dimensional Gaussian probability distribution that falls within each class's region of the 

domain as given by: 

where djk is the integration limit associated with the domain of fault j in dimension k 

(f -), Yk is the kth residual, and ~ (M~-MN,&)  is the m-dimensional probability 

distribution function for the current residuals. For diagnoses, the current distribution has 

been shifted in order to give zero mean for n o d  operation. A nonzero residual mean 

could occur for normal operation with an imperfect model. 

The calculation of the overlap within each class is simplified by assuming that each 

dimension is independent. In this case, the probabilities in each dimension can be 

"ANDed" together such that: 



where p(Mc(k)-M~(k),&(k,k)) is the probability distribution function for the current 

residuals in the k" dimension. For Gaussian distributions, the integration reduces to: 

where CJk = +1 if (Mc(k)-MN(~)) falls within the domain for the j" fault (i.e., (Mc(k)- 

M N ( ~ ) )  has the same sign as defined in Table 1 for the appropriate fault) and CJk = -1, 

otherwise. 

In this study, the probability associated with each diagnosis was estimated using 

Equation 7. A diagnosis was considered valid when the ratio of the probability of the 

most likely class to the second most likely class was greater than 2. This diagnostic 

threshold was found to provide good sensitivity and no misdiagnoses. 

TESTING AND EVALUATION 

In the simulation studies, outputs of the detailed physical model of an air conditioner 

were used to represent the plant. Sensors were modeled by adding zero mean, 

independent, and identically dismbuted Gaussian noise to known values of the plant inputs 

and modeled outputs. The standard deviations of the temperature and humidity 
measurements (a, and a+ ) were inputs to the sensor model. For most of the results 

presented in this study, a, = 0.5 C and a, = 0.05. 

In the experimental investigations, the driving conditions were fixed and the sensor 

values were recorded for no fault, and then for progressively larger degrees of fault 

invoduction. The no fault measurement was used as the reference for generating the 

residuals for each fault level. Since the driving conditions were fixed and the system was 

allowed sufficient time to achieve steady state, there was no need for a steady-state 

detector. 

The input and output measurements were also characterized using Gaussian 

disaibutions with both on-line measurements and manufacturers' specifications. The full 

extent of a sensor's variation is often not captured by sampling a sensor for several 

minutes to an hour. Examples of issues affecting sensor performance that may not be 

noticed within an hour include: ambient temperature variations, power cycling, long-term 

elemical noise and drift, and calibration errors. Therefore, measured variances are often 

much smaller than the specified accuracies of the sensors. To give more realistic 

measurement error estimates, the variances were modified by combining the estimated 



variance and the specified accuracy as if they were independent, normally distributed noise 

sources, as follows: 

where 02 is the overall measurement variance, om,, is the standard deviation of 

measurements estimated from the data, and ow is the specified accuracy of each sensor. 

In most cases, ow dominates omw 
The preprocessor's steady-state model incorporated a lookup table that produced 

perfect plant predictions when given inputs with no measurement errors. With Gaussian 

distributed measurement noise, the distribution for the i h  temperature residual (difference 

between measured and predicted outputs) is defined by 

where Yi is the i h  output of the plant, fi is the preprocessor model's prediction of the plant 

output for normal operation, w~ is zero mean noise ,added to the temperature 

measurements, and wg is zero mean noise added to the relative humidity measurement. 

Sensor noise was propagated through the steady-state preprocessor using a first-order 

Taylor series about the known operating point. 

The mean vector and covariance ma!5x were estimated in order to characterize a normal 

distribution of the residuals. The ih enhy in the mean vector is 

where E is the expected value operator. The covariance matrix can be determined by 

using a Taylor series approximation (Gelb, 1989). Diagonal entries in the ih row of the 

covariance ma& are 



whereas off-diagonal enmes are 

and where 

The Taylor series approximation was reasonable since only small measurement noise 

was propagated through the model. The partial derivatives in Equations 8, 10, and 11 

were evaluated numerically using model predictions from the vapor compression system 

model described by Rossi (1995). 

FDD SENSITIVITIES 

In this section, simulated results are presented for FDD performance using all of the 

seven output temperature measurements depicted in Figure 4. Before a fault is detectable, 

the classification error between the current observation and the estimate provided by the 

model must be less than 0.001. Table 2 shows the effect of simulated charge leakage on 

the output of the fault detection and diagnostic system. When 2% of the charge is 

removed, the classification error is below 0.001 and a fault is indicated. The class 

probability indicating a refrigerant leak is already nearly a factor of 10 greater than the 

next most likely explanation. As the fault becomes worse, the certainty in the diagnosis 

improves dramatically. 

