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Concepts

● Resilience, Design Basis Threat, and Resilience Metrics

● Components and Networks

● Scenarios: Blue-Sky and Threats
○ Duration

○ Load Profiles

○ Probability of Occurrence

○ Damage Intensities and Fragility Curves

○ Reliability: Failure and Repair Distributions
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Resilience and Design Basis Threats
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● Resilience: ability to prepare for and adapt to changing conditions and 

withstand and recover rapidly from disruptions.

● Resilience is contextual — defined in relation to a threat
○ Example, system resilient to hurricanes may not be resilient to earthquakes

● Threats to plan against are called Design Basis Threats (DBTs)
○ Natural disasters, accidents, and man-made threats

○ Planners must select the threats that are most applicable

○ Important to include low frequency / potentially high consequence threats

Watson, J.P., R. Guttromson, C. Silva-Monroy, R. Jeffers, K. Jones, J. 

Ellison, C. Rath, J. Gearhart, D. Jones, T. Corbet, C. Hanley, and L. 

Walker. 2014. Conceptual Framework for Developing Resilience 

Metrics for the Electricity, Oil, and Gas Sectors in the United States. 

Sandia National Laboratories Report. SAND



Resilience Metrics
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Components and Network

Components

How they’re connected forms 

the network (topology)
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A scenario has a:

● duration

● load profiles

● probability of occurrence

● maximum occurrences

● damage intensities

● a network to simulate

● whether to calculate reliability



Components and Networks 

are Simulated over 

Scenarios that May Involve 

Failure
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Two Types of Failures Considered

● Design Basis Threat based failures:

○ failure due to extreme event

○ “fragility” → “Fragility Curve”

○ Component is “failed” for the entire scenario

○ Assessment made at scenario start

● Reliability:

○ failure due to routine wear and tear

○ “reliability”→ “Failure Mode”

○ Component is “failed” until repaired

○ Assessment is made throughout simulated time

○ Reliability statistics are probably not accurate for extreme event stresses
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Fragility curves:

• evaluated at the beginning of 

the simulation for each 

component in a scenario

• For each component having a 

probability of failure, that 

probability is evaluated a 

scenario start.



Failure Mode Failure Distribution Repair Distribution

Starter battery dies NormalDistribution(

mean=1000 hours,

stdev=100 hours)

FixedDistribution(4hours)
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Reliability: Statistical Models of Failure Modes

Reliability is only calculated if requested during a scenario 

and if at least one component has failure mode data.



Simulation Engine Inputs and Outputs

● Introduction to the Simulation Engine
○ ERIN: Energy Resilience of Interacting Networks

○ Command Line program written in C++

○ To be free and open-source when released

○ Takes a text input file written in TOML format

○ Writes out two output files in CSV format (readable by MS Excel)

○ The simulation is a “discrete event simulator”

■ Change in the simulator happens at discrete events

● e.g., the occurrence of a scenario

● e.g., the change of a load’s requested power

● e.g., failure of a component due to reliability

■ Energy usage and resilience statistics are calculated for output

● Powerflow Model that accounts for failures and keeps statistics

● Simulates unlikely threats repeatedly to get a statistical feel for resilience
13



User Guide For the Simulation Engine

● A User’s Guide comes with the simulation to assist in using the tool

● Continuing to update as needed as questions and comments arise
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Energy Resilience 
Simulator (ERIN)

Components

Load Profiles

Fragility Curves

Networks

Scenarios

Occurrence 
Distributions

Energy Usage

Max Downtime

Energy Availability

Failure Modes
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A Picture is Worth a 1,000 Words… or 36 lines…

The Input File

topology

iconic
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A Picture is Worth a 1,000 Words… or 36 lines…

The Input File

topology

iconic
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A Picture is Worth a 1,000 Words… or 205 lines…

The Input File

topology
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iconic

Upstream 
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Note: multiple interacting networks (electrical, natural gas, 

biomethane, biomass, hot water loop, and steam)



Load Profiles

● Specify the load versus time for a given building (or other load asset)
● Any flow of energy: electrical, district hot water, heating lines, cooling load, steam, etc. 

● Data is a great decoupling mechanism!
● Loads can be generated by any building energy simulation tool

● Or provided as measured data (if available)

● Load profiles can represent a single building or cluster of building
● the choice is up to the modeler / analyst
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data source: https://reopt.nrel.gov/tool

Sources of Simulated Load Profiles:

• U.S. DoE Commercial Reference Buildings

• University of Applied Sciences, Stuttgart 

(Germany), SimStadt

• U.S. Army Corps of Engineers, SMPL 

(EnergyPlus)

• EMD International A/S, energyPRO, 

https://www.emd.dk/energypro/

• CSIRO, (Australia) house energy rating tool –

AccuRate

• REOpt Lite Website

https://www.emd.dk/energypro/


User Interface 
to the Calculation Engine in

MS Excel
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Overview of Capabilities and Workflow

● Objective:

○ Allow access to the calculation engine without having to create an input file by hand

○ Constrain the problem to fixed levels of connectivity to reduce complexity
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source: http://energy.ubc.ca/projects/district-energy/

Schematic vs actual.

Observe that both 

represent Trees.
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source: https://informedinfrastructure.com/399/researchers-map-the-city-of-sheffieds-heat/

Conceptually...

building level

cluster level

district level: energy distribution

district level: centralized energy generation and storage

upstream network level: useful energy

Electricity

(medium voltage grid)
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source: https://informedinfrastructure.com/399/researchers-map-the-city-of-sheffieds-heat/
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We use the concept of “location” to easily map between nodes in the above graph.
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Each location contains a 

complex template to situate 

components and flows in a 

reasonable fashion.



27

converter

…

Location

Load

Storage

converter

uncontrolled source

Inbound

Links

uncontrolled source

…

…

…

mover

…

Internal

Loads

Outbound

Links

mover

mover generic CHP

…

generic CHP

Internal 
Sources

…

pass-through

pass-through

pass-through

…

…

Source

The modeler’s job is to:

• describe the components at each location

• describe how locations connect to each other

• describe the scenarios to simulate
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Let’s take an architecture 

and describe it in the tool!
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There are five locations in this 

architecture:

• Utility

• Other Sources

• Community

• Mission Critical Consumer

• Other Consumer
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Other Consumer
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Other 

Sources
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To use the Excel UI, walk along the 

tabs for each sheet from left to right.
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Add the different loads
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Add the different loads
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Add generation.
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Add connections between 

locations.
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RUN!



39Outputs show all of the events over a scenario by component

outstats
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Resilience Metrics and 

Energy Balance and Use 

Information Available

stats



Using IEA Annex 73 Resources in Concert

41

3

A Hypothetical Example Analysis
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44Modeler Activity

KEY

Data or Tool 

Calculation

Describe
Model
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Heating    110 °C / 50 °C
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Architecture 
Selection & 

Configuration

Input File(s)

Components

Network Connections

Scenarios to Simulate

Resilience and Reliability 
Information

ERIN
(energy resilience simulator)

Outputs
• Blue sky (EA/reliability, energy use, cost)
• Energy availability and max downtime by scenario & buildings

Compare EA and Max down time for 
all buildings, evaluate gaps and select 
different architecture when necessary

Architectures

Cost 
Calculation

Instructions:  Com plete the yellow cells.