Table 2. FDD performance for refrigerant leakage 

Fault Size 
(56)  
0.1 
0.5 
1.0 
2.0 
5.0 
10.0 

Diagnose Classification 
Error (E) 

Class Probabilities 
[leak comp restcond evapl 

3.71e-01 
1.21e-01 
1.72e-02 
1.59e-05 
3.7615 
O.OOe+OO 

Normal 
Normal 
Normal 

RefrigerantLeak 
Refrigerant Leak 
Refrigerant Leak 

10.26 0.00 0.03 0.00 0.001 
[0.62 0.00 0.00 0.00 0.001 
l0.91 0.00 0.00 0.00 0.001 



Table 3 shows the effect of simulated compressor suction valve leakage on the output 

of the fault detection and diagnostic system. Valve leakage was modeled as a decrease in 

the compressor's volumetric efficiency. A fault is indicated (classification error is below 

0.001) when the efficiency is reduced by 5%. At this point, the class probability indicating 

valve leakage is already a factor of 7 greater than the next most likely explanation. Once 

again, the evidence becomes stronger as the fault level increases. 

Table 3. FDD performance for compressor valve leakage 

The effect of a simulated liquid line restriction on the output of the fault detection and 

diagnostic system is shown in Table 4. The restriction was modeled by inserting a valve in 

the liquid line and decreasing its cross-sectional area. In this case, a fault is not detected 

until the diameter of the valve opening is reduced by about 80%. At this point, the class 

probability indicating liquid line restriction is overwhelming. The FDD system appears to 

be insensitive to liquid line resaictions because the resaiction is modeled as a decrease in 

the diameter of the pipe just before the expansion device and the resaiction is not 

noticeable when it is much larger than the expansion device opening. For the test unit, the 

diameter of the pipe is about 5 times larger than the expansion device diameter. In 

practice, a liquid line restriction would occur at the site of the expansion device or within 

the filter-dryer and would be detected with a much greater sensitivity than demonstrated in 

Table 4. 



Table 4. FDD performance for liquid line restriction 

Tables 5 and 6 show the effects of simulated condenser and evaporator fouling on the 

output of the fault detection and diagnostic system, respectively. Condenser and 

evaporator fouling were modeled as decreases in the air flow rate across the coils. For 

Fault Size 
( % ) 

condenser fouling, a fault is indicated when the flow rate is reduced by 20%, whereas the 

evaporator flow rate is reduced by 40% before a fault is detected. However, the evidence 

for evaporator fouling is much stronger at the point when a fault is detected. 

The sensitivities of the FDD system to the five faults would probably be adequate for 

this application. Of the five faults considered, only refrigerant leakage would require 

Classification 
Error ( E )  

repair as soon as it was detected (environmental criteria). In this case, the FDD system 

detected changes of less than 2% in refrigerant charge. The other four faults would be 

seniced only if they affected comfort, economics, or safety. Since the cooling capacity 

and power consumption of an air conditioner are strongly coupled to the thermodynamic 

states used in the FDD method, the comfort and economic criteria are not likely to be 

violated if a fault is not detectable. Furthermore, unsafe operation would normally be 

Diagnosis 

associated with large deviations from normal operating states. 

Class Probabilities 
[leak comp rest cond evap] 

Table 5. FDD performance for condenser fouling 



Table 6. FDD performance for evaporator fouling 

SENSOR REQUIREMENTS FOR REFRIGERANT LEAKAGE 

It is not necessary to use all of the seven output temperature measurements depicted 

in Figure 4 if the goal is to distinguish refrigerant leakage from the other possible faults. 

Figure 7 shows the simulated sensitivities for detecting refrigerant leaks as a function of 

the number of sensors for a measurement noise of cq = 0.5 C and a,+ = 0.05. For a given 

number of sensors, the combination providing the best sensitivity was selected. The 

numbers above each bar indicate which sensors were selected (see Figure 4 for a key). 

The results show that at least two measurements, T,h and T,, are required to distinguish 

refrigerant leaks from the other four faults. However, adding a measurement of Thg 

sigruficantly improved sensitivity, while additional sensors did not provide much better 

performance. With three sensors (Th, T,, and Thg ), less than 2% reduction in charge 

was detected. When the measurement noise was reduced to cq- = 0.2 C and a,+ = 0.02, 

then rebigerant loss of less than 0.7% of full charge was detectable. 

Figure 8 shows the classification error and fault probability ratio versus percent 

charge reduction for three sensors. The fault probability ratio is the ratio of the most 

probable fault to the second most probable fault. The horizontal line in the center of the 

plot is the threshold for classification error (left axis) and fault probability ratio (right 

axis). A fault is indicated when the classification error is below the threshold and a valid 

diagnosis is indicated when the fault probability ratio is above the threshold. For this 

study, the minimum detectable fault was associated with both values exceeding their 

respective thresholds. This point occurs at the intersection of the vertical line separating 

the fault and normal regions and the abscissa in Figure 8, and is equal to the value of the 

three sensor bar in Figure 8. 