Classification of Objective

Goal (Y/N)

Requirement 

(Y/N) Goal (Y/N) Req uirement (Y/N) Values

System econom ics, return on investment (ROI) % Y 20%

System econom ics, net present value (NPV)

Envi ronmental  impact (% reduction in GH G) %

Red uce source energy use  (%  reduction ) %

Red uce si te energy use  (% reduction) %

Red uce water use (% reduction ) %

Meet or exceed an energy use standard (speci fy standard) % Y 30% better Example: 30 % better than ASHRAE Standard 90.1 (or IECC, LEED, or Passive Buildin g)

Ren ew able energy use (quant ity) MMBtu/yr

Ren ew able energy use (% of total source energy use) %

Ren ew able energy use (% of total si te energy use) %

Ren ew able energy generation (% of electrici ty use) %

Ren ew able energy generation (% of heating energy use) %

Ren ew able energy generation (% of total source energy use) %

Ren ew able energy generation (% of total si te energy use) %

Fossil -fuel-based energy use (%  reduction) % Y 50%

Hot water (% gen erated from renew able energy) % Y 100%

Backup/redund ant system s for electr ic generation Y N+1

Backup/redund ant system s for space cooling Y N+1

Backup/redund ant system s for space heating Y N+1

Grid-independent capabi li ty for m ission cri ti cal  operations

System avail abil ity for mission-crit ical  bui ldi ngs*

(upt im e as % of total run time )
% Y 99.99%

System reliabil ity for mission-crit ical  bui ldings*

(num ber of  days - Mean Tim e Between Failures,  MTBF)
days Y 40 0 days

System resil ience for mission-critical  buildings*

(num ber  of hours - Mean Tim e to Repair, MTTR)
hours Y 7 hours

Water use limit kgal/day

Part iculate em issions l im it ppm

Maxim um project cost $k $50,000k

Low est l ife-cycle cost

Minim um fi rst  cost

Minim um operational  cost

Ease of m ainten ance (e.g., simple, low cost, minim al labor, serviceable 

via existing skil l set)
Y

Example: Solution cannot i ncrease the si te maintance burden.  There are no additional  resources to suppo rt  

this.

User-added Objective 1: (specify)

User-added Objective 2: (specify)

User-added Objective 3: (specify)

User-added Objective 4: (specify)

User-added Objective 5: (specify)

Background:  Project objec tives are comm only referred to  as object ives, goals,  targets,  or requirements and al l of these terms can b e interpreted differently by di fferent peopl e.  To apply proj ect objectives as project  design constraints,  i t is i mperati ve to cl

mandatory constraint (a "Requirement").   Requirem ents fram e (bind) your design option s.  This table enables this classification.

St e p 1 : Ide n t ify  a nd  C las sify  P r oje c t  O bje c t iv e s  -  T hi s  S t e p  C le a r ly  Id e nt i f ie s You r  O v e r a r c h ing  D e sign  B ou n da r ie s

Ene rgy M aster Planning Ob jective Value V alue (units) Notes

Examples Entries

5.6.1 Technical and economic assumptions

Table 5-8: Technical- and economic assumptions for a oil boiler [1]

Total efficiency , net (%), annual average 90.0

Electricity consumption for pumps etc. (% of heat gen) 0.1

Forced outage (%) 1.0

Energy/technical data

Heat generation capacity for one unit (MJ/s) 5.0

Total efficiency, net (%), nominel load 90.0

Technology
Oil boiler

Secondary regulation (% per minute) -

Minimum load (% of full load) 15.0

Warm start-up time (hours) 0.1

Space requirement (1000m2 per MJ/s) 0.0

Plant Dynamic Capabilities -

Primary regulation (% per 30 seconds) -

Planned outage (weeks per year) 0.4

Technical lifetime (years) 20.0

Construction time (years) 0.5

1.1

Financial data                               

Nominal investment (M€ per MJ/s) 0.06

 - of which equipment 0.04

NOX ( g per GJ fuel)  90.0

CH4 (g per GJ fuel) 0.0

N2O (g per GJ fuel) 0.0

Cold start-up time (hours) 0.4

Environment

SO2 (g per GJ fuel) 1.8

 - of which is electricity costs (€/MWh) -

 - of which is other O&M costs (€/MWh) -

1950

Variable O&M (€/MWh)

 - of which installation 0.02

Fixed O&M (€/MJ/s/year)

3. Energy systems

F igu re 3-1: The sm art (in tegrated)  energy s ys t em

Back to user guide

I n  es sence, a sm art energy s ys tem  b uilds  on  en ergy flow s  fro m  an d betw een  fo ur en ergy s ys tem s . E ach sys tem  m us t  
en sure an  in telligen t interact ion  betw een  p ro du ctio n, conv ers io n, s torage an d con sum p tio n in  the differen t form s  of 
en ergy, an d an  intelligent  in teractio n m u s t also  be ensu red betw een  the fou r energy s ys tem s . Th e p rim ary energy 
flow s  in the s ys tem s  m o ve fro m  produ ct ion  fo r con versio n, s t orage an d final co nsu m pt ion . Th e p ro duct ion  co nta ins  

in  p rin cip le  all resou rces  in  a 1 00 %  VRE S-based energy s ys tem  and th erefore con tribu tes  energy to  th e fo ur s ys tem s .

Tw o k ey elem ents  o f a sm art  energy s ys tem  are - un lik e the con ven tio nal en ergy s ys t em  -

respect ively : th e con vers ion  of p rim ary en ergy resou rces  to o th er u ses , and th e s torage o f energy, w hich  en sures  th e 

ne ces sary flex ibi lity  in an ene rgy s ys tem  w ith fluctuat ing energy sou rces . Conv ers ion ensu res  the  int eract ion betw een 

the fo ur s ys tem s , ie . w hen  resou rces  are to  b e con verted from  an energy fo rm  th at o rigin ates  fro m  o ne sys tem  into a 
form  that  can  b e u sed in  an other s ys tem . The con vers ion th us  con tribu tes  partly to  u tilizin g a given  en ergy so urce 

o pt im ally (s u ch as  th e co nv ers io n from  electricity to heat) , and p art ly t o create flex ib ility in  a  sm art  energy s ys tem , 

fro m  o ne so urce o f en ergy at  giv en tim es  replaced by another s o urce o f energy. F or exam p le, a heat  pu m p can  take 

o ff p ow er f ro m  the electrical s ys tem  an d de liver  heat  and coo ling to resp ectiv ely. dis trict h eatin g sys tem  an d dis t rict  
co olin g syst em , and a gas  engin e can ext ract  gas  fro m  the gas  s ys tem  and su pp ly electricity and dis t rict heat ing.

Th e gas  s torage lin e creates  additio nal flex ib ility b y b uildin g energy res erves  that  can  be prov ided to ev ery s ys tem s  in  
a sm art  energy s ys t em  du rin g p eak periods , in  p erio ds  of lack o f a giv en energy sou rce or in  p erio ds  of very high  

elect rici t y prices . T h e final po int  is  th e co n sum er  lin k, as o f co u rse are th e p rim ary b uyer s  o f en er gy.  H o w ev er, in  a 
sm art en ergy con tex t it is im po rtant  to n ote that  the co nsu m er lin k can also  act  as a flex ible com p on en t by regu latin g 

u p or do w n fo r con sum p tio n, or b y s tor ing energy in, for ex am ple, electric cars  or in th e b uildings ' heat s to rage.

Th e m an y an d very v aried de fin itio ns  o f sm art  energy s ys tem s , and th e m an y com p on ents , w hich  is  part of  a fully-
fledged smart en ergy s ys tem  as  sho w n  abo ve, inv olv es  the risk  th at it can b e di fficult  to  ide nt ify - and th us  regulate 

an d im plem ent  - th e k ey elem ents  o f a sm art en ergy s ys tem . S uch  a s ys tem  m us t  no t b e fu lly des ign ed at  the s am e 
t im e, b ut  can  an d s ho uld be gradu ally ex pan ded as  the co nt inu ou s  ph as ing-in  o f flu ctu atin g energy (in  D enm ark 
esp ecially w ind po w er), and - es p eci ally in the firs t s tages  - w ith a fo cus  on  th e co re elem ents  n eces s ary to co pe w ith 

su ch in creasing am o un ts o f flu ctu atio n.