Figure 7. Refrigerant leak detection sensor sensitivity (simulation results; 
numbers indicate the sensors selected from the list in Figure 4) 

Figure 8. Refrigerant leak detection classification error and 
diagnostic fault probability ratio (3 sensors) 

Figure 9 provides the minimum detectable charge reduction versus number of sensors 

for the experimental investigation. The results confhm that the simulation tool correctly 

predicted the relative importance of the output measurements. Three sensors were 

sufficient for detecting refrigerant loss in addition to the three input measurements 

required for the preprocessor model. However, the simulated performance was more 



sensitive to refrigerant charge than actually occurs. The experiment indicates that a 5.0% 

reduction charge can be detected. 

Figure 9. Refrigerant leak detection sensor sensitivity (experimental results; 
numbers indicate the sensors selected from the list in Figure 4) 

CONCLUSIONS 

A rule-based, statistical fault detection and diagnostic system was developed and 

evaluated for vapor compression equipment. The method only requires temperature 

measurements and one humidity measurement to distinguish between the following five 

faults: 1) refrigerant leakage, 2) liquid-line res!iction, 3) compressor valve leakage, 4) 

condenser fouling, 5) evaporator fouling. The diagnostic approach is based on generic 

rules and does not require equipment specific experimentation. Thresholds for both fault 

detection and diagnosis are both based upon statistical analysis of on-line measurements. 

The sensitivities of the FDD method for detecting and diagnosing each of the five 

faults were estimated through simulation in the presence of typical measurement errors. 

This method is most sensitive for detecting refrigerant loss. Simulated results showed that 

a 2% loss in refrigerant could be detected using five temperature measurements 

(superheat, subcooling, hot gas line, condenser air inlet, and evaporator air inlet) and one 

humidity measurement (evaporator air inlet) Experimental results confirmed the use of 

these measurements, but only a 5% reduction in refrigerant was detectable. 

Refrigerant loss detection could be an immediate application for the proposed FDD 

method, since fault evaluation is not necessary for this fault. A refrigerant leak should be 

repaired as soon as it is detected and diagnosed. Since the other four faults should only be 



serviced if they affect comfort, economics, or safety, less detection sensitivity is required 

for them. 

In this study, the thresholds for fault detection (classification error) and diagnoses 

(fault probability ratio) were chosen heuristically to give a low false alm rate. The 

sensitivity of the FDD method in detecting and diagnosing each fault was then evaluated 

for the fvred thresholds. Ideally, the selection of thresholds should consider the aadeoff 

between the sensitivity of the method and the false alarm rate. One would like to choose 

thresholds that allow the method to detect small faults (high sensitivity), but that rarely 

lead to an indication of a fault that doesn't exist (low false a l m  rate). In theory, the 

principle of least risk could be used to help decide what are appropriate sensitivities and 

false alarm rates. It would be possible to evaluate the sensitivity and false a l m  rate of 

the FDD method as a function of threshold values. This information could be used in 

conjunction with costs associated with misdiagnoses (choosing faulty behavior that's 

normal or normal behavior that's faulty) to determine appropriate thresholds. However, 

these costs would be very difficult to obtain for this particular application. 

This study also did not consider the effect of modeling errors on the sensitivity of the 

FDD method. Modeling errors do reduce sensitivity and should be considered in future 

studies. 

NOMENCLATURE 

E[-] expected value operator 

fi plant model for i~ output 

MC mean vector that describes the current dishibution of residuals determined 

using recent measurements 

MN mean vector that describes the dishibution of residuals determined using 

measurements for normal operation 

p(.) probability density function 

s parameter that minimizes classification error for optimal linear classifier 

Tmb ambient temperature (inlet to condenser) 

Tcmd condensing temperature 

TwV evaporating temperature 

Thg hot gas line temperature (compressor outlet) 

T,, return air temperature (inlet to evaporator) 

T, liquid line subcooling 

T,h suction line superheat 

U vector of inputs that affect plant performance 



vector of measured plant outputs 

air temperature rise across condenser 

air temperature drop across evaporator. 

vector of residuals between measured and modeled plant outputs 

classification error (probability of making an erroneous classification for 

normal or faulty behavior) 

return air relative humidity (inlet to evaporator) 

standard deviation of measurements 
weighted average of CN and R: C = s C, +(I - s )  C, 
covariance mafix that describes the current distribution of residuals 

determined using recent measurements 

covariance matrix that describes the distribution of residuals in the absence of 

any faults (i.e., normal operation) 

SubscriDts 

exp model prediction (expected performance predictions) 

meas measured 

spec manufacturers' specification 

T temperature 

4' relative humidity 
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