Certain  elem en ts  o f a sm art en ergy s ys tem  are cru cial to the abilit y to reco rd an d app ly large am ou nts o f flu ctu atin g 
VR E S  in a s o cio-eco n om ica lly app ro pria te w ay - w h ile other ele m en ts  are le s s  cru cia l (b ecause they have, fo r 

ex am ple, a lim ited o verall effect  in  a sm art  energy s ys tem ). Certain  elem en ts  are tech no logica lly and econ om ically 

ma t ure for imp leme n tat ion  w ith in a sh orter n umb er of years  - w h ile other elem en ts  are no t yet  t echno logically or 

eco no m ically m ature.
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Describe
Model

Upstream 

Network Level:

Useful Energy

Community Level:

Centralized Energy Generation and Storage

Community Level:

Energy Distribution

System Design Example No. 1.3.4.1

Building Level:

Building Cluster Level:

Generation and Storage

Cooling    5 °C / 10 °C

Natural G as

Other Energy 

Resources:

Mission-Critical 

Consumer(s)

Other Consumer(s)

Heat 

Storage 

(Tanks)

Natural 

Gas 

Boiler(s)

Electric 

Chil ler

Chil led 

Water 

Tank(s)

Biomass

Boiler(s)

Biomass

Electricity

Emergency 

Generator

© GEF

Electricity

(Medium-Voltage 

Grid)

Heating    110 °C / 50 °C

Upstream 

Network Level:

Useful Energy

Community Level:

Centralized Energy Generation and Storage

Community Level:

Energy Distribution

Heating    80 °C / 40 °C

Building Level:

Building Cluster Level:

Generation and Storage

Gas 
CHP

Other Energy 

Resources:

Ambient Heat

Other Consumer(s)

Heat 

Storage 

Tanks

Electric 

Boiler

Electric

Heat 

Pump

Solar 

Thermal

Solar Radiation

Gas

Boiler(s)

Gram (DK)  No. 2.3.1.1

Pit Heat

Storage

Natural Gas

Electricity
(Medium-Voltage 

Grid)

Ind. Waste Heat

Electricity

© GEF

Architecture 
Selection & 

Configuration

Input File(s)

Components

Network Connections

Scenarios to Simulate

Resilience and Reliability 
Information

ERIN
(energy resilience simulator)

Outputs
• Blue sky (EA/reliability, energy use, cost)
• Energy availability and max downtime by scenario & buildings

Compare EA and Max down time for 
all buildings, evaluate gaps and select 
different architecture when necessary

Architectures

Cost 
Calculation

Instructions:  Com plete the yellow cells.

Classification of Objective

Goal (Y/N)

Requirement 

(Y/N) Goal (Y/N) Req uirement (Y/N) Values

System econom ics, return on investment (ROI) % Y 20%

System econom ics, net present value (NPV)

Envi ronmental  impact (% reduction in GH G) %

Red uce source energy use  (%  reduction ) %

Red uce si te energy use  (% reduction) %

Red uce water use (% reduction ) %

Meet or exceed an energy use standard (speci fy standard) % Y 30% better Example: 30 % better than ASHRAE Standard 90.1 (or IECC, LEED, or Passive Buildin g)

Ren ew able energy use (quant ity) MMBtu/yr

Ren ew able energy use (% of total source energy use) %

Ren ew able energy use (% of total si te energy use) %

Ren ew able energy generation (% of electrici ty use) %

Ren ew able energy generation (% of heating energy use) %

Ren ew able energy generation (% of total source energy use) %

Ren ew able energy generation (% of total si te energy use) %

Fossil -fuel-based energy use (%  reduction) % Y 50%

Hot water (% gen erated from renew able energy) % Y 100%

Backup/redund ant system s for electr ic generation Y N+1

Backup/redund ant system s for space cooling Y N+1

Backup/redund ant system s for space heating Y N+1

Grid-independent capabi li ty for m ission cri ti cal  operations

System avail abil ity for mission-crit ical  bui ldi ngs*

(upt im e as % of total run time )
% Y 99.99%

System reliabil ity for mission-crit ical  bui ldings*

(num ber of  days - Mean Tim e Between Failures,  MTBF)
days Y 40 0 days

System resil ience for mission-critical  buildings*

(num ber  of hours - Mean Tim e to Repair, MTTR)
hours Y 7 hours

Water use limit kgal/day

Part iculate em issions l im it ppm

Maxim um project cost $k $50,000k

Low est l ife-cycle cost

Minim um fi rst  cost

Minim um operational  cost

Ease of m ainten ance (e.g., simple, low cost, minim al labor, serviceable 

via existing skil l set)
Y

Example: Solution cannot i ncrease the si te maintance burden.  There are no additional  resources to suppo rt  

this.

User-added Objective 1: (specify)

User-added Objective 2: (specify)

User-added Objective 3: (specify)

User-added Objective 4: (specify)

User-added Objective 5: (specify)

Background:  Project objec tives are comm only referred to  as object ives, goals,  targets,  or requirements and al l of these terms can b e interpreted differently by di fferent peopl e.  To apply proj ect objectives as project  design constraints,  i t is i mperati ve to cl

mandatory constraint (a "Requirement").   Requirem ents fram e (bind) your design option s.  This table enables this classification.

St e p 1 : Ide n t ify  a nd  C las sify  P r oje c t  O bje c t iv e s  -  T hi s  S t e p  C le a r ly  Id e nt i f ie s You r  O v e r a r c h ing  D e sign  B ou n da r ie s

Ene rgy M aster Planning Ob jective Value V alue (units) Notes

Examples Entries

5.6.1 Technical and economic assumptions

Table 5-8: Technical- and economic assumptions for a oil boiler [1]

Total efficiency , net (%), annual average 90.0

Electricity consumption for pumps etc. (% of heat gen) 0.1

Forced outage (%) 1.0

Energy/technical data

Heat generation capacity for one unit (MJ/s) 5.0

Total efficiency, net (%), nominel load 90.0

Technology
Oil boiler

Secondary regulation (% per minute) -

Minimum load (% of full load) 15.0

Warm start-up time (hours) 0.1

Space requirement (1000m2 per MJ/s) 0.0

Plant Dynamic Capabilities -

Primary regulation (% per 30 seconds) -

Planned outage (weeks per year) 0.4

Technical lifetime (years) 20.0

Construction time (years) 0.5

1.1

Financial data                               

Nominal investment (M€ per MJ/s) 0.06

 - of which equipment 0.04

NOX ( g per GJ fuel)  90.0

CH4 (g per GJ fuel) 0.0

N2O (g per GJ fuel) 0.0

Cold start-up time (hours) 0.4

Environment

SO2 (g per GJ fuel) 1.8

 - of which is electricity costs (€/MWh) -

 - of which is other O&M costs (€/MWh) -

1950

Variable O&M (€/MWh)

 - of which installation 0.02

Fixed O&M (€/MJ/s/year)

3. Energy systems

F igu re 3-1: The sm art (in tegrated)  energy s ys t em

Back to user guide

I n  es sence, a sm art energy s ys tem  b uilds  on  en ergy flow s  fro m  an d betw een  fo ur en ergy s ys tem s . E ach sys tem  m us t  
en sure an  in telligen t interact ion  betw een  p ro du ctio n, conv ers io n, s torage an d con sum p tio n in  the differen t form s  of 
en ergy, an d an  intelligent  in teractio n m u s t also  be ensu red betw een  the fou r energy s ys tem s . Th e p rim ary energy 
flow s  in the s ys tem s  m o ve fro m  produ ct ion  fo r con versio n, s t orage an d final co nsu m pt ion . Th e p ro duct ion  co nta ins  

in  p rin cip le  all resou rces  in  a 1 00 %  VRE S-based energy s ys tem  and th erefore con tribu tes  energy to  th e fo ur s ys tem s .

Tw o k ey elem ents  o f a sm art  energy s ys tem  are - un lik e the con ven tio nal en ergy s ys t em  -

respect ively : th e con vers ion  of p rim ary en ergy resou rces  to o th er u ses , and th e s torage o f energy, w hich  en sures  th e 

ne ces sary flex ibi lity  in an ene rgy s ys tem  w ith fluctuat ing energy sou rces . Conv ers ion ensu res  the  int eract ion betw een 

the fo ur s ys tem s , ie . w hen  resou rces  are to  b e con verted from  an energy fo rm  th at o rigin ates  fro m  o ne sys tem  into a 
form  that  can  b e u sed in  an other s ys tem . The con vers ion th us  con tribu tes  partly to  u tilizin g a given  en ergy so urce 

o pt im ally (s u ch as  th e co nv ers io n from  electricity to heat) , and p art ly t o create flex ib ility in  a  sm art  energy s ys tem , 

fro m  o ne so urce o f en ergy at  giv en tim es  replaced by another s o urce o f energy. F or exam p le, a heat  pu m p can  take 

o ff p ow er f ro m  the electrical s ys tem  an d de liver  heat  and coo ling to resp ectiv ely. dis trict h eatin g sys tem  an d dis t rict  
co olin g syst em , and a gas  engin e can ext ract  gas  fro m  the gas  s ys tem  and su pp ly electricity and dis t rict heat ing.

Th e gas  s torage lin e creates  additio nal flex ib ility b y b uildin g energy res erves  that  can  be prov ided to ev ery s ys tem s  in  
a sm art  energy s ys t em  du rin g p eak periods , in  p erio ds  of lack o f a giv en energy sou rce or in  p erio ds  of very high  

elect rici t y prices . T h e final po int  is  th e co n sum er  lin k, as o f co u rse are th e p rim ary b uyer s  o f en er gy.  H o w ev er, in  a 
sm art en ergy con tex t it is im po rtant  to n ote that  the co nsu m er lin k can also  act  as a flex ible com p on en t by regu latin g 

u p or do w n fo r con sum p tio n, or b y s tor ing energy in, for ex am ple, electric cars  or in th e b uildings ' heat s to rage.

Th e m an y an d very v aried de fin itio ns  o f sm art  energy s ys tem s , and th e m an y com p on ents , w hich  is  part of  a fully-
fledged smart en ergy s ys tem  as  sho w n  abo ve, inv olv es  the risk  th at it can b e di fficult  to  ide nt ify - and th us  regulate 

an d im plem ent  - th e k ey elem ents  o f a sm art en ergy s ys tem . S uch  a s ys tem  m us t  no t b e fu lly des ign ed at  the s am e 
t im e, b ut  can  an d s ho uld be gradu ally ex pan ded as  the co nt inu ou s  ph as ing-in  o f flu ctu atin g energy (in  D enm ark 
esp ecially w ind po w er), and - es p eci ally in the firs t s tages  - w ith a fo cus  on  th e co re elem ents  n eces s ary to co pe w ith 

su ch in creasing am o un ts o f flu ctu atio n.

Certain  elem en ts  o f a sm art en ergy s ys tem  are cru cial to the abilit y to reco rd an d app ly large am ou nts o f flu ctu atin g 
VR E S  in a s o cio-eco n om ica lly app ro pria te w ay - w h ile other ele m en ts  are le s s  cru cia l (b ecause they have, fo r 

ex am ple, a lim ited o verall effect  in  a sm art  energy s ys tem ). Certain  elem en ts  are tech no logica lly and econ om ically 

ma t ure for imp leme n tat ion  w ith in a sh orter n umb er of years  - w h ile other elem en ts  are no t yet  t echno logically or 

eco no m ically m ature.
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Conclusions

● Free and open-source resilience calculation tool

○ Command line executable

○ MS Excel Minimal User Interface

● Part of a larger energy master planning process

○ Describing a model from an architecture template

○ Discussed how data products from IEA Annex 73 could be used in concert
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Thank you!

Questions?